
HAL Id: hal-02355176
https://hal.science/hal-02355176v1

Submitted on 8 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modes of wall induced granular crystallisation in
vibrational packing

Weijing Dai, Joerg Reimann, Dorian Hanaor, Claudio Ferrero, Yixiang Gan

To cite this version:
Weijing Dai, Joerg Reimann, Dorian Hanaor, Claudio Ferrero, Yixiang Gan. Modes of wall induced
granular crystallisation in vibrational packing. Granular Matter, 2019, 21 (2), �10.1007/s10035-019-
0876-8�. �hal-02355176�

https://hal.science/hal-02355176v1
https://hal.archives-ouvertes.fr


Dai, W., Reimann, J., Hanaor, D., Ferrero, C., & Gan, Y. (2019). Modes of wall induced granular 
crystallisation in vibrational packing. Granular Matter, 21(2), 26. 

1 

 

Modes of wall induced granular crystallisation in vibrational packing 

Weijing Dai1, Joerg Reimann2, Dorian Hanaor3, Claudio Ferrero4, Yixiang Gan1,* 

1 School of Civil Engineering, The University of Sydney, NSW 2006, Australia. 

2 Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany. 

3 Fachgebiet Keramische Werkstoffe, Technische Universität Berlin, Germany. 

4 ESRF-The European Synchrotron, Grenoble, France. 

 

Abstract 

Granular crystallisation is an important phenomenon whereby ordered packing structures form in 

granular matter under vibration. However, compared with the well-developed principles of 

crystallisation at the atomic scale, crystallisation in granular matter remains relatively poorly 

understood. To investigate this behaviour further and bridge the fields of granular matter and 

materials science, we simulated mono-disperse spheres confined in cylindrical containers to study 

their structural dynamics during vibration. By applying adequate vibration, disorder-to-order 

transitions were induced. Such transitions were characterised at the particle scale through bond 

orientation order parameters. As a result, emergent crystallisation was indicated by the 

enhancement of the local order of individual particles and the number of ordered particles. The 

observed heterogeneous crystallisation was characterised by the evolution of the spatial 

distributions via coarse-graining the order index. Crystalline regimes epitaxially grew from 

templates formed near the container walls during vibration, here termed the wall effect. By varying 

the geometrical dimensions of cylindrical containers, the obtained crystallised structures were 

found to differ at the cylindrical wall zone and the planar bottom wall zone. The formed packing 

structures were quantitatively compared to X-ray tomography results using again these order 

parameters. The findings here provide a microscopic perspective for developing laws governing 

structural dynamics in granular matter. 

Keywords: granular materials; packing; vibration; boundary effects; crystallisation. 
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1. Introduction 

The behaviour of granular matter subjected to shear, vibration, flow and mixing is of tremendous 

significance in diverse applications involving the handling and processing of materials in 

particulate form [1,2]. The evolution of granular packing is particularly important as system 

behaviour and effective properties are closely correlated to packing structure [3]. Recently, 

granular crystallisation under vibration has drawn increasing interest [4-8]. Similar to its 

counterpart in materials science, crystallisation in granular matter can be characterised by the 

formation of ordered structures. Analogous to heat in materials science, vibration acts as an energy 

source to agitate particles to jump around and form crystalline structures.  However, as granular 

matter is an athermal and generally repulsive system, the underlying mechanisms differ from 

bonding at the atomic level. For decades, vibration has been utilised to excite granular matter for 

fluidisation, segregation and packing [9-14], and is thus utilised in this study to explore how 

granular crystallisation occurs. Early studies show how internal dynamics of particles determine 

the macroscopic behaviour of entire granular systems [15-17]. Depending on the intensity of 

vibration, macroscopic phenomena manifesting during vibration are compaction [18-21] and 

convection [22,23,17]. However, granular crystallisation lies at the intersection of these two 

phenomena, as it requires a certain fluidisation to facilitate particle rearrangement, yet results in a 

compacted state.  

Experimentally, granular crystallisation has been studied by vibrating existing packings [6,24] or 

by adding particles at controlled rates to horizontally or vertically vibrating boxes [4,25]. In the 

former scenario, a gradual deceleration of agitation, analogous to annealing, plays an important 

role in the emergent crystallisation, as do pre-set templates and particular container geometries in 

the latter case [4]. The use of three-dimensional vibration, rather than uniaxial, is found to further 

enhance crystallisation by disrupting granular arching [20]. The behaviour of sinusoidal-vibration 

driven rearrangement of granular packing is manipulated by filling rate and vibration intensity 𝛤, 

defined as 𝛤 = 𝐴(2𝜋𝑓)2/g , where g is the gravitational acceleration, and  𝐴  and 𝑓  are the 

vibration amplitude and frequency, respectively. Maximum crystallisation is found to occur for an 

intermediate value of 𝛤 [26,20,27]. Earlier works have demonstrated the possibility to control 

granular packing structures through geometry parameters, cohesion and agitation, with the 
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minimisation of internal energy proposed to drive crystallisation. However, a mechanistic 

understanding of how granular crystallisation occurs and develops under simple and continuous 

vibration still remains elusive. Insights can be gained from the densification of granular matter, 

where mechanisms have been discussed in terms of the preservation and reconstruction of contact 

networks [28] and pore size distribution [29,18].  

In order to establish accurate mechanisms, numerical simulations, such as discrete element 

methods and Monte Carlo methods [30], have been implemented together with X-ray computed 

tomography (XCT) to examine structural evolution [21] and the appearance of crystalline 

structures [8]. In recent studies, the emergence of crystallisation by vibration was identified for 

conditions where the random close packing fraction (0.64) was exceeded [31,32]. By examining 

the internal structure of various packings formed under different vibration protocols, the formation 

of polytetrahedral patterns and octahedral cavities was shown to impart geometrical frustration 

[33,8]. Additionally, using high-speed cameras, the role of boundaries in the nucleation of 

crystalline regimes in two-dimensional systems has been studied across multiple scales in terms 

of pattern formation and densification as well as their relation to grain mobility [34] and energy 

dissipation [35]. Three-dimensional systems with planar, convex and concave boundaries have 

been recently investigated experimentally [36,32], demonstrating the significance of boundary 

geometries. 

Through well-developed frameworks used to describe analogous crystallisation from glasses or 

gels in the domain of materials science [37,38], the field of granular crystallisation remains ripe 

for further exploration, with a view towards enhancing high-value packing-dependent properties 

[39,31]. The present study explores transient states of crystallisation, using a discrete element 

method (DEM) to simulate dynamic behaviour of vibrated granular matter. Different container 

geometries were used to examine the boundary influence, with results compared to XCT data.  

Simulations show that in the absence of cohesion or attraction, granular matter exhibits a clear 

tendency to crystallise under vibration. Different modes of crystallisation were identified through 

the analysis on the packing structure transitions. The favoured propagation direction of 

crystallisation is examined here as a function of container geometry as is the resulting spatial 

distribution of crystallites.  
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2. Investigation setup and motivation 

2.1. Discrete element method 

Dynamics of granular matter subjected to external vibration is simulated by the open source 

software LIGGGHTS [40] based on DEM. In this method, the propagation of external agitation is 

interpreted as the result of inter-particle collisions, causing the motion of granular particles.  For 

an individual collision between particles 𝑖  and 𝑗 , the normal component  𝑭n
𝑖,𝑗

 and tangential 

component 𝑭t
𝑖,𝑗

 of the inter-particle force are described by the following equations, 

 𝑭n
𝑖,𝑗

= 𝑘n
𝑖,𝑗

 𝜹n
𝑖,𝑗

− 𝛾n
𝑖,𝑗

 𝒗n
𝑖,𝑗

, 𝑭t
𝑖,𝑗

= 𝑘t
𝑖,𝑗

 𝜹t
𝑖,𝑗

− 𝛾t
𝑖,𝑗

 𝒗t
𝑖,𝑗

, (1) 

where 𝑘n
𝑖,𝑗

 and 𝛾n
𝑖,𝑗

 and (𝑘t
𝑖,𝑗

 and 𝛾t
𝑖,𝑗

) are contact stiffness and viscoelastic damping coefficient for 

normal and (tangential) contact, respectively. These quantities are derived from the Hertz-Mindlin 

contact theory, and thus depend on the instantaneous contact configuration. Here, 𝜹n
𝑖,𝑗

 is the 

overlap distance, 𝒗n
𝑖,𝑗

 and (𝒗t
𝑖,𝑗

) are the relative velocities in the normal and tangential directions, 

and 𝜹t
𝑖,𝑗

 is the tangential displacement vector between particles 𝑖 and 𝑗. In addition, 𝑭t
𝑖,𝑗

 is limited 

by the Coulomb friction limit, |𝑭t
𝑖,𝑗

| ≤ 𝜇 |𝑭n
𝑖,𝑗

|, in which 𝜇 is the friction coefficient.  

2.2. Order characterisation 

In the present study, we used void fraction distributions, coordination numbers, contact angle and 

radial density distributions as well as Voronoi tessellation to characterise the packings [28,36,41]. 

However, we concentrate here on the use of bond orientation order parameters to distinguish 

crystalline structures and represent the transitions between ordered and disordered states. An 

advantage of this measure is its insensitivity to particle separation, enabling its use for the transient 

characterisation of moving granular matter. Together, static and dynamic measures are used to 

describe the structural changes across order transitions. 

Bond orientation order parameters, initially defined by Steinhardt et al [42], represent the 

rotational symmetry of sphere assemblies as, 

 𝑄𝑙𝑚(𝑟) ≡ 𝑌𝑙𝑚(𝜃(𝑟), 𝜑(𝑟)), (2) 
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where a bond 𝑟 is defined as a vector that points from the centroid of a central particle to one of 

its neighbour particles, 𝑌𝑙𝑚(𝜃, 𝜑)  are spherical harmonics, 𝜃(𝑟)  and 𝜑(𝑟)  are the polar and 

azimuthal angles of the bond in a reference spherical coordinates system, and 𝑙 and 𝑚 are integers 

indicating the order of spherical harmonics with the condition that 𝑙 ≥ 0  and |𝑚| ≤ 𝑙 . By 

averaging 𝑄𝑙𝑚(𝑟) over the 𝑛b
𝑖  closest neighbours of a central particle 𝑖, the following expression 

is obtained, 

 
�̂�𝑙𝑚(𝑖) =

1

𝑛b
𝑖 ∑ 𝑄𝑙𝑚

𝑖,𝑘(𝑘)
𝑛b

𝑖

𝑘=1 .  
(3) 

In the current study, the number of neighbours 𝑛b
𝑖  of a central particle 𝑖 is selected as 12 [37,30], 

the largest coordination number of non-overlapping mono-sized particles, because it gives 

significantly different feature values between crystalline structures like BCC, HCP, FCC and even 

icosahedral. Finally, the local bond orientation order  for particle 𝑖 is constructed as [43]  

 
𝑄𝑙

local(𝑖) ≡ (
4𝜋

2𝑙+1
∑ |�̂�𝑙𝑚(𝑖)|2𝑙

𝑚=−𝑙 )
1/2

, 
(4) 

 
�̂�𝑙(𝑖) =

∑  (
𝑙 𝑙 𝑙

𝑚1 𝑚2 𝑚3
)�̂�𝑙𝑚1

(𝑖) �̂�𝑙𝑚2
(𝑖) �̂�𝑙𝑚3

(𝑖)𝑚1,𝑚2,𝑚3

[∑ |�̂�𝑙𝑚(𝑖)|26
𝑚=−6 ]

3 2⁄ , 
(5) 

where the term in the parentheses is Wigner-3j symbol. 𝑙 = 4 and 6 are widely used due to their 

unambiguous value for regular structures [37,43]. 

Order indices of neighbourhood configuration of a central particle 𝑖 are defined on the basis of a 

vector 𝒒6⃗⃗⃗⃗⃗(𝑖) = [�̂�6𝑚(𝑖)]  , with 𝑚 = -6, -5,…0,…5, 6. The cosine similarity of a pair of such 

vectors of neighbouring particles 𝑖 and 𝑗 is calculated as  

 CosSimi(𝑖, 𝑗) = 𝐑𝐞 [
 𝒒6⃗⃗ ⃗⃗ ⃗⃗ (𝑖)

| 𝒒6⃗⃗ ⃗⃗ ⃗⃗ (𝑖)|
∙

𝒒6⃗⃗⃗⃗⃗(𝑗)

| 𝒒6⃗⃗ ⃗⃗ ⃗⃗ (𝑗)|
] = 𝐑𝐞 [

∑ �̂�6𝑚(𝑖)6
𝑚=−6 ∙�̂�6𝑚

∗ (𝑗)

| 𝒒6⃗⃗⃗⃗⃗⃗⃗(𝑖)||𝒒6⃗⃗⃗⃗⃗(𝑗)|
]. (6) 

CosSimi(𝑖, 𝑗)  between particles 𝑖  and 𝑗  is positively correlated with the similarity of their 

individual neighbourhood configurations, and a pair of connected particles has CosSimi(𝑖, 𝑗) ≥

0.7 [44]. Hence, the order of individual particles can be positively represented by the parameter 

[37],  
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𝑆6

𝑖 = ∑ CosSimi(𝑖, 𝑗)
𝑛b

𝑖

𝑗 , 
(7) 

ranging between 0 and 12. For each particle, high 𝑆6
𝑖 means that particles in an ensemble have 

similar neighbourhood configurations, characterising local crystalline perfection. Additionally, to 

describe the overall structural order of an assembly of particles, we make use of [39],  

 𝐹6 =
1

𝑁P

∑ 𝑓6(𝑖)𝑁P

𝑖=1 , (8) 

where  

 
𝑓6(𝑖) =

1

𝑛b
𝑖 ∑ 𝛩

𝑛b
𝑖

𝑗=1
[CosSimi(𝑖, 𝑗) − 0.7] , 

(9) 

with the step function 𝛩(⋅). Spanning the range 0 to 1, the term 𝐹6 is used to characterise the 

structural evolution during vibration, as an alternative to the conventional packing fraction. 

A bottom-up Coarse-graining methodology is applied in this work to convert the discrete data set 

of the order index 𝑆6
𝑖 into a higher-scale continuum form to reveal the spatial distribution of order 

in the structure. In general, the coarse-graining approach used here takes a set of discrete points 

𝑷𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and their corresponding scalar data ℎ𝑖 as input [45,46]. Instead of describing the 

density at any point 𝑷 = (𝑥, 𝑦, 𝑧) by 𝜌dis(𝑷) = ∑ ℎ𝑖𝛿(𝑷 − 𝑷𝑖)𝑖  where 𝛿(∆𝒑) is the Dirac delta 

function, the coarse-graining approach transforms this discrete field into a continuous one by 

replacing 𝛿(∆𝒑)  with a positive semi-definite function 𝜑(∆𝒑) . This function fulfils the 

requirement that the integral of the continuous density function  

 𝜌con(𝑷) = ∑ ℎ𝑖𝜑(𝑷 − 𝑷𝑖)𝑖 , (10) 

is equal to the sum of ℎ𝑖 for a given volume. The exact form of 𝜑(∆𝒑) is not determinative but the 

width 𝑤 at which 𝜑(∆𝒑) vanishes holds significance [45]. Here, a three-dimensional Gaussian 

function is employed, 

 

𝜑(𝑷 − 𝑷𝑖) =
𝑒

−
1
2

[(
𝑥−𝑥𝑖

𝑟 )
2

+(
𝑦−𝑦𝑖

𝑟 )
2

+(
𝑧−𝑧𝑖

𝑟 )
2

]

(2𝜋)
3
2

. 

(11) 
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This function vanishes at 𝑤 = 3𝑟 where 𝑟 is the radius of particles. This selection of 𝑤 results 

from the fact that the order index 𝑆6
𝑖 is based on particle ensembles roughly occupying a spherical 

region with the radius of 3𝑟. 

2.3. Dynamic characterisation 

Granular-temperature is often used as a term, analogous to thermal energy at the atomic scale, to 

describe the kinematics of granular matter. While crystallisation and ordering at the atomic scale 

are studied with respect to thermal conditions, here we examine the local and global ordering of 

packing with respect to the dynamic status of particles. Granular temperature quantifies the 

velocity fluctuation of particles in granular matter rather than being a measure of thermal energy 

[47]. To obtain the granular temperature, granular matter is first discretised into particle ensembles 

[48]. For each ensemble of 𝑛 particles, the average velocity is calculated in 𝑥, 𝑦, and 𝑧 axis as 

�̅�𝑥,𝑦,𝑧 =
1

𝑛
∑ 𝑣𝑥,𝑦,𝑧

𝑖𝑛
𝑖=1 , respectively. Then the velocity fluctuation along 𝑥, 𝑦, and 𝑧 axes are derived 

separately by  

 GT𝑥,𝑦,𝑧 =
1

𝑛
∑ (𝑣𝑥,𝑦,𝑧

𝑖 − �̅�𝑥,𝑦,𝑧)2𝑛
𝑖=1 . (12) 

Finally, the granular temperature is the mean of the three axial granular temperatures GT =

1

3
(GT𝑥 + GT𝑦 + GT𝑧). To maintain consistency with the structural order characterisation, the 

ensembles used to derive the granular temperature are chosen as the 12-neighbour configuration 

used in the 𝑆6 calculation. In this way, every particle has its granular temperature as well as its 

order index 𝑆6, and relations between granular temperature and granular crystallisation can be 

investigated. 

2.4. Application to experimental observations 

The aforementioned order characterisation methods are applied to two previously studied cases of 

vibrated granular media, both confined by cylindrical boundaries [36]. ExpC (same notation as in 

[36]) has a slender shape, 30 mm in its cylindrical diameter and 70 mm in its height, and ExpD 

(same notation as [36]) is relatively flat, 50 mm in diameter and 40 mm in height. The coordinates 

of their particles were obtained by XCT techniques. One apparent difference between these two 
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granular media is the order of the superficial particles. ExpC shows extensive hexagonal packing 

on the cylindrical surface and disordered packing on the top surface (Fig. 1a). However, ExpD 

shows an opposite trend, despite the existence of discontinuous hexagonal packing (Fig. 1b). In 

order to expose the internal packing of these granular media, the 𝑆6
𝑖 of individual particles are 

computed and fed into coarse-graining approach to construct spatial density mappings of 𝑆6, as 

given by Figure 1c and Figure 1d. Since the order of packing is positively related to 𝑆6, the redder 

region indicates stronger crystallisation. In consistence with the superficial packing of these two 

granular media, crystallised regions in ExpC and ExpD exhibit radial and axial accumulation, 

respectively. The redder colour in the mapping of ExpD implies that fewer defects exist in the 

packing compared with ExpC. This motivates further investigations into the relations between 

granular crystallisation and  geometrical characteristics.  

 

Figure 1 Reconstruction (left column) and 𝑆6 density mappings (right column) of two vibrated 

granular media. ExpC – a and c, ExpD – b and d.   

3. Results 

3.1. Simulation parameters 

To investigate the influence of container boundaries on granular crystallisation, mono-dispersed 

frictionless spheres were generated in cylindrical containers of different radii and heights. Then, 
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the evolution of the packing structure inside these granular media during continuous sinusoidal 

vibration was simulated and characterised to study the crystallisation process. The simulations 

followed a similar scheme. Firstly, 5000 particles of size 𝑑 were randomly dispersed in a finite 

cylindrical container with a diameter 𝐷 and were allowed to settle under gravity. This state was 

considered as the initial state before vibration. Sinusoidal vibration function with an amplitude 𝐴 

and frequency 𝑓 was introduced by moving the bottom of the cylindrical container in the axial 

direction along the gravitational direction. At the upper surface of the granular matter, a lid that 

could move freely in axial direction confined the granular matter in a negligible pressure of a few 

Pa. This lid is particularly used to flatten the upper surface for structural characterisation, e.g. 

packing fraction and Voronoi tessellation, and reproduce experimental conditions [36]. The 

vibration was applied over 1000 periods (𝑇 = 1/𝑓), followed by sufficient relaxation (1s) to reach 

static equilibrium. The vibration amplitude was varied to study the influence of the energy input 

on the crystallisation. Table 1summarises the material and simulation parameters used in the study. 

The diameters and the initial heights of the cylindrical volumes were varied to study the 

geometrical influence on the crystallisation process. 𝐷/𝐻 =30/75 (with 𝐷/𝑑 =13, 𝐻/𝑑 =33) is 

characteristic for a rather slender container, while the case 𝐷/𝐻=60/19 (with 𝐷/𝑑=26, 𝐻/𝑑=8) 

represents a rather flat one. The chosen geometrical  parameters 𝐷/𝐻=30/75 and 𝐷/𝐻=50/25 are 

similar to those investigated by XCT [36] for the purpose of reliable comparison between 

simulation and experiment. 

Table 1 Parameters for DEM simulations 

Young’s modulus, 𝐸 63 (GPa) 

Poisson ratio, 𝜈 0.2 (-) 

Density, 𝜌 2230 (kg/m3) 

Friction coefficient, 𝜇 0.0, 0.2, 0.5 (-) 

Coefficient of restitution 0.6 (-) 

Diameter of sphere, 𝑑 2.3 (mm) 

Container Diameter/Height, 𝐷/𝐻 30/75, 40/60, 50/25, 60/19 (mm/mm) 

 denoted as D30, D40, D50, D60 

Vibration amplitude, 𝐴 0.23 (0.1𝑑), 0.46 (0.2𝑑) (mm) 

Vibration frequency, 𝑓 50 (Hz) 

Gravitational acceleration, g  9.8 (m/s2) 

Vibration intensity, 𝛤 2.3, 4.6 (-) 
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3.2. Selective crystallisation by wall effect and epitaxial growth 

By employing DEM simulations to track transient states of particles during vibration, the dynamic 

development of crystalline structures is unveiled, which supplies information difficult to be 

obtained by XCT. Following the method introduced in section 2.4, 𝑆6  density mapping is 

constructed to spatially expose the propagation of the periodic crystalline structures, featured by 

high 𝑆6 regimes. In the sequential 𝑆6 mappings of the granular media experiencing vibration, the 

dynamic process of crystallisation is reconstructed by the morphology and intensity evolution as 

shown in Figure 2.  

The general and common phenomenon appearing in all cases is that the region of high 𝑆6 (shown 

in red colour) in the density mappings expands and intensifies with vibration, and eventually 

reaches a quasi-equilibrium state in which only minor changes of ordering could be observed (row 

by row in Figure 2). Larger amplitude accelerates the crystallisation rates and produces larger 

crystalline regimes. In addition, increasing D results in regions of higher 𝑆6 value, indicating finer 

crystalline regimes. This phenomenon can be explained by the structural difference in those 

crystalline regimes which will be addressed in later sections. Within the scope of current study, 

the granular crystallisation is initiated automatically once the vibration commences. It could be 

inferred that highly disordered granular matter is vulnerable to dynamic perturbations like 

vibration, while the crystallised granular matter at the quasi-equilibrium state manifests the 

stability of crystalline structure. 

Regarding the growth of crystalline regimes, a wall effect is identified in all geometries. According 

to the 𝑆6 density mappings at the early periods, reddish regions indicating highly ordered structure 

always preferentially appear at the bottom walls and cylindrical walls (the second column in Figure 

2 (a) and the first column in Figure 2 (b)). This preferential crystallisation can be partly explained 

by the existence of a partially ordered layer of particles adjacent to the walls before vibration, 

which can be seen from the first column in Figure 2 (a). These ordered layers emerge during the 

settlement of granular matter because the particles need to rest in positions with as many contacts 

as possible to support themselves under frictionless conditions. However, those partially ordered 

layers can also be developed near the walls during vibration, which highlights the robustness of 

two-dimensional ordered layers in spite of collisions by other particles. After the similar prior 
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crystallisation at walls, the emerging crystallisation becomes dependent on the container boundary 

configuration, i.e., 𝐷/𝑑  and 𝐻/𝑑 . Depending on the origin of the crystalline regimes, two 

crystallisation modes can be differentiated in this period, the cylindrical mode and the bottom 

mode. The cylindrical mode induces crystalline regimes in a radially inward direction, whereas 

crystalline regimes grow upwards along the axial direction in the bottom mode. Thus, a competing 

mechanism between these two modes is introduced for the subsequent crystalline growth stage, 

which is determined by the H/D ratio. As the H/d decreases and 𝐷/𝑑 increases, crystallisation at 

the bottom wall becomes the favoured mode. Conversely, the cylindrical mode dominates the 

crystallisation in geometries with small 𝐷/𝑑  and large 𝐻/𝑑 . This trend is responsible for the 

observed radial and axial accumulation of crystallised regions found in previously reported 

experimental work, as shown in section 2.4. 

Evolutional phase diagrams were constructed by comparing the 𝑆6  density maps of different 

granular media at the specific vibration duration. Two operational phases exist in the phase 

diagram of small amplitude (𝐴=0.1𝑑) while for the large amplitude (𝐴=0.2𝑑) three phases are 

observed. In the early periods, all granular media exhibit a “dual-mode cooperating” phase where 

crystallisation progresses on both cylindrical and bottom walls. When the granular media continue 

to be vibrated, either the cylindrical mode or the bottom mode prevails in crystallisation (“single-

mode prevailing” phase), although different crystalline regimes grown in the other modes can still 

be identified. The exception D40 is always in the dual-mode phase, in which disordered regions 

act as boundaries and partition different crystalline regimes. The packing structures of the 

boundary regions are instable and vary with vibration because the mismatch between crystalline 

regimes grown in two different modes makes it difficult to reach a final state.  

Most interestingly, a third operational phase is present for D30 and D60 in the final periods of 

large amplitude vibration. This phase represents the extreme scenarios where one of the 

crystallising modes is eliminated, named as “sole-mode dictating” phase. This third operational 

phase was experimentally observed in vibrated particle geometries with large 𝐷/𝑑 and small 𝐻/𝑑 

by one of the authors. The cylindrical wall layer was fairly hexagonally packed for the longest part 

of the total vibration period. However, this layer eventually became significantly unstable while 

at the top bed surface well defined hexagonal patterns still appeared, as shown in Figure 1 b. 
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Although this phenomenon was observed in ExpD with smaller cylindrical diameter [36], the final 

stage D50 case in simulation also nearly shows “sole-mode dictating” phase, which is possibly 

resulted from the much shorter vibration duration in simulation.  

 

(a) 𝐴 = 0.1𝑑 

 

(b) 𝐴 = 0.2𝑑 

Figure 2 Evolutional phase diagram of the crystallisation in granular media of different height-to-

diameter ratio. Each 𝑆6 density mapping consists of central plane slices of three axes, the colour 

indicated by coarse grained 𝑆6 suggests disorder in violet direction and crystallisation in reddish 

direction. In the phase diagrams three phases are marked by background filling, (1) dual-modes 

cooperating; (2) single-mode prevailing; and (3) sole-mode dictating which are approximately 

determined by the competition between cylindrical and bottom modes.  
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Figure 3 Evolution of 𝐹6 for particles groups separated by position. CW – first layer near the 

cylindrical wall, BW – first layer near the bottom wall and Core – the bulk particles. 

Figure 3 shows the variation of 𝐹6 in the cylindrical wall layer, the bottom layer and the core region 

separately with extended vibration periods. It is clearly shown that both wall layers possess higher 

𝐹6 than the core region at the initial state, proving the existence of partially ordered regimes. Not 

only for the initial state, has this comparison underlined the significance of the wall effect during 

the granular crystallisation. The 𝐹6 evolution of the two wall layers conforms the phase separation 

in the evolution diagrams. In dual-mode cooperating phase, the contrast between the patterns is 

small and both parts exhibit a common trend of increase-to-stabilise behaviour. As the contrast 

extends or a crossover arises, the granular media move into the single-mode prevailing phase. In 

regard to the sole-mode dictating phase, it is foreshadowed by the continuous decrease of the 𝐹6 

in one of the two parts. The decrease of the 𝐹6 proves those wall layers become disordered by 

vibration, wiping out the corresponding mode. 
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Since very large granular systems (particle numbers ≫104 [49,50]) are beyond the aims of the 

current study, we conclude that granular crystallisation in containers of finite size is initiated by 

the wall effect and progresses in modes that depend on the wall geometry. The wall effect of both 

cylindrical and bottom modes generates quasi two-dimensionally ordered layers with as many 

contacts as possible which we will subsequently prove to be hexagonal packings. The following 

processes are the expansion of the hexagonal packing across the wall plane and the epitaxial 

growth of an adjacent layer. The repetition of these stepwise processes establishes the granular 

crystallisation in these confined systems. Because of imperfections and the competition with other 

crystallised layers, each epitaxial layer is smaller than the preceding one, resulting in conical 

crystalline regimes. From an energetic perspective, the underlying microscale mechanism is 

proposed as the selection of positions with high number of contacts to enhance the propagation of 

kinetic energy. Owing to the maximised contacts, the kinetic energy induced by the vibration on 

the one hand dissipates quickly from one particle to its surroundings in such structures, leaving the 

particle in a less perturbed state and making the crystalline regimes robust; on the other hand, this 

kinetic energy is efficiently transferred throughout the crystalline arrangements, triggering the 

relocation of particles from the disordered regions into particular crystallising positions nearby. 

Such steps build up a positive feedback loop to promote crystallisation. Therefore, larger amplitude 

activates more particles near ordered layers and enhances the possibility for these particles to lodge 

in an energetically favourable position. However, too much energy will reverse those steps, cause 

drifting particles and deteriorate the crystallisation. Self-nucleation [49] is not the prevailing 

mechanism due to the repulsive nature of granular matter while the merging of crystalline regimes 

is commonly observed.  

3.3. Transient state vs. Static state 

In the context of crystallisation in various systems, the interplay between densification and order 

formation has been debated by researchers to determine whether the densification precedes the 

order formation or the other way around [38], while some reports suggest that these two processes 

occurred simultaneously [51]. Densification in granular matter, characterised by static packing 

fraction (𝛾) in shearing and vibrating-relaxing processes, indicates different stages of granular 

crystallisation [30,50], presenting cooperative development between these two aspects. However, 
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according to the temporal evolution of 𝛾 and 𝐹6 in the right column in Figure 4, 𝛾 at transient state 

exhibits fluctuation due to the granular dilation resulted from repulsive interaction, hiding its 

relation with the order formation. On the other hand, the order formation, given by the increase of 

𝐹6, persists in spite of the unstable densification. Such decoupling phenomenon stresses that the 

order formation should be focused when the granular crystallisation is studied in transient state.  

 

Figure 4 Overall evolution of each granular medium subjected to vibrations of different amplitude. 

The histograms (colouring with transparency) in the left column show distributions of the Voronoi 

cell packing fraction of the initial state and two final relaxed states after vibration (𝐴=0.1𝑑 and 

𝐴=0.2𝑑) with legends giving the corresponding overall packing fraction 𝛾 and structural index 𝐹6. 

The corresponding right column plots demonstrate the time variation of the overall at transient 

states during vibration. 
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Within the vibration duration in this study two stages can be distinguished according to the 

evolution of 𝐹6. The first stage is characterised by the monotonic and rapid increase of 𝐹6, which 

corresponds to particles in disorder moving into an order positions. The second stage can be treated 

as a quasi-equilibrium state, featured by the mild change of 𝐹6. Particle arrangement of elevated 

𝐹6  leads to symmetrical collisions between particles and uniform dissipation of energy in the 

granular media, maintaining the systems’ stability. In other words, this phenomenon suggests that 

the order formation cannot fully be accomplished by single vibration mode and wall effect must 

be carefully examined when producing single-crystal granular matter [6,20]. These are the reasons 

that the current simulation cannot reach fully crystallised state (𝛾 ≥ 0.7) when compared with 

other simulation with periodic boundary condition as well as additional lateral perturbation [30,7]. 

The static final states of the granular media are shown in the left columns of Figure 4. The 

distributions of the Voronoi cell packing fractions are presented with the legends indicating overall 

𝛾 and 𝐹6. Both 𝛾 and 𝐹6 increase in the final relaxed states after vibration. The larger amplitude 

leads to a bigger increment in 𝛾 and 𝐹6 except for the case of D60. This exception can be attributed 

to the relatively strong fluidisation because of the least gravitational potential to overcome, i.e., 

the least 𝐻. These results are in agreement with previously reported DEM studies [41] and Monte 

Carlo simulation [30] as well as experiments [52,36] in which the packing fraction is maximised 

at an intermediate vibration intensity, which can also be concluded the maximum 𝐹6  can be 

introduced by an intermediate vibration intensity. In order to reveal the change in structure between 

the initial and final states, the Voronoi cell packing fraction was calculated [53]. The distributions 

are of bell-shape for all the initial states and are characterised by several peaks at the final states. 

With increasing 𝐷 and decreasing 𝐻, a peak at ≈ 0.74 develops, which proves the emergence of a 

highly crystallised structure. It should be noted that the packing fraction shown in Figure 4 is 

calculated according to the maximum occupied volume of the corresponding granular matter. 

Packing fraction 𝛾in excluding the surface particles of the corresponding granular matter has been 

given, which is consistent with the proved concept that granular crystallisation occurs with packing 

fraction larger than RCP (𝛾 ≈ 0.64).  
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3.4. Granular temperature and crystallisation 

Granular crystallisation can be regarded as the development of structural order. Analogous to 

structural order, as the uniformity of the velocities of particles in an ensemble increases, we 

consider it as the development of dynamic order. In this way, the granular temperature is able to 

quantitatively describe this dynamic order.  

  

(a)  (b) 

   

(c)  (d) 

Figure 5 (a) A similar trend in the 𝑆6  evolution is observed in all cases. The 𝑆6  accumulates 

between 10 and 12 in the final state, while the peak right shifts as D increases. (b) Typical granular 

temperature evolution (D50) in the small amplitude vibration scenario. (c) Typical granular 

temperature evolution (D40) in the large amplitude vibration scenario. (d) Granular temperature 

evolution in the relatively strong fluidisation case (D60). (b) and (c) have the same legend shown 

in (d) with HC – highly crystallised, LL – liquid like, MO – moderately ordered, AVE – averaged.  

In the temporal evolution of the 𝑆6 distributions, a general trend is evident in which a singular peak 

gradually intensifies during vibration, shown in Fig. 4(a). Therefore, we make use of the 𝑆6 

distributions to examine how the granular temperature evolves under different conditions. By using 

the particle connection criteria based on the magnitude of 𝑆6, the particles are categorised into two 
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groups, the solid-like and liquid-like. Within the solid-like group, the particles are categorised 

again into two sub-groups, the highly crystallised and moderately ordered, by setting a threshold 

for highly crystallised particles, i.e.,  𝑆6>10; because no liquid-like particle possesses 𝑆6 which 

exceeds 10. After such categorisation, the average granular temperature can be extracted for three 

groups. As discussed in the previous sections, the particles in the boundary regions are supposed 

to be more active than those in the crystallised regimes. Thus, the dynamic order should be 

suppressed in the boundary regions of low order. A general observation is that the highly 

crystallised particles have the lowest average granular temperature but the liquid-like particles 

have the highest average granular temperature. The distinction of D60 vibrated via large oscillation 

shown in Fig. 4 demonstrates that the dynamic order is suppressed in the over-fluidised state. Thus, 

we argue that the granular temperature has a transition from divergence to convergence depending 

on the geometry and the vibration intensity, and further research is required to fully demonstrate 

it.  

This phenomenon is consistent with the discussion on the relation between the propagation of 

kinetic energy and the order formation in the crystallisation presented in the previous sections. 

Along with 𝑆6  rise, the order formation and the particles crystallisation, the local structure of 

individual particles in granular media becomes periodic and symmetric. As a result, the particle 

collisions inside such crystalline structures turn out to be counterpoised, causing the structures to 

attain the ability to suppress velocities deviating from the vibration axis and preventing the 

particles from over-acceleration. In conclusion, the structural order is the foundation for the 

dynamic order. The granular crystallisation can stabilise the granular media subjected to agitation 

by resetting the elevation of the granular temperature.  

3.5. Structural characterisation and evolution 

It was demonstrated in the previous sections that the wall effect and the dual crystallisation modes 

are the major events during vibration. However, 𝑆6 can capture the degree of order of the particles 

but cannot distinguish the structural types of crystalline regimes. Thus, the local bond orientation 

parameters 𝑄6
local , 𝑊4

local  and 𝑊6
local  are utilised to differentiate the structure of those regimes. 

Firstly, 𝑊6
local is used to examine whether the cubic-based structures exists based on its sign (+/-) 
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contrast, positive for BCC and negative for HCP and FCC. Nearly all particles in these granular 

media have negative 𝑊6
local, denoting that the majority of particles sit in hexagon-based structures 

(not shown explicitly in the figures). This result is consistent with the crystallised structure in 

granular matter obtained in other research [30,7,31], implying that BCC is not the preferential 

structure in granular crystallisation. Next, the (𝑄6
local , 𝑊4

local ) coordinates, exhibiting specific 

coordinates for HCP (0.485, 0.134) and FCC (0.575, -0.159), are employed to characterise the 

particular structures in the granular media.  

In Figure 6, two series of the probability density distributions of (𝑄6
local, 𝑊4

local) for D30 and D60 

demonstrate the typical development pathways of the crystalline structures. The similar broad 

distribution of the pairs of (𝑄6
local, 𝑊4

local) indicates the disordered nature of those granular media 

at the initial state. Three structuring paths are clearly identified in the granular crystallisation. Once 

the vibration starts, the path leading to a non-typical structure coordinates, neither HCP nor FCC, 

appears first. Such coordinates represents the hexagonally packed surface particles in finite HCP 

or FCC structures, calculated from the neighbour configuration lacked half space due to the 

boundary conditions. In accordance with the previous discussion, this path reveals the tendency 

towards hexagonal units in the wall layer during vibration. More importantly, its precedence over 

the other paths proves the priority of the wall effect. When the vibration continues,  HCP and FCC 

become the main structures emerging during crystallisation. As stated before, the dominating 

crystallisation mode in the granular media of D30 and D60 is the cylindrical mode and the bottom 

mode, respectively. According to the density contrast in the HCP and FCC paths between D30 and 

D60, the cylindrical mode shows a preferential selection of the HCP structure but the bottom mode 

has little bias on the two paths. The histograms according to probability density function of 𝑄6
local 

of the granular matter at the corresponding snapshots are presented in the rightmost column in 

Figure 6 to give more clearly quantitative sense. Differently from most studies implementing 

periodic boundary conditions [30,7,31] or excluding near wall regions [54], the priority of the 

growth of wall layer is identified here. Furthermore, the dominance of FCC over HCP is not seen 

within the vibration cycles in this work as result of wall effects.  
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Figure 6 Smoothed probability density histograms of the crystallised structures appearing in the 

granular media during vibration for D30 and D60. The (𝑊4
local, 𝑄6

local) coordinates are used to 

characterise the structure types. The intersects of pairs of dashed lines in orange and green are the 

coordinates of the FCC and HCP, respectively. The rightmost column gives the smoothed 

histograms of 𝑄6
local distributions in the granular matter. 
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First, the formation of HCP structures due to the cylindrical mode contributes most in D30 and 

D40 cases. The reason for the incapability of producing FCC structure in the cylindrical mode of 

large wall curvature is elusive. The distinctive crystalline regime in the cylindrical mode is 

characterised by a deviation from the perfect HCP coordinates introduced by the structural 

distortion. This cylindrical curvature effect, discussed also in [36], changes the structure greatly 

from the perfect HCP structure, causing a decrease of the Voronoi cell packing fraction and the 

coordination number. Nevertheless, as demonstrated in Figure 7, the detailed examination of the 

12-neighbour configuration of the distorted particles reveals that the geometrical symmetry is 

partly maintained in a HCP fashion. HCP segments (blue particles in Figure 7) and rupture particles 

(yellow particles in Figure 7) are distinguished by the 𝑊4
local of rupture particles being close to 0. 

A layer shift occurs in the neighbour configurations of the segment particles but incomplete layers 

are the typical feature of the rupture particles. Besides, this distortion causes the weaker ordering 

of the crystalline regimes near the cylindrical walls when compared with the regimes near the 

bottom walls shown in Figure 2.  

 

Figure 7 Rupture in the HCP structure near the cylindrical wall in D30. (a) Blue particles are 

distorted HCP particles (0.465 ≤ 𝑄6
local ≤ 0.505, 𝑊4

local ≥ 0.08) while yellow particles are rupture 

particles ( 0.465 ≤ 𝑄6
local ≤ 0.505 , |𝑊4

local| ≤ 0.02 ) with size scaled by 0.5 for visibility. (b) 

Typical rupture section with Particle 2 being the rupture particle. P1, P2, P3 are the 12-neighbour 

configurations of Particle 1, 2, 3, respectively.  
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One possible angle to further explain this phenomenon can be formed at the stronger mechanical 

stability of FCC than HCP [55], implying in higher resistance to deform in FCC. On the other hand, 

lower resistance should bring about potential adequateness in HCP to arrange particles in a 

distorted field like the cylindrical wall without a complete loss of the structural characteristics. 

Thus, this stronger deformability may contribute to the prevalence of HCP in the cylindrical mode. 

Further, as 𝐷 increases, the distortion due to the wall curvature becomes smaller, resulting in more 

FCC particle appearing in the cylindrical wall region as shown in Figure 9. 

     

Figure 8 Smoothed histograms of 𝑄6
local distributions of D40 (left), D50 (middle) and D60 (right) 

granular matter subjected to different vibration mode. 𝐴=0.1𝑑 indicates 0.1𝑑 amplitude and 50Hz 

frequency; 𝐴=0.2𝑑 indicates 0.2𝑑 amplitude and 50Hz frequency; and 𝑓=70Hz indicates 0.1𝑑 

amplitude and 70Hz frequency.  

Second, although the difference in mechanical stability helps to explain the HCP dominance in the 

cylindrical mode, the lack of a bias between HCP and FCC in the bottom mode should be discussed 

because of the contradictory against the argument above [55]. According the current result, the 

mechanical stability plays an important role in distortion effect, while in the distortion free 

condition the packing history should be considered [55], i.e. the vibration protocols used in current 

work. To elaborate this point, different vibration modes were applied. Using amplitude 𝐴=0.1𝑑 

and frequency 𝑓 =50Hz as a reference mode, increasing amplitude ( 𝐴=0.2𝑑 ) and frequency 

(𝑓=70Hz) populates FCC particles, except for D60 due to the aforementioned strong convection 

by large amplitude. This implies that high energy input benefits the growth of FCC in the bottom 

mode. Besides, in simulated colloidal systems [56,57], the less prevalence of HCP rather than FCC 

can also be identified when crystallisation initiated from the walls. The identical two-dimension 

hexagonal packed layers (111) at the walls are considered as the main reason. The energetic favour 
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of FCC may not be hold in these relatively two-dimensional scenarios, which requires further 

research to clarify the mechanical as well as energetic stability these near wall regions.   

 

Figure 9  The corresponding packing structures of individual particles dyed according to the (𝑊4
local, 

𝑄6
local) coordinates in red – HCP, blue – FCC, green – surface hexagon and yellow – others. The 

diameters of the particles are rescaled for visualisation purposes. Left column – 𝐴 = 0.1𝑑 and right 

column – 𝐴 = 0.2𝑑. 

Apart from the wall effects, this less preference of FCC can partially be attributed to the global 

packing fraction of the granular matter (𝛾in ≤0.67) simulated in this work, which is smaller than 
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that packing factor (>0.68) showing stronger preference of FCC [30]. In addition, recalling the 

corresponding 𝛾in of individual pairs of granular matter in Figure 3, higher 𝛾in also leads more 

appearance of FCC particles generated from the bottom mode, as shown in Figure 9.   

3.6. Influence of friction and comparison with experiments 

The effect of the boundary geometry on the granular crystallisation has been demonstrated in 

frictionless media. It is necessary to clarify the influence of friction on crystallisation and compare 

it to available experimental data. Figure 10 shows for D30 the influence of friction on the evolution 

of the overall structural index 𝐹6 during vibration. The initial state was kept identical for both the 

frictionless and frictional scenarios. The most obvious contrast between these two systems is the 

efficiency and degree of the granular crystallisation. The frictional energy losses between particles 

diminish the intensity of the vibration. Therefore, the crystallisation rate is lower in the frictional 

media and the required vibration time is longer to reach the final crystallised state. The simulated 

vibration duration (4000 periods for the longest vibration) is significantly shorter than the 

experimental study (40000 periods for the longest vibration), but the result still matches 

quantitatively. Using the structural index obtained from the experimental results (𝐹6 = 0.57808) as 

a benchmark, orange dash line in Figure 10, the corresponding transient states in the simulation 

are extracted to reconstruct their temporary morphologies. Compared to the frictionless granular 

media, the frictional ones exhibit similar patterns of the 𝑆6 spatial distributions, despite of the 

radial expansion, the crystalline regimes varying only slightly. Since the 𝑆6 spatial distributions of 

different granular media match at the equivalent 𝐹6, it is reasonable to argue that the structural 

evolution in the frictionless granular media represents a fairly complete crystallisation process for 

a given geometry. Hence, this morphological resemblance that demonstrates that friction scarcely 

influences the mechanisms of the granular crystallisation and merely hinders the crystallisation 

growth. Moreover, we have identified the inherent partially ordered regions existing at walls in 

various initial states conforming to recent XCT data [36]. Nonetheless, such variation in the initial 

structures is of negligible influence for the wall effects and order development during vibration. 

Based on this argument, the experiments can be considered as an intermediate state in the evolution 

of the frictionless granular media. Due to the frictional force, the granular medium in the 

experiment is unable to reach the final state of the frictionless simulations, but maintains the same 
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granular crystallisation mechanisms. The distribution obtained in the experiment shows crystalline 

patterns in the radial direction comparable with the theoretical predictions, while the results about 

the merging crystalline regime at the bottom of the container show a major difference between 

theory and experiment. This discrepancy is probably caused by the purely vertical vibration that 

ineffectively breaks the force chains sustaining the vertical perturbation in the simulations as well 

as the prolonged vibration in the experiments.   

 

Figure 10 Top – Evolution of the structural index 𝐹6 of the frictionless and frictional granular 

media. The top two dashed lines serve as the extension for the final states in the simulation and 

the middle one labelled with ExpC represents the final state of the experiment performed with a 

vibration intensity 𝛤 = 2  [36]. Bottom – 𝑆6  spatial distributions of the labelled states in the 

simulated evolution and the experimental result. Friction coefficient (𝜇) and amplitude (𝐴) values 

for the simulations are displayed in the legend 

Within the simulated cycles, the structural similarity between simulations and experiments is 

revealed by the 𝑆6 distributions and the (𝑊4
local, 𝑄6

local) coordinate distributions as shown in Figure 

11. All the extracted transient states and the experimental result follow the same shapes of the 𝑆6 

distributions with the final state of the frictionless granular media presenting the highest peak 

magnitude, which supports the previous argument. Similarly, the experimental medium forms two-

dimensional hexagonal packing near the cylindrical wall and structures in a distorted hexagonal 
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cubic fashion. The prevalence of HCP over FCC in the cylindrical mode show little dependence 

on the friction condition according to Figure 11.  

 

 

Figure 11 Top – 𝑆6 distributions of the final state in the ExpC in [36] and the transient states in the 

simulations. Particles dyed according to the (𝑊4
local, 𝑄6

local) coordinates are displayed as insets in 

the 𝑆6  distribution in red – HCP, blue – FCC and green – surface hexagon. Bottom – The 

corresponding (𝑊4
local, 𝑄6

local) coordinates distributions. Friction (𝜇), amplitude (𝐴) and duration 

(𝑡) parameters for the simulations are displayed in the legend. 

The second set of comparisons is made for the relatively flat granular media , designated as ExpD 

in [36], performed with 𝛤 =2.8, (𝐹6  = 0.684973). Quantitative agreement is reflected by the 
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different types of distributions used in this study. In addition, the experiment presents a similar 

and only one crystallisation mode demonstrated in the previous sections. With the elimination of 

the cylindrical wall crystallisation mode, the crystalline arrangement builds up from the bottom 

plane, and is characterised by the mixing of HCP and FCC planes. However, FCC is strongly 

favoured in experimental results of ExpD, as shown by the comparison of the smoothed histograms 

in Figure 12. Since the packing history of ExpD is different, twice filling during vibration [36], 

which stresses that the packing history is one of the key factors determining the preference between 

FCC and HCP. Further, similar to the cylindrical mode, the selection between FCC and HCP of 

the bottom mode shows little dependency on the friction condition.  

 

 

Figure 12 Top – 𝑆6  distributions of the final state in the experiment ExpD in [36] and the 

simulations along with the 𝑆6 spatial distributions and dyed FCC/HCP particles of ExpD in the 

insets. Bottom – The corresponding (𝑊4
local, 𝑄6

local) coordinates distributions and the comparison 

of the smoothed histograms of 𝑄6
local distributions. Friction (𝜇), amplitude (𝐴) and duration (𝑡) 

values for the simulations are displayed in the legend. 
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4. Conclusion 

Granular crystallisation has been investigated from the entire system scale down to the individual 

particle scale in confined granular matter. The results clearly show that vibration naturally brings 

about a disorder-to-order transition, proving that crystallised structures are maintained during the 

transient evolution. 

The crystallisation process and the role of the wall effect are explained by coarse-graining 

approach. Internal nucleation growth is restrained due to the purely repulsive interactions, and 

crystallisation from walls is preferential. The wall effect produces two-dimensional hexagonal 

packing as a growth template but the following growth of crystalline arrays divides into a 

cylindrical mode and a bottom mode. In the cylindrical mode, the crystallised structure can be 

considered as a distorted HCP structure, while in the bottom mode, a mixture of finer HCP and 

FCC structure is identified. Depending on the geometry, 𝐷/𝑑  and 𝐻/𝐷 , competition between 

these two crystallisation modes falls into three phases during vibration. By increasing 𝐷 , the 

bottom mode crystallisation gradually dominates, leading the crystalline regime to penetrating 

throughout the entire granular media in the axial direction. In the other case, i.e., when 𝐷 decreases, 

the crystalline regions growing in the radial direction towards the axis are promoted from the 

cylindrical mode. Increasing the amplitude of vibration enhances the efficiency of the 

crystallisation, which can raise the competition level and leads to a sole crystallisation phase, 

which is commonly seen in experiments. Through the particle scale characterisation we conclude 

that particle are driven to lodge themselves in structures with as many contacts as possible, because 

such structures provide sufficient collisions to dissipate kinetic energy and maintain the stability 

of the granular packing. The relation between granular crystallisation and granular temperature is 

further explored and it is seen that granular crystallisation leads not only to structural but also to 

dynamic order. 

In this study, granular crystallisation induced by vibration is proved to follow basic processes 

resulting in a predictable final structure. These results suggest that mechanical, thermal, electrical 

and other structure related effective properties can be modified by controlling vibration, motivating 

the continued study of granular crystallisation. Further research can be conducted to explore the 
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physical mechanisms of inducing granular crystallisation. Meanwhile, this study shows the 

crystallisation can be connected to the statistic description of granular matter. Thus, it would be 

interesting to seek more precise correlations between granular crystallisation and granular statistics. 
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