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In this paper, new µ-based algorithms are proposed in the field of probabilistic robustness analysis. The objective is to compute tight bounds on the probability for a parametrically uncertain and possibly high order system to meet some stability and performance criteria. In this approach, uncertain parameters are treated as random variables with given probability distributions. Internal stability is treated first and H∞ performance in the scalar case is considered next. The main contribution is to provide tight bounds on the probability measure in the latter case. The proposed algorithms are based on branch-and-bound techniques and tested on several benchmarks from the literature, demonstrating their efficiency and the potential of the probabilistic setting in reducing the conservatism of µ-analysis. They have been integrated in the SMART Robustness Analysis Library of the SMAC Toolbox developed by ONERA (http://w3.onera.fr/smac).

I. INTRODUCTION

µ-analysis is a standard approach to robustness analysis, typically used to identify worst-case configurations and to compute guaranteed robustness margins (see [START_REF] Doyle | Analysis of feedback systems with structured uncertainties[END_REF][START_REF] Safonov | Stability margins of diagonally perturbed multivariable feedback systems[END_REF]). Despite its recognised maturity by the control community, it often leads to pessimistic results and consequently to unnecessarily conservative designs, at the cost of some performance loss. Probabilistic methods are therefore typically preferred (see e.g. [START_REF] Chen | Risk analysis in robust control -making the case for probabilistic robust control[END_REF][START_REF] Calafiore | A survey of randomized algorithms for control synthesis and performance verification[END_REF]), with Monte Carlo simulations representing the industrial standard. But these approaches have major drawbacks: the non-guaranteed detection of worst-case configurations may lead to erroneous conclusions, and the required sample size to reach satisfactory levels of confidence and accuracy can be prohibitive.

These observations seem to indicate that the two approaches are in fact complementary: deterministic methods could be used as a first validation step, leaving simulations to be performed only on the potentially problematic configurations. But in view of the above, it seems necessary to improve the interface between the two families of methods. This is the purpose of probabilistic µ-analysis, which consists of applying µ-based techniques while considering the uncertainties as random variables with known probability distributions. It guarantees the detection of worst-case scenarios, but it also quantifies their probability of occurrence, allowing comparison with a specified threshold.

Building up on the approach of [START_REF] Khatri | Guaranteed bounds for probabilistic µ[END_REF], [START_REF] Balas | Analysis of an uav flight control system using probabilistic mu[END_REF] and [START_REF] Falcoz | Probabilistic µ-analysis for system performances assessment[END_REF], this paper deals with LTI systems subject to parametric uncertainties, and provides some efficient probabilistic µ-based algorithms to calculate bounds on the probability of internal stability and H ∞ performance satisfaction. A particular emphasis is placed on the latter case. More precisely, an original algorithm is proposed to characterise the parametric domain on which performance violation is guaranteed. It is a more difficult problem than determining a guaranteed domain of performance satisfaction, but it offers some interesting complementary information. This is a major contribution of this paper, which is organised as follows. Section II first reminds some key definitions about µ-analysis, as well as the principle of branch-and-bound techniques, which serve as a starting point for probabilistic µ-analysis. The proposed algorithms are then introduced in Section III. Section IV finally presents some numerical results obtained on several benchmarks from the literature, demonstrating the efficiency of the proposed approach.

II. PROBLEM STATEMENT

Let us consider the standard interconnection for robust stability analysis as depicted in Fig. 1 (left), where M (s) is a stable real-valued LTI plant representing the nominal closed-loop system, and ∆ is a block-diagonal LTI operator gathering all the real parametric uncertainties:

∆ = diag(δ 1 I n1 , . . . , δ N I n N ) (1) 
where (δ 1 , . . . , δ N ) ∈ R N . The set of matrices with such a block-diagonal structure is denoted ∆. Let then kB ∆ = {∆ ∈ ∆ : σ(∆) < k}, where σ(∆) denotes the largest singular value of ∆. Singularity of the interconnection at frequency ω ∈ R + is characterised by det(I -M (jω)∆) = 0.

- µ-analysis relies on the structured singular value, introduced in [START_REF] Doyle | Analysis of feedback systems with structured uncertainties[END_REF] and defined as follows.

M (s) ∆ - - - u y M (s) ∆
Definition 2.1: Let ω ∈ R + be a given frequency. If no matrix ∆ ∈ ∆ makes the interconnection of Fig. 1 (left) unstable, then the structured singular value µ ∆ (M (jω)) is defined to be equal to zero. Otherwise:

µ ∆ (M (jω)) = min ∆∈∆ {σ(∆) : det(I -M (jω)∆) = 0} -1 (2)
The robust stability margin is then defined as the inverse of the maximum value of µ ∆ (M (jω)) over the whole frequency range R + :

k r = sup ω∈R+ µ ∆ (M (jω)) -1 (3)
If the structure ∆ is now split into two distinct block structures ∆ = diag(∆ 1 , ∆ 2 ), and admissible uncertainties are taken in ∆ s = diag(B ∆1 , ∆ 2 ), a skewed version of the structured singular value can be defined [START_REF] Fan | A measure of worst-case H∞ performance and of largest acceptable uncertainty[END_REF].

Definition 2.2: Let ω ∈ R + be a given frequency. If no matrix ∆ = diag(∆ 1 , ∆ 2 ) ∈ ∆ s makes the interconnection unstable, then the skewed structured singular value ν ∆s (M (jω)) is defined to be equal to zero. Otherwise:

. ν ∆s (M (jω)) = min ∆∈∆s {σ(∆2) : det(I -M (jω)∆) = 0} -1 (4)
Even putting aside the NP-hardness [START_REF] Braatz | Computational complexity of µ calculation[END_REF] of computing k r or its skewed version, which usually requires to use upper and lower bounds k r and k r instead of the real value, the robust stability margin remains inherently conservative. Indeed, it only yields the largest open ball k r B ∆ on which stability is guaranteed, regardless of the actual shape of the exact stability domain. To obtain a better approximation of the latter, branch-and-bound algorithms are used [START_REF] Newlin | Mixed mu problems and branch and bound techniques[END_REF][START_REF] Roos | Efficient computation of a guaranteed stability domain for a high-order parameter dependent plant[END_REF]. Then, without introducing much additional numerical complexity, a probabilistic framework can be considered: if the parametric uncertainties δ i are now seen as random variables with given probability density functions f i , it is of interest to compute the probability measure of the stability domain. In other words, the following problem can be stated.

Problem 2.1: Calculate the probability P ∆,f (M (s)) that the interconnection M (s) -∆ is stable when ∆ ∈ B ∆ .

Let us now consider the interconnection of Fig. 1 (right) corresponding to performance analysis. The transfer from u to y is given by the upper linear fractional transformation:

. Fu(M (s), ∆) = M22(s)+M21(s)∆(I -M11(s)∆) -1 M12(s) [START_REF] Khatri | Guaranteed bounds for probabilistic µ[END_REF] For some technical reasons to be clarified in Section III-B, it is assumed hereafter that the transfer function from u to y is single input single output. Such an assumption is not so restrictive in practice. If needed, several performance channels can be processed sequentially. The following proposition makes the link between H ∞ performance and the skewed structured singular value.

Proposition 2.1: The following statements are equivalent: 1) max

∆∈B ∆ F u (M (s), ∆) ∞ ≤ γ
2) ∀ω ∈ R + , ν ∆a (M (jω)) ≤ γ where ∆ a = diag(∆, C) In the same vein as with robust stability, branch-and-bound techniques can be used to compute a domain of guaranteed performance satisfaction, whose probability measure can then be evaluated. The problem of interest is as follows:

Problem 2.2: Given a performance level γ > 0, compute the probability

P γ ∆,f (M (s)) that F u (M (s), ∆) ∞ ≤ γ when ∆ ∈ B ∆ .

III. PROBABILISTIC µ-ANALYSIS A. Stability Analysis

The exact computation of P ∆,f (M (s)) is unsurprisingly not achievable in the general case. But branch-and-bound algorithms provide a subdomain D s of the normalised parametric domain

Θ = {δ ∈ R N : |δ i | ≤ 1} = [-1, 1]
N on which stability is guaranteed, which gives a lower bound on the sought probability. Moreover, D s conveniently takes the form of a finite union of disjoint boxes

Ds = k D (k) s where D (k) s = [a (k) 1 , b (k) 1 ] × ... × [a (k) N , b (k) N ] (6)
whose probability measures are straightforward to compute:

p(D (k) s ) = N i=1 b (k) i a (k) i f i (δ i )dδ i (7) 
There is much interest in also calculating an upper bound on P ∆,f (M (s)), in order not only to get a more accurate picture of the stability domain, but also potentially to quickly invalidate the current design with respect to a specified tolerance level. In other words, to further reduce the conservatism of the proposed probabilistic approach, the computation of a domain of guaranteed instability D s is desirable, so that P ∆,f (M (s)) can be bounded as follows:

p(D s ) ≤ P ∆,f (M (s)) ≤ 1 -p(D s) (8) 
This proves to be straightforward if one realises that methods to calculate the robustness margin rely on detecting when the poles of the nominally stable system M (s) reach the imaginary axis as the size of ∆ increases. Thus, the same methods applied to a nominally unstable interconnection leads to a "robustness margin for instability" [START_REF] Khatri | Guaranteed bounds for probabilistic µ[END_REF]. Integrated into a branch-and-bound scheme, this yields the desired domain of guaranteed instability.

While the branch-and-bound and the probability calculations could be kept separate, it is computationally more interesting to combine the two aspects into a single algorithm. Indeed, this allows to integrate probability-related stopping criteria into the algorithm, e.g. interrupting the algorithm if all the boxes have a probability measure less than a given threshold p min . Such a strategy is described in Algorithm 1, whose outputs are a partition of

Θ = [-1, 1] N into Θ = D s ∪ D s ∪ D su (9) 
and the probability measure of each component of this partition. The third term D su corresponds to the domain of uncategorised stability. Its presence stems from the fact that, realistically, the branch-and-bound algorithm can only approximate the domains of stability and instability. Ideally, D su should be as small as possible, although depending on the validation requirements, a coarse result can be sufficient to decide if the investigated system is satisfactory. For inconclusive iterations, the partitioning of the box is classically done along its longest edge, but other strategies can be implemented. In particular, µ-sensitivities can be used to reduce computational time [START_REF] Lesprier | Improved µ upper bound computation using the µ-sensitivities[END_REF], especially for systems with numerous parametric uncertainties.

Algorithm 1 Probabilistic µ-analysis for stability 

1: Inputs: M (s), ∆, f i (δ i ) for i = 1, . . . ,
p(D su ) ← p(D su ) + k p( Θk ) 29: end if B. H ∞ Performance Analysis
Let us now consider Problem 2.2. As for robust stability, the idea is to combine branch-and-bound with µ-analysis to compute both a domain of guaranteed performance satisfaction D γ and a domain of guaranteed performance violation D γ , whose probability measures can then be calculated. Proposition 2.1 provides the means to calculate D γ , but a difficulty arises in the computation of D γ . Indeed, performance violation on Θ is equivalent to

min ∆∈B ∆ sup ω∈R+ |F u (M (jω), ∆)| > γ (10) 
which, as a minimax problem, is more complicated than verifying performance satisfaction. As a preliminary step to tackle this problem, a useful property on LFT inversion is reminded (see e.g. [START_REF] Doyle | Review of LFTs, LMIs, and µ[END_REF]).

Lemma 3.1: Let M = M 11 M 12 M 21 M 22
, and assume that

M 22 is nonsingular. Then F u (M, ∆) -1 = F u (N, ∆),
where

N = M 11 -M 12 M -1 22 M 21 -M 12 M -1 22 M -1 22 M 21 M -1 22 .
Remark 3.1: For a scalar performance channel, the assumption that M 22 is nonsingular simply means that it is nonzero, i.e. there is effectively a transfer from u to y. Since it is the case of interest for performance analysis, this is not restrictive. Proposition 3.1 then derives a sufficient condition for Inequality [START_REF] Newlin | Mixed mu problems and branch and bound techniques[END_REF] to hold, in the form of a skew-µ calculation involving the inverse transfer from u to y.

Proposition 3.1:

Let I = {ω ∈ R + : |M 22 (jω)| > γ}. If there exists ω 0 ∈ I such that ν ∆a (N (jω 0 )) < 1 γ (11) 
where 

∆ a = diag(B ∆ , C) and N (jω) is such that (F u (M (jω), ∆)) -1 = F u (N (jω), ∆),
which guarantees that I is nonempty, and that N (jω) is well-defined for each ω ∈ I. Assume now that there exists ω 0 ∈ I such that (11) holds. From the main loop theorem ( [START_REF] Doyle | Review of LFTs, LMIs, and µ[END_REF]), this is equivalent to

   µ ∆ (N 11 (jω 0 )) < 1 max ∆∈B ∆ |F u (N (jω 0 ), ∆)| < 1 γ (13) 
Since |F u (N (jω 0 ), ∆)| = |F u (M (jω 0 ), ∆)| -1 ∀∆ ∈ B ∆ , the second inequality of (13) can be rewritten as

min ∆∈B ∆ |F u (M (jω 0 ), ∆)| > γ (14) 
which is a sufficient condition for Inequality [START_REF] Newlin | Mixed mu problems and branch and bound techniques[END_REF] to hold. Remark 3.2: The step from ( 13) to ( 14) strongly relies on the scalar nature of the performance channel and cannot be easily generalised to higher dimensions although this will be investigated in a near future.

A strategy to verify performance violation directly follows from Proposition 3.1, as outlined in Algorithm 2. end if 13: end if Note that the output false of Algorithm 2 merely means that the analysis was inconclusive, and does not exclude performance violation on Θ. More precisely, inconclusive cases can result from three causes:

1) the sufficient condition of Proposition 3.1 is not necessary, 2) the selected ω 0 in Algorithm 2 is not satisfactory, 3) the computation of the skew-µ upper bound is not sufficiently accurate. In particular, the heuristics used to select ω 0 can prove critical. It is readily apparent that exploring a frequency grid or frequency interval would be computationally inefficient, since only one frequency is sought, which is not even guaranteed to exist. On the other hand, the peak frequency of M 22 (s), while appearing as a natural choice for ω 0 , offers no guarantee of optimality.

The methods to validate performance satisfaction (Proposition 2.1) and performance violation (Proposition 3.1) on a given box can be integrated into a branch-and-bound scheme structurally similar to Algorithm 1. The essential difference lies in lines 8 through 24 of the algorithm, which must be replaced by a performance analysis:

• if M22 (s) ∞ < γ, then attempt to verify performance satisfaction on Θ using Proposition 2.1, • otherwise, attempt to verify performance violation on Θ using Algorithm 2. Θ is then either partitioned if the aforementioned test fails or added to the adequate domain (D γ , D γ , or the domain of uncategorised performance D γu ), whose probability measure is then updated. Note that all three issues raised on Algorithm 2 are alleviated by the branch-and-bound. Indeed, barring extreme cases of sensitivities to the uncertainties, it is realistic to assume that the transfer F u (M (s), ∆) varies less and less as ∆ is taken in smaller and smaller boxes. Thus, the sufficient condition of Proposition 3.1 becomes not only more relevant, but also less sensitive to the choice of ω 0 as a result. Moreover, the gap between the bounds of µ is known to become arbitrarily small as the domain Θ is partitioned into smaller boxes [START_REF] Roos | A set of µ-analysis based tools to evaluate the robustness properties of high-dimensional uncertain systems[END_REF], which resolves item 3. However, relying on the asymptotic behaviour of the branch-and-bound algorithm may be unsatisfactory from a computational point of view.

IV. APPLICATIONS

A. Illustrative Example

The following example, taken from [START_REF] Falcoz | Probabilistic µ-analysis for system performances assessment[END_REF], aims to illustrate the proposed algorithms on a two-dimensional problem that allows graphical representation. Consider the system given by the state-space representation

   ẋ = 0 1 -a 0 -a 1 x + 0 1 u y = 1 0 x ( 15 
)
where a 0 and a 1 are two uncertain parameters described by

a 0 = 1 + q 0 , |q 0 | ≤ 2 a 1 = 0.8 + q 1 , |q 1 | ≤ 1 (16) 
The parametric domain Θ is therefore the set of all possible values of the ordered pair (q 0 , q 1 ), i.e. Θ = [-2, 2] × [-1, 1]. For such an example, the Routh criterion can be used to determine that the domain of stability is exactly ] -0.5, 1]×] -0.8, 1]. Assuming a uniform distribution of the uncertainties on Θ, this represents 67.5% of the domain. The proposed algorithm for stability analysis yields P ∆,f (M (s)) ∈ [0.672, 0.679], which is a good estimation.

The same problem is now solved assuming q 0 ∼ N [-2,2] (0, (2/3) 2 ) and q 1 ∼ N [-1,1] (0, (1/3) 2 ), where N [a,b] (m, σ 2 ) denotes the truncated normal distribution. This type of distribution refers to a case where the nominal configuration is deemed more likely, and with the probability of occurrence of a configuration becoming smaller as it gets farther from the nominal point. Algorithm 1 now leads to P ∆,f (M (s)) ∈ [0.925, 0.931], which is a more optimistic result. This highlights the interest and potential of the probabilistic framework in reducing the conservatism of µanalysis. Regarding H ∞ performance analysis and setting the performance level γ = √ 2, a uniform distribution of the uncertainties leads to P γ ∆,f (M (s)) ∈ [0.344, 0.359], while the truncated normal distribution changes this estimation to P γ ∆,f (M (s)) ∈ [0.411, 0.441]. The improvement is less drastic, but this can be explained by the fact that the nominal configuration is close to the limit of performance. This case is less likely to occur for a controlled system whose controller is designed using robust synthesis methods.

Table I compares the results obtained with Algorithm 1 from [START_REF] Falcoz | Probabilistic µ-analysis for system performances assessment[END_REF] (whose Matlab code has been provided by the authors) and with the algorithms from the present paper. A dramatic reduction in the computational time can be observed. This is due to the computation of guaranteed instability or non-performance domains, which is done here but not in [START_REF] Falcoz | Probabilistic µ-analysis for system performances assessment[END_REF]. The difference is further illustrated by Fig. 2 and3. The comparison was done on a CentOS Linux 7.4 Workstation with a CPU Intel Xeon W3530 running at 2.80GHz and 6 GB of RAM, with Matlab R2017b installed. The adaptation of Algorithm 1 to H ∞ performance analysis is only applicable to boxes on which stability is already guaranteed. In the proposed implementation, a preliminary stability analysis is therefore performed, and the identified stable boxes serve as inputs for the performance analysis. Both analyses are accounted for in Table I.

Remark 4.2: The limiting threshold on the probability measure of the analysed boxes is used slightly differently between the algorithm from [START_REF] Falcoz | Probabilistic µ-analysis for system performances assessment[END_REF] and Algorithm 1. The former bisects all uncategorised boxes, then checks the probability measure of the resulting boxes to determine if they are to be analysed or not. The latter uses the probability measure of uncategorised boxes to determine if partitioning should be done. Thus, for the same limiting threshold p min , Algorithm 1 analyses more boxes. Fig. 2.

Stability (left) and performance (right) analyses without instability/non-performance verification [START_REF] Falcoz | Probabilistic µ-analysis for system performances assessment[END_REF]: the green domain satisfies the tested criterion, the red domain is uncategorised Fig. 3. Stability (left) and performance (right) analyses with instability/nonperformance verification: the green domain satisfies the tested criterion, the blue domain invalidates it, and the red domain is uncategorised

B. Numerical Results

Algorithm 1 is now applied to several benchmarks described in the literature. For these tests, all normalised uncertainties follow the truncated normal distribution N [-1,1] (0, (1/3) 2 ), and two partitioning strategies are used: bisection along the longest edge, and bisection along the highest µ-sensitivity. The limiting threshold for bisecting boxes is set to p min = 10 -4 . The results are summarised in Table II. The notation m × p in the description of ∆ means that ∆ contains m blocks of size p × p, all blocks being real diagonal. R denotes the ratio of the probability measure of the categorised boxes (stable or unstable) over the total probability measure of the operating domain Θ, i.e. R = p(Ds)+p(Ds) p(Ds)+p(Ds)+p(Ds u ) = p(D s ) + p(D s). The obtained ratios are close to 1 for all benchmarks, meaning that the domains of stability and instability are well approximated by D s and D s respectively, leaving only a small domain D su as uncategorised (in the sense of probability measure).

Regarding the partitioning strategies, while the use of µsensitivities tends to improve both the domains computation and the running time, this is not always the case, benchmark 10 being a counterexample. However, this system aside, the use of µ-sensitivities leads to significant time reduction as the dimension of the problem increases, as observed on benchmarks 19, 21 and 26, whose parametric domains have respective dimensions 9, 9 and 23. This shows that, in spite of the effectiveness of naive branching schemes [START_REF] Zhu | Soft vs. hard bounds in probabilistic robustness analysis[END_REF], there is still an interest in investigating more sophisticated ones.

Table III shows test results for probabilistic performance analysis, where R now denotes the ratio R = p(Dγ )+p(Dγ ) p(Dγ )+p(Dγ )+p(Dγ u ) (which differs from p(D γ ) + p(D γ ) if stability is not achieved on the complete domain Θ). As mentioned in Section III-B, the peak frequency of M 22 (s) is selected as the frequency ω 0 . The relevance of µ-sensitivities for partitioning is less consistent, leading to a slight decrease of the probability measure of D γu at the cost of increased execution time for all but benchmark B5. The latter benefits the most from the use of µ-sensitivities, with a drastic reduction of p(D γu ) (more than 25%) and an execution time reduced by a factor of approximately 3.

To assess the relevance of the chosen ω 0 , sample configurations have been drawn in each uncategorised box to see whether a configuration satisfying the performance level could be found. This would mean that a suitable ω 0 does not exist, i.e. there is nothing to gain from improving the choice of ω 0 . For each nominally non-performing N -dimensional box, the samples drawn are the corners of the box, for a total of 2 N samples per box. The reason behind this sampling method is that the farthest points from the centre of the box are empirically the most likely to exhibit the most substantial changes on their transfer function. Also, the relatively small number of dimensions in the considered benchmarks keeps the sample size from being prohibitive. Results show that the loss on p(D γ ) remains reasonable on the tested benchmarks, not exceeding 3%. This means that no change in the heuristics can lead to dramatic improvements of the algorithm. However, if improvements are sorely needed, then a possible solution could be to consider as additional candidates for ω 0 the peak frequencies of the 2N configurations located at the centre of the (N -1)dimensional faces of the currently studied N -dimensional box. This choice constitutes a compromise between taking configurations that are far from the centre of the box, and limiting the number of candidate frequencies, since taking the corners as was done for the sampling would lead to 2 N additional frequencies.

V. CONCLUSION In this paper, new contributions are proposed to improve the efficiency of robustness analysis by combining deterministic µ-based methods with a probabilistic framework. Both robust stability and H ∞ performance are addressed. The proposed algorithms are implemented in Matlab and tested on several benchmarks taken from the literature. The resulting routines are available in the SMART Library of the SMAC Toolbox at http://w3.onera.fr/smac. Beside the efficiency of the algorithms, test results showcase that probabilistic µ-analysis can be an adequate response to reduce the conservatism of a purely deterministic approach. In the overall validation process of a controlled system, probabilistic µ-analysis complements Monte Carlobased methods nicely. It provides relevant inputs for the sampling strategy of the simulation phase, and could ultimately lighten the tedium of control laws development. In light of the above, probabilistic µ-analysis appears as an attractive method for the validation of controlled systems with parametric uncertainties, provided that reliable probability density functions are available. Future work will focus on extending the presented H ∞ performance analysis method to the MIMO case. 
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 218 Verification of performance violation on Θ Inputs: M (s), ∆, γ 2: Output: true if performance violation is guaranteed on Θ, false otherwise 3: if M 22 (s) ∞ ≤ γ then ν ∆a (N (jω 0 )), where N (jω 0 ) is given by Lemma 3.1 if ν ∆a (N (jω 0 )) < 1/γ then 9:

  N , p min , p max 2: Outputs: D s , D s, D su , p(D s ), p(D s), p(D su ) 3: L ← {Θ} 4: D s , D s, D su ← ∅ 5: p(D s ), p(D s), p(D su ) ← 0 6: while L = ∅ and p(D s ) + p(D s) < p max do

	7:	select and remove the box Θ from L with the highest
		probability measure and compute the interconnection
		M (s) -∆ normalised w.r.t.	Θ
	8:	compute a guaranteed robust stability margin k r for
		M (s) -	∆
	9:	if k r ≥ 1 then	analysis is conclusive
	10: 11: 12:	if F u ( M (s), ∆) is nominally stable then add Θ to D s p(D s ) ← p(D s ) + p( Θ)
	13:	else
	14:		add Θ to D s
	15:		
	16:	end if
	17:	else		analysis is inconclusive
	23:	end if
	24:	end if
	25: end while
	26: if L = ∅ then
	27:	add all remaining boxes Θk of L in D su
	28:		

p(D s) ← p(D s) + p( Θ) 18: if p( Θ) > p min then 19: partition Θ and add the boxes obtained in L 20:

else 21: add Θ to D su 22: p(D su ) ← p(D su ) + p( Θ)

  then Inequality[START_REF] Newlin | Mixed mu problems and branch and bound techniques[END_REF] holds, and performance violation is guaranteed on Θ, i.e. ∀∆ ∈ B ∆ .

	Proof: First, note that nominal performance violation is
	equivalent to
	sup

ω∈R+ |M 22 (jω)| > γ