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Probabilistic µ-Analysis for Stability and H∞ Performance Verification

Sovanna Thai, Clément Roos and Jean-Marc Biannic

Abstract— In this paper, new µ-based algorithms are pro-
posed in the field of probabilistic robustness analysis. The
objective is to compute tight bounds on the probability for
a parametrically uncertain and possibly high order system to
meet some stability and performance criteria. In this approach,
uncertain parameters are treated as random variables with
given probability distributions. Internal stability is treated first
and H∞ performance in the scalar case is considered next. The
main contribution is to provide tight bounds on the probability
measure in the latter case. The proposed algorithms are
based on branch-and-bound techniques and tested on several
benchmarks from the literature, demonstrating their efficiency
and the potential of the probabilistic setting in reducing the
conservatism of µ-analysis. They have been integrated in the
SMART Robustness Analysis Library of the SMAC Toolbox
developed by ONERA (http://w3.onera.fr/smac).

Index Terms— probabilistic µ-analysis, (skewed) structured
singular value, stability margin, H∞ performance level

I. INTRODUCTION

µ-analysis is a standard approach to robustness analysis,
typically used to identify worst-case configurations and to
compute guaranteed robustness margins (see [1, 2]). Despite
its recognised maturity by the control community, it often
leads to pessimistic results and consequently to unnecessarily
conservative designs, at the cost of some performance loss.
Probabilistic methods are therefore typically preferred (see
e.g. [3, 4]), with Monte Carlo simulations representing the
industrial standard. But these approaches have major draw-
backs: the non-guaranteed detection of worst-case configu-
rations may lead to erroneous conclusions, and the required
sample size to reach satisfactory levels of confidence and
accuracy can be prohibitive.

These observations seem to indicate that the two ap-
proaches are in fact complementary: deterministic methods
could be used as a first validation step, leaving simulations to
be performed only on the potentially problematic configura-
tions. But in view of the above, it seems necessary to improve
the interface between the two families of methods. This is the
purpose of probabilistic µ-analysis, which consists of apply-
ing µ-based techniques while considering the uncertainties
as random variables with known probability distributions.
It guarantees the detection of worst-case scenarios, but
it also quantifies their probability of occurrence, allowing
comparison with a specified threshold.

Building up on the approach of [5], [6] and [7], this paper
deals with LTI systems subject to parametric uncertainties,
and provides some efficient probabilistic µ-based algorithms
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to calculate bounds on the probability of internal stability
and H∞ performance satisfaction. A particular emphasis
is placed on the latter case. More precisely, an original
algorithm is proposed to characterise the parametric domain
on which performance violation is guaranteed. It is a more
difficult problem than determining a guaranteed domain
of performance satisfaction, but it offers some interesting
complementary information. This is a major contribution of
this paper, which is organised as follows. Section II first
reminds some key definitions about µ-analysis, as well as
the principle of branch-and-bound techniques, which serve
as a starting point for probabilistic µ-analysis. The proposed
algorithms are then introduced in Section III. Section IV
finally presents some numerical results obtained on several
benchmarks from the literature, demonstrating the efficiency
of the proposed approach.

II. PROBLEM STATEMENT

Let us consider the standard interconnection for robust
stability analysis as depicted in Fig. 1 (left), where M(s)
is a stable real-valued LTI plant representing the nominal
closed-loop system, and ∆ is a block-diagonal LTI operator
gathering all the real parametric uncertainties:

∆ = diag(δ1In1 , . . . , δNInN ) (1)

where (δ1, . . . , δN ) ∈ RN . The set of matrices with such
a block-diagonal structure is denoted ∆. Let then kB∆ =
{∆ ∈∆ : σ(∆) < k}, where σ(∆) denotes the largest sin-
gular value of ∆. Singularity of the interconnection at fre-
quency ω ∈ R+ is characterised by det(I −M(jω)∆) = 0.
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Fig. 1. Standard interconnections for stability analysis (left) and perfor-
mance analysis (right)

µ-analysis relies on the structured singular value, introduced
in [1] and defined as follows.

Definition 2.1: Let ω ∈ R+ be a given frequency. If no
matrix ∆ ∈ ∆ makes the interconnection of Fig. 1 (left)
unstable, then the structured singular value µ∆(M(jω)) is
defined to be equal to zero. Otherwise:

µ∆(M(jω)) =

[
min
∆∈∆

{σ(∆): det(I −M(jω)∆) = 0}
]−1

(2)



The robust stability margin is then defined as the inverse
of the maximum value of µ∆(M(jω)) over the whole
frequency range R+:

kr =

[
sup
ω∈R+

µ∆(M(jω))

]−1

(3)

If the structure ∆ is now split into two distinct block
structures ∆ = diag(∆1,∆2), and admissible uncertainties
are taken in ∆s = diag(B∆1

,∆2), a skewed version of the
structured singular value can be defined [8].

Definition 2.2: Let ω ∈ R+ be a given frequency. If
no matrix ∆ = diag(∆1,∆2) ∈ ∆s makes the intercon-
nection unstable, then the skewed structured singular value
ν∆s

(M(jω)) is defined to be equal to zero. Otherwise:

.ν∆s(M(jω)) =

[
min

∆∈∆s

{σ(∆2) :det(I −M(jω)∆) = 0}
]−1

(4)

Even putting aside the NP-hardness [9] of computing kr or
its skewed version, which usually requires to use upper and
lower bounds kr and kr instead of the real value, the robust
stability margin remains inherently conservative. Indeed, it
only yields the largest open ball krB∆ on which stability
is guaranteed, regardless of the actual shape of the exact
stability domain. To obtain a better approximation of the
latter, branch-and-bound algorithms are used [10, 11]. Then,
without introducing much additional numerical complexity, a
probabilistic framework can be considered: if the parametric
uncertainties δi are now seen as random variables with given
probability density functions fi, it is of interest to compute
the probability measure of the stability domain. In other
words, the following problem can be stated.

Problem 2.1: Calculate the probability P∆,f (M(s)) that
the interconnection M(s)−∆ is stable when ∆ ∈ B∆.

Let us now consider the interconnection of Fig. 1 (right)
corresponding to performance analysis. The transfer from u
to y is given by the upper linear fractional transformation:

.Fu(M(s),∆) =M22(s)+M21(s)∆(I−M11(s)∆)−1M12(s) (5)

For some technical reasons to be clarified in Section III-B,
it is assumed hereafter that the transfer function from u to y
is single input single output. Such an assumption is not so
restrictive in practice. If needed, several performance chan-
nels can be processed sequentially. The following proposition
makes the link between H∞ performance and the skewed
structured singular value.

Proposition 2.1: The following statements are equivalent:
1) max

∆∈B∆

‖Fu(M(s),∆)‖∞ ≤ γ
2) ∀ω ∈ R+, ν∆a

(M(jω)) ≤ γ where ∆a = diag(∆,C)

In the same vein as with robust stability, branch-and-bound
techniques can be used to compute a domain of guaranteed
performance satisfaction, whose probability measure can
then be evaluated. The problem of interest is as follows:

Problem 2.2: Given a performance level γ > 0, compute
the probability P γ∆,f (M(s)) that ‖Fu(M(s),∆)‖∞ ≤ γ
when ∆ ∈ B∆.

III. PROBABILISTIC µ-ANALYSIS

A. Stability Analysis
The exact computation of P∆,f (M(s)) is unsurprisingly

not achievable in the general case. But branch-and-bound
algorithms provide a subdomain Ds of the normalised para-
metric domain Θ = {δ ∈ RN : |δi| ≤ 1} = [−1, 1]N on
which stability is guaranteed, which gives a lower bound on
the sought probability. Moreover, Ds conveniently takes the
form of a finite union of disjoint boxes

Ds =
⋃
k

D(k)
s where D(k)

s = [a
(k)
1 , b

(k)
1 ]× ...× [a

(k)
N , b

(k)
N ] (6)

whose probability measures are straightforward to compute:

p(D(k)
s ) =

N∏
i=1

∫ b
(k)
i

a
(k)
i

fi(δi)dδi (7)

There is much interest in also calculating an upper bound
on P∆,f (M(s)), in order not only to get a more accurate
picture of the stability domain, but also potentially to quickly
invalidate the current design with respect to a specified toler-
ance level. In other words, to further reduce the conservatism
of the proposed probabilistic approach, the computation of
a domain of guaranteed instability Ds̄ is desirable, so that
P∆,f (M(s)) can be bounded as follows:

p(Ds) ≤ P∆,f (M(s)) ≤ 1− p(Ds̄) (8)

This proves to be straightforward if one realises that methods
to calculate the robustness margin rely on detecting when
the poles of the nominally stable system M(s) reach the
imaginary axis as the size of ∆ increases. Thus, the same
methods applied to a nominally unstable interconnection
leads to a ”robustness margin for instability” [5]. Integrated
into a branch-and-bound scheme, this yields the desired
domain of guaranteed instability.

While the branch-and-bound and the probability calcula-
tions could be kept separate, it is computationally more in-
teresting to combine the two aspects into a single algorithm.
Indeed, this allows to integrate probability-related stopping
criteria into the algorithm, e.g. interrupting the algorithm if
all the boxes have a probability measure less than a given
threshold pmin. Such a strategy is described in Algorithm 1,
whose outputs are a partition of Θ = [−1, 1]N into

Θ = Ds ∪Ds̄ ∪Dsu (9)

and the probability measure of each component of this
partition. The third term Dsu corresponds to the domain
of uncategorised stability. Its presence stems from the fact
that, realistically, the branch-and-bound algorithm can only
approximate the domains of stability and instability. Ideally,
Dsu should be as small as possible, although depending on
the validation requirements, a coarse result can be sufficient
to decide if the investigated system is satisfactory.

For inconclusive iterations, the partitioning of the box is
classically done along its longest edge, but other strategies
can be implemented. In particular, µ-sensitivities can be used
to reduce computational time [12], especially for systems
with numerous parametric uncertainties.



Algorithm 1 Probabilistic µ-analysis for stability
1: Inputs: M(s), ∆, fi(δi) for i = 1, . . . , N , pmin, pmax
2: Outputs: Ds, Ds̄, Dsu , p(Ds), p(Ds̄), p(Dsu)
3: L ← {Θ}
4: Ds, Ds̄, Dsu ← ∅
5: p(Ds), p(Ds̄), p(Dsu)← 0
6: while L 6= ∅ and p(Ds) + p(Ds̄) < pmax do
7: select and remove the box Θ̃ from L with the highest

probability measure and compute the interconnection
M̃(s)− ∆̃ normalised w.r.t. Θ̃

8: compute a guaranteed robust stability margin kr for
M̃(s)− ∆̃

9: if kr ≥ 1 then . analysis is conclusive
10: if Fu(M̃(s), ∆̃) is nominally stable then
11: add Θ̃ to Ds

12: p(Ds)← p(Ds) + p(Θ̃)
13: else
14: add Θ̃ to Ds̄

15: p(Ds̄)← p(Ds̄) + p(Θ̃)
16: end if
17: else . analysis is inconclusive
18: if p(Θ̃) > pmin then
19: partition Θ̃ and add the boxes obtained in L
20: else
21: add Θ̃ to Dsu

22: p(Dsu)← p(Dsu) + p(Θ̃)
23: end if
24: end if
25: end while
26: if L 6= ∅ then
27: add all remaining boxes Θ̃k of L in Dsu

28: p(Dsu)← p(Dsu) +
∑
k p(Θ̃k)

29: end if

B. H∞ Performance Analysis

Let us now consider Problem 2.2. As for robust stability,
the idea is to combine branch-and-bound with µ-analysis to
compute both a domain of guaranteed performance satisfac-
tion Dγ and a domain of guaranteed performance violation
Dγ̄ , whose probability measures can then be calculated.
Proposition 2.1 provides the means to calculate Dγ , but a
difficulty arises in the computation of Dγ̄ . Indeed, perfor-
mance violation on Θ is equivalent to

min
∆∈B∆

sup
ω∈R+

|Fu(M(jω),∆)| > γ (10)

which, as a minimax problem, is more complicated than
verifying performance satisfaction. As a preliminary step to
tackle this problem, a useful property on LFT inversion is
reminded (see e.g. [13]).

Lemma 3.1: Let M =

[
M11 M12

M21 M22

]
, and assume that

M22 is nonsingular. Then Fu(M,∆)−1 = Fu(N,∆), where

N =

[
M11 −M12M

−1
22 M21 −M12M

−1
22

M−1
22 M21 M−1

22

]
.

Remark 3.1: For a scalar performance channel, the as-
sumption that M22 is nonsingular simply means that it is
nonzero, i.e. there is effectively a transfer from u to y. Since
it is the case of interest for performance analysis, this is not
restrictive.
Proposition 3.1 then derives a sufficient condition for In-
equality (10) to hold, in the form of a skew-µ calculation
involving the inverse transfer from u to y.

Proposition 3.1: Let I = {ω ∈ R+ : |M22(jω)| > γ}. If
there exists ω0 ∈ I such that

ν∆a
(N(jω0)) <

1

γ
(11)

where ∆a = diag(B∆,C) and N(jω) is such that
(Fu(M(jω),∆))−1 = Fu(N(jω),∆), then Inequality (10)
holds, and performance violation is guaranteed on Θ, i.e.
∀∆ ∈ B∆.

Proof: First, note that nominal performance violation is
equivalent to

sup
ω∈R+

|M22(jω)| > γ (12)

which guarantees that I is nonempty, and that N(jω) is
well-defined for each ω ∈ I. Assume now that there exists
ω0 ∈ I such that (11) holds. From the main loop theorem
([13]), this is equivalent to

µ∆(N11(jω0)) < 1

max
∆∈B∆

|Fu(N(jω0),∆)| < 1

γ

(13)

Since |Fu(N(jω0),∆)| = |Fu(M(jω0),∆)|−1 ∀∆ ∈ B∆,
the second inequality of (13) can be rewritten as

min
∆∈B∆

|Fu(M(jω0),∆)| > γ (14)

which is a sufficient condition for Inequality (10) to hold.
Remark 3.2: The step from (13) to (14) strongly relies on

the scalar nature of the performance channel and cannot be
easily generalised to higher dimensions although this will be
investigated in a near future.

A strategy to verify performance violation directly follows
from Proposition 3.1, as outlined in Algorithm 2.

Algorithm 2 Verification of performance violation on Θ

1: Inputs: M(s), ∆, γ
2: Output: true if performance violation is guaranteed

on Θ, false otherwise
3: if ‖M22(s)‖∞ ≤ γ then
4: return false
5: else
6: select ω0 ∈ I
7: compute ν∆a

(N(jω0)), where N(jω0) is given by
Lemma 3.1

8: if ν∆a(N(jω0)) < 1/γ then
9: return true

10: else
11: return false
12: end if
13: end if



Note that the output false of Algorithm 2 merely means
that the analysis was inconclusive, and does not exclude
performance violation on Θ. More precisely, inconclusive
cases can result from three causes:

1) the sufficient condition of Proposition 3.1 is not nec-
essary,

2) the selected ω0 in Algorithm 2 is not satisfactory,
3) the computation of the skew-µ upper bound is not

sufficiently accurate.
In particular, the heuristics used to select ω0 can prove
critical. It is readily apparent that exploring a frequency grid
or frequency interval would be computationally inefficient,
since only one frequency is sought, which is not even
guaranteed to exist. On the other hand, the peak frequency
of M22(s), while appearing as a natural choice for ω0, offers
no guarantee of optimality.

The methods to validate performance satisfaction (Propo-
sition 2.1) and performance violation (Proposition 3.1) on a
given box can be integrated into a branch-and-bound scheme
structurally similar to Algorithm 1. The essential difference
lies in lines 8 through 24 of the algorithm, which must be
replaced by a performance analysis:
• if ‖M̃22(s)‖∞ < γ, then attempt to verify performance

satisfaction on Θ̃ using Proposition 2.1,
• otherwise, attempt to verify performance violation on

Θ̃ using Algorithm 2.
Θ̃ is then either partitioned if the aforementioned test fails
or added to the adequate domain (Dγ , Dγ̄ , or the domain
of uncategorised performance Dγu ), whose probability mea-
sure is then updated. Note that all three issues raised on
Algorithm 2 are alleviated by the branch-and-bound. Indeed,
barring extreme cases of sensitivities to the uncertainties, it is
realistic to assume that the transfer Fu(M(s),∆) varies less
and less as ∆ is taken in smaller and smaller boxes. Thus,
the sufficient condition of Proposition 3.1 becomes not only
more relevant, but also less sensitive to the choice of ω0 as a
result. Moreover, the gap between the bounds of µ is known
to become arbitrarily small as the domain Θ is partitioned
into smaller boxes [14], which resolves item 3. However,
relying on the asymptotic behaviour of the branch-and-bound
algorithm may be unsatisfactory from a computational point
of view.

IV. APPLICATIONS

A. Illustrative Example

The following example, taken from [7], aims to illustrate
the proposed algorithms on a two-dimensional problem that
allows graphical representation. Consider the system given
by the state-space representationẋ =

[
0 1
−a0 −a1

]
x+

[
0
1

]
u

y =
[
1 0

]
x

(15)

where a0 and a1 are two uncertain parameters described by

a0 = 1 + q0, |q0| ≤ 2

a1 = 0.8 + q1, |q1| ≤ 1
(16)

The parametric domain Θ is therefore the set of all possible
values of the ordered pair (q0, q1), i.e. Θ = [−2, 2] ×
[−1, 1]. For such an example, the Routh criterion can be
used to determine that the domain of stability is exactly
]− 0.5, 1]×]− 0.8, 1]. Assuming a uniform distribution of
the uncertainties on Θ, this represents 67.5% of the do-
main. The proposed algorithm for stability analysis yields
P∆,f (M(s)) ∈ [0.672, 0.679], which is a good estimation.

The same problem is now solved assuming q0 ∼
N[−2,2](0, (2/3)2) and q1 ∼ N[−1,1](0, (1/3)2), where
N[a,b](m,σ

2) denotes the truncated normal distribution. This
type of distribution refers to a case where the nominal
configuration is deemed more likely, and with the probability
of occurrence of a configuration becoming smaller as it gets
farther from the nominal point. Algorithm 1 now leads to
P∆,f (M(s)) ∈ [0.925, 0.931], which is a more optimistic
result. This highlights the interest and potential of the
probabilistic framework in reducing the conservatism of µ-
analysis. Regarding H∞ performance analysis and setting
the performance level γ =

√
2, a uniform distribution of the

uncertainties leads to P γ∆,f (M(s)) ∈ [0.344, 0.359], while
the truncated normal distribution changes this estimation
to P γ∆,f (M(s)) ∈ [0.411, 0.441]. The improvement is less
drastic, but this can be explained by the fact that the nominal
configuration is close to the limit of performance. This case is
less likely to occur for a controlled system whose controller
is designed using robust synthesis methods.

Table I compares the results obtained with Algorithm 1
from [7] (whose Matlab code has been provided by the
authors) and with the algorithms from the present paper.
A dramatic reduction in the computational time can be
observed. This is due to the computation of guaranteed
instability or non-performance domains, which is done here
but not in [7]. The difference is further illustrated by Fig. 2
and 3. The comparison was done on a CentOS Linux 7.4
Workstation with a CPU Intel Xeon W3530 running at
2.80GHz and 6 GB of RAM, with Matlab R2017b installed.

Algorithm
Stability analysis
pmin = 10−5

Performance analysis
pmin = 10−4

p(Ds) p(Ds̄) time p(Dγ) p(Dγ̄) time
[7] 92.52% n/a 2861s 41.30% n/a 6843s

present
paper 92.58% 6.94% 341s 41.56% 48.71% 268s

TABLE I
COMPARISON BETWEEN ALGORITHM 1 FROM [7] AND THE

ALGORITHMS OF THE PRESENT PAPER

Remark 4.1: The adaptation of Algorithm 1 to H∞ per-
formance analysis is only applicable to boxes on which sta-
bility is already guaranteed. In the proposed implementation,
a preliminary stability analysis is therefore performed, and
the identified stable boxes serve as inputs for the performance
analysis. Both analyses are accounted for in Table I.

Remark 4.2: The limiting threshold on the probability
measure of the analysed boxes is used slightly differently
between the algorithm from [7] and Algorithm 1. The former
bisects all uncategorised boxes, then checks the probability
measure of the resulting boxes to determine if they are to



be analysed or not. The latter uses the probability measure
of uncategorised boxes to determine if partitioning should
be done. Thus, for the same limiting threshold pmin, Algo-
rithm 1 analyses more boxes.

Fig. 2. Stability (left) and performance (right) analyses without
instability/non-performance verification [7]: the green domain satisfies the
tested criterion, the red domain is uncategorised

Fig. 3. Stability (left) and performance (right) analyses with instability/non-
performance verification: the green domain satisfies the tested criterion, the
blue domain invalidates it, and the red domain is uncategorised

B. Numerical Results

Algorithm 1 is now applied to several benchmarks
described in the literature. For these tests, all nor-
malised uncertainties follow the truncated normal distribution
N[−1,1](0, (1/3)2), and two partitioning strategies are used:
bisection along the longest edge, and bisection along the
highest µ-sensitivity. The limiting threshold for bisecting
boxes is set to pmin = 10−4. The results are summarised
in Table II. The notation m × p in the description of ∆
means that ∆ contains m blocks of size p × p, all blocks
being real diagonal. R denotes the ratio of the probability
measure of the categorised boxes (stable or unstable) over
the total probability measure of the operating domain Θ, i.e.
R = p(Ds)+p(Ds̄)

p(Ds)+p(Ds̄)+p(Dsu ) = p(Ds) + p(Ds̄). The obtained
ratios are close to 1 for all benchmarks, meaning that the
domains of stability and instability are well approximated
by Ds and Ds̄ respectively, leaving only a small domain
Dsu as uncategorised (in the sense of probability measure).

Regarding the partitioning strategies, while the use of µ-
sensitivities tends to improve both the domains computation
and the running time, this is not always the case, benchmark
10 being a counterexample. However, this system aside, the
use of µ-sensitivities leads to significant time reduction as
the dimension of the problem increases, as observed on
benchmarks 19, 21 and 26, whose parametric domains have
respective dimensions 9, 9 and 23. This shows that, in spite
of the effectiveness of naive branching schemes [15], there
is still an interest in investigating more sophisticated ones.

Table III shows test results for probabilistic per-
formance analysis, where R now denotes the ratio
R =

p(Dγ)+p(Dγ̄)
p(Dγ)+p(Dγ̄)+p(Dγu ) (which differs from p(Dγ) +

p(Dγ̄) if stability is not achieved on the complete domain

Θ). As mentioned in Section III-B, the peak frequency of
M22(s) is selected as the frequency ω0. The relevance of
µ-sensitivities for partitioning is less consistent, leading to
a slight decrease of the probability measure of Dγu at the
cost of increased execution time for all but benchmark B5.
The latter benefits the most from the use of µ-sensitivities,
with a drastic reduction of p(Dγu) (more than 25%) and an
execution time reduced by a factor of approximately 3.

To assess the relevance of the chosen ω0, sample con-
figurations have been drawn in each uncategorised box to
see whether a configuration satisfying the performance level
could be found. This would mean that a suitable ω0 does not
exist, i.e. there is nothing to gain from improving the choice
of ω0. For each nominally non-performing N -dimensional
box, the samples drawn are the corners of the box, for
a total of 2N samples per box. The reason behind this
sampling method is that the farthest points from the centre
of the box are empirically the most likely to exhibit the
most substantial changes on their transfer function. Also,
the relatively small number of dimensions in the considered
benchmarks keeps the sample size from being prohibitive.
Results show that the loss on p(Dγ̄) remains reasonable
on the tested benchmarks, not exceeding 3%. This means
that no change in the heuristics can lead to dramatic im-
provements of the algorithm. However, if improvements are
sorely needed, then a possible solution could be to consider
as additional candidates for ω0 the peak frequencies of the
2N configurations located at the centre of the (N − 1)-
dimensional faces of the currently studied N -dimensional
box. This choice constitutes a compromise between taking
configurations that are far from the centre of the box, and
limiting the number of candidate frequencies, since taking
the corners as was done for the sampling would lead to 2N

additional frequencies.
V. CONCLUSION

In this paper, new contributions are proposed to improve
the efficiency of robustness analysis by combining deter-
ministic µ-based methods with a probabilistic framework.
Both robust stability and H∞ performance are addressed.
The proposed algorithms are implemented in Matlab and
tested on several benchmarks taken from the literature. The
resulting routines are available in the SMART Library of
the SMAC Toolbox at http://w3.onera.fr/smac.
Beside the efficiency of the algorithms, test results showcase
that probabilistic µ-analysis can be an adequate response
to reduce the conservatism of a purely deterministic ap-
proach. In the overall validation process of a controlled
system, probabilistic µ-analysis complements Monte Carlo-
based methods nicely. It provides relevant inputs for the
sampling strategy of the simulation phase, and could ulti-
mately lighten the tedium of control laws development. In
light of the above, probabilistic µ-analysis appears as an at-
tractive method for the validation of controlled systems with
parametric uncertainties, provided that reliable probability
density functions are available. Future work will focus on
extending the presented H∞ performance analysis method
to the MIMO case.



Benchmark States Structure of ∆
Bisection along
the longest edge

Bisection along
the highest µ-sensitivity

ratio R time (s) ratio R time (s)
3: Academic example [16] 4 2× 2 0.9836 249 0.9846 262
4: Inverted pendulum [17] 4 3× 1 0.9994 14 0.9997 6
5: Anti-aliasing filter [18] 2 3× 1 + 1× 2 0.9998 9 0.9999 6

9: Bank-to-turn missile [19] 6 4× 1 0.9600 492 0.9903 229
10: Aeronautical vehicle [20] 8 4× 1 0.9817 716 0.9695 1327

19: Drive-by-wire vehicle [21] 4 2× 1 + 7× 2 0.9970 418 0.9999 15
20: Re-entry vehicle (model developed by ONERA) 7 3× 1 + 1× 4 + 1× 6 0.9999 51 1-2E-5 45

21: Space shuttle [22] 34 9× 1 0.9634 335 0.9992 10
26: Hard disk drive [23] 29 19× 1 + 4× 2 0.9490 2073 0.9993 66

TABLE II
STABILITY ANALYSIS RESULTS ON SELECTED BENCHMARKS; BENCHMARK NUMBERS REFER TO THOSE USED IN [24]

Benchmark States Structure of ∆
Bisection along
the longest edge

Bisection along
the highest µ-sensitivity

ratio time (s) ratio time (s)
B1: Academic example [25] 4 3× 1 0.8965 614 0.9017 951
B2: Inverted pendulum [17] 4 3× 1 0.9945 65 0.9964 80

B3: DC motor [26] 4 3× 1 + 1× 2 0.9238 1094 0.9545 1144
B4: Bus steering system [27] 9 1× 2 + 1× 3 0.9320 601 0.9379 1268

B5: Hydraulic servo system [28] 9 8× 1 0.6864 12906 0.9470 4269

TABLE III
PERFORMANCE ANALYSIS RESULTS ON SELECTED BENCHMARKS
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