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Abstract 13 

Deciphering the mechanisms of declarative memory is a major goal of neuroscience. While much 14 

theoretical progress has been made, it has proven difficult to experimentally verify key predictions of 15 

some foundational models of memory. Recently, single-neuron recordings in human patients have 16 

started to provide direct experimental verification of some theories, including mnemonic evidence 17 

accumulation, balance-of-evidence for confidence judgments, sparse coding, contextual reinstatement, 18 

and the VTA-Hippocampus loop model. Here, we summarize the cell types that have been described in 19 

the medial temporal lobe and posterior parietal cortex, discuss their properties, and reflect on how these 20 

findings inform theoretical work. This body of work exemplifies the scientific power of a synergistic 21 

combination of modelling and human single-neuron recordings to advance cognitive neuroscience. 22 
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Towards a Circuit-Level Understanding of Human Declarative Memory 1 

Declarative memories (see Glossary) of events and facts are central to human behavior and are 2 

part of what defines each of our individual identities [1]. Consequently, deciphering the mechanisms that 3 

allow humans to form, maintain, and retrieve declarative memories is a major topic in cognitive 4 

neuroscience. Brain mapping and lesion techniques have started to reveal the brain networks that are 5 

involved in declarative memory formation, maintenance, consolidation, and retrieval [1]. This work has 6 

highlighted the distinct roles of different brain areas, such as the hippocampus and other parts of the 7 

medial temporal lobe, cortical areas such as the posterior parietal cortex, and the basal ganglia in 8 

declarative memory. Theoretical work, on the other hand, has proposed both abstract cognitive and 9 

circuit-level mechanisms on how different types of neurons within these areas interact, and how their 10 

response changes as a function of learning to encode new memories (‘engrams’) [2-10]. Many such 11 

models make predictions that are testable using behavioral or non-invasive neuroimaging-based 12 

experiments, allowing for close interaction between theory and experiment that has been highly fruitful. 13 

Other model predictions, however, require either higher spatial and/or temporal resolution or high 14 

quality single-trial measurements to be tested directly. Due to this, it is challenging to test such 15 

predictions with non-invasive techniques, which have relatively low temporal and spatial resolution and 16 

typically require across-trial averaging. Invasive brain mapping techniques such as electrocorticography 17 

(ECoG) and intracranial electroencephalography (iEEG) performed in patients have significantly higher 18 

resolution and signal quality, an advantage that has already led to significant advances in our 19 

understanding of memory (see for example [11-14]). Nevertheless, there remain a considerable number 20 

of model predictions that are best tested at the level of individual neurons.  21 

Invasive recordings in animals have provided an invaluable body of detailed knowledge of the 22 

circuits involved in memory at the systems, circuit, cellular, and molecular level. But, if our goal is to 23 

understand human memory, this animal work has to be complemented by human experiments at similar 24 

levels of resolution. To achieve this, invasive recordings in humans are critical for three reasons. First, 25 

findings from animals have to be validated in humans to build a bridge between humans and animal 26 

model systems and thereby establish the validity and limitations of the model system. Second, aspects 27 

of memory that are uniquely developed in humans or which cannot be practically studied in animals have 28 

to be investigated in humans. Third, some aspects of cognitive models of human memory can best be 29 

validated and refined using data recorded at the scale of individual neurons or small groups thereof. 30 

Here, we review what has been discovered from single-neuron recordings in humans (see Box 1) and 31 



 

Page 3 of 26 

illustrate how such recordings have been able to bridge between theory and experimentation and 1 

thereby provide new mechanistic insight into human memory.  2 

 3 

Single-Trial Learning: Assessing the Hippocampus VTA/SN Loop Model 4 

Learning theory is largely focused on repetitive learning that requires many repetitions for a 5 

robust memory to be formed. In contrast, consider the kind of learning that allows a human being to 6 

recognize an image with high accuracy that was previously only seen once as part of a sequence of 10’000 7 

images, each shown once for 1s [15]. How the declarative memory system achieves such rapid and high-8 

capacity learning is a key open question.  9 

A model that has motivated much research on the underlying mechanisms is the Hippocampus-10 

Ventral Tegmental Area (VTA)/Substantia nigra (SN) loop model [2, 3, 16]. This model proposes that the 11 

rapid encoding of novel stimuli is facilitated by transient dopamine (DA) release that is triggered by novel 12 

stimuli (also see Box 2). Anatomically, the loop model (Fig. 1A) hypothesizes that, first, circuits within the 13 

hippocampus detect that a stimulus is novel. It has long been known that the hippocampus, along with 14 

upstream areas such as perirhinal cortex [17, 18], is crucial for detecting novelty [19]. This novelty signal, 15 

in turn, is thought to activate DA neurons, which then release DA in the hippocampus. DA release 16 

strengthens synaptic plasticity and enables late long-term potentiation (LTP) [3]. Among the predictions 17 

of the loop model are: First, subsets of DA neurons should be novelty sensitive, i.e. they should be 18 

activated by stimuli which have not been seen before. Secondly, this novelty signal should be conditional 19 

on a novelty signal being present in the hippocampus. Thirdly, the novelty signal should appear first in 20 

the hippocampus, followed later by DA neurons. Forth, following novelty-dependent activation, transient 21 

increases of DA occur in the hippocampus and these increases strengthen late LTP. Fifth, the model 22 

makes specific hypothesis on the anatomical pathways by which hippocampal novelty signals reach the 23 

SNc/VTA.   24 

Single-neuron recordings have started to provide experimental support in humans for a subset 25 

of the above predictions. There are two groups of relevant findings: novelty responses in the 26 

hippocampus and other parts of the medial temporal lobe (MTL), and novelty responses of DA neurons. 27 

In the MTL, a subset of neurons preferentially increase their firing rate only the first time a stimulus is 28 

presented [20, 21]. Comparing the response of such novelty-signaling neurons between the first and 29 

second time a stimulus is presented reveals a strong difference, supporting the notion that their 30 

response is different after a single exposure. This is in contrast to habituation, which leads to a gradual 31 
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reduction in response strength of some human MTL neurons over many trials [22]. Habituation develops 1 

over tens of trials and responses recovers if other stimuli are shown intermittently. In contrast, novelty-2 

neurons in the MTL do not respond again to the same stimulus even after long periods of time [20].  3 

DA neurons in the VTA/SN are intermingled with other cell types, making it difficult to measure 4 

their activity with non-invasive methods. With extracellular recordings, however, it is possible to 5 

differentiate between different cell types due to differences in action potential waveforms and spike 6 

train statistics. This way, individual DA neurons in the human SN can be observed in patients undergoing 7 

deep brain stimulation (DBS) implantation for treatment of movement disorders, typically Parkinson’s 8 

disease (PD) [23-25] (see Fig. 1D). Note that while PD patients have dopamine cell loss, this loss typically 9 

begins in the ventral tier of the SNc, leaving the neurons in the dorsal tier of the SNc intact [26]. It is the 10 

dorsal tier that projects to the hippocampus, ventral striatum and cortex [26] and which is typically 11 

recorded in humans, making it suitable to investigate the DA system in human PD patients. Such 12 

experiments have revealed two sets of DA neuron responses with respect to novelty: one that increases 13 

its firing rate to novel stimuli, and one that does so for familiar stimuli [24, 27] (Fig. 1B-C shows the 14 

novelty type). Human DA neurons also signal aspects of rewards [23], but whether the same or different 15 

DA neurons respond to both reward and novelty remains unknown. The response properties of the 16 

novelty subtype of DA neurons are compatible with the loop model: their response diminishes after a 17 

single learning trial, the extent of response change between the first and second presentation is 18 

predictive of behaviorally assessed memory strength, and the latency of this novelty response is later 19 

than that of MTL novelty neurons [24]. Interestingly, this work also revealed a familiarity subtype of DA 20 

neurons, a type of response not predicted by the loop model. These neurons increased their firing rate 21 

only for previously seen stimuli, a response which might have a role in strengthening or consolidating 22 

existing memories. Together, this data illustrates the extent to which the loop model has guided ongoing 23 

work and the richness of insight that can be obtained by such model-guided experimental work in 24 

humans.  25 

 26 

Representations of memory content: Assessing sparse and distributed coding models 27 

 What are the features that are used to encode and retrieve a declarative memory? Declarative 28 

memory has two subsystems: semantic memory and episodic memory, which represent knowledge of 29 

concept/facts, and details of autobiographical events, respectively [1, 28]. A theoretical question that 30 

has motivated much work is the level of granularity at which aspects of these two kinds of memory are 31 
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represented. There are two opposing views [8-10, 29, 30]: on the one hand are models that indicate that 1 

a sparse and highly selective representation is optimal for fast learning [8, 9]. On the other extreme are 2 

fully distributed coding views [31, 32], in which only the pattern of activity across large groups of neurons 3 

can differentiate between different concepts and experiences. Under this second view, listening to a 4 

single neuron in the MTL would not be useful to make a high-level semantic decision such as ‘am I viewing 5 

an animal’. In between the two extremes are models that propose a sparse but distributed form of 6 

coding; under this view, a given neuron has high response sparsity (it only responds to a small subset of 7 

all possible stimuli) but there are many neurons that respond to the same subset of stimuli [8, 10, 33].  8 

A second, orthogonal, question that is motived by the semantic vs. episodic memory subsystem 9 

view is whether the neurons encoding concepts/facts also encode aspects of episodic memory (such as 10 

memory strength, where, when) or whether the substrate for these two aspects of declarative memory 11 

are separate. Lesion studies indicate that they can be separate in the case of remote memories: whereas 12 

patients with hippocampal lesions are unable to form both episodic and semantic memories, they can 13 

retrieve remote but not recent semantic memories [34].  14 

Compatible with the theoretical prediction of sparse but distributed coding, single-neuron 15 

recordings in humans reveal that concepts and facts are encoded in a sparse and invariant manner by 16 

single MTL neurons [35-39]. The response of these neurons is highly selective (sparse) but at the same 17 

time invariant: a given neuron only responds to a small subset of all tested stimuli, but the subset it 18 

responds to is closely related (i.e. all images of animals).  At the same time, the code is distributed 19 

because there are many neurons with the same or highly similar selectivity [38]. Such neurons have 20 

become known as ‘category’ or ‘concept’ cells (Fig. 2A-C shows examples), a kind of neurons that ares 21 

also commonly referred to as ‘gnostic units’ and ‘grandmother cells’, respectively [40]. Here, were refer 22 

to this group of neurons as ‘visually selective’ (VS) cells. VS cells are reproducible across tasks, recording 23 

techniques, and laboratories [35-39, 41-43] (see [41] for a review) and their responses are abstract and 24 

multimodal. For example, a cell tuned for a particular individual responds to a variety of images showing 25 

the person, the written name of that person as well as to auditory input saying the individual's name [44] 26 

(Fig. 2B). In addition to sensory input, VS cells can be activated by thought (including free recall and 27 

maintenance in working memory) [39, 45-48]. Also, for identical visual input, the response of VS cells 28 

varies as a function of whether the stimulus entered conscious awareness [42, 49, 50] and if so is 29 

indicative of subjective decisions made about the stimulus [51, 52]. These properties of VS cells are also 30 

properties of declarative memories, supporting the view that VS cells are part of the representation of 31 
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such memories. VS cell responses are plastic: they are more likely to represent concepts of personal 1 

relevance [53, 54] and can change their tuning by associative pairing [55]. Together, this data motivates 2 

the hypothesis that VS cells in the human MTL represent sparse, abstract, and selective features of 3 

declarative memories, a view compatible with the sparse but distributed coding model. In contrast, this 4 

data is not compatible with fully distributed coding models. One hypothesis motivated by this data is that 5 

VS cells represent semantic memories, and thereby constitute an integral part of an engram [56]. 6 

A second type of response in the human MTL that has been characterized are memory selective 7 

(MS) cells. The activity of MS cells correlates with aspects of episodic memory and their activity exhibits 8 

single-trial plasticity [20] because their response is conditional on whether a stimulus has been seen 9 

before. Two types of MS cells (Fig. 2D) have been described [20, 21, 57, 58]: one that increases its firing 10 

only for novel stimuli, and one that increases its firing only for previously seen stimuli (similar cells exist 11 

in macaque perirhinal cortex [17]). The magnitude of MS cell activity in response to a previously seen 12 

stimulus is indicative of memory strength, with stronger memories resulting in larger changes both 13 

during recognition memory [58] and spatial cued recall tasks [59]. The firing rate of MS, but not VS, cells 14 

is indicative of the subjective confidence of recognition memory decisions. This constitutes a remarkably 15 

trial-by-trial correlation with the declarative aspect of episodic memories with only one type of cell [58]. 16 

Jointly, this indicates that MS cells represent aspects of episodic memory. Similar to VS cells, the code 17 

formed by MS cells is sparse and highly invariant, with the large majority of MS cells not also qualifying 18 

as VS cells [58]. Notably, MS cells respond later than VS cells, with an average response latency that is 19 

~180ms longer relative to that of VS cells (a delay attributed to the theta oscillation by hippocampal 20 

models [5]). Together, this data shows that VS and MS cells in the human MTL together form an 21 

orthogonal code in both feature space and time. This result supports a sequential model of declarative 22 

memory, in which high-level sensory categorization first leads to reactivation of related concepts in 23 

semantic memory, followed by recognition whether the currently experienced stimulus has been seen 24 

before or not, and if so recall of related attributes and reinstatement of context.  25 

What aspect of the highly sparse and abstract responses of VS and MS cells in the human MTL 26 

are computed locally and which are inherited from upstream areas such as perirhinal or inferotemporal 27 

cortex? One important insight on this question comes from analysis of response latencies of individual 28 

neurons relative to stimulus onset. The response latencies of VS cells (which respond earlier than the MS 29 

cells) in the human amygdala, hippocampus, and entorhinal cortex are ~300-400ms [35, 58, 60], a delay 30 

that is considerably longer than in higher visual areas and which would be too slow for many perceptual 31 
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processes [61] (but see [62] for an argument that the MTL in addition also has a critical role in visual 1 

perception). Also, the latencies of VS cells are inversely proportional to selectivity, with more selective 2 

responses occurring later [35]. Intriguingly, VS cells recorded in parahippocampal cortex are less selective 3 

and respond about 100ms earlier than those in entorhinal cortex, hippocampus, and amygdala, 4 

indicating that as information propagates through the MTL, responses become more and more selective 5 

and sparse. In macaques, perirhinal cortex neurons and the BOLD-fMRI signal differentiate familiar from 6 

novel stimuli, suggesting that they encode mnemonic aspects of the stimuli shown rather than their 7 

physical attributes [17, 63]. Also, selective perirhinal lesions impair recognition memory [64], indicating 8 

that the perirhinal cortex might be the first anatomical area downstream to high level sensory areas in 9 

which responses become contingent on experience [65]. However, its exact contribution to declarative 10 

memory remains unclear [18, 66, 67]. To our knowledge, no single-neuron responses have been 11 

performed in human perirhinal cortex, leaving their latency, novelty-selectivity, and sensitivity to explicit 12 

declaration of memories unknown. Such recordings will be critical to determine what specific 13 

transformations in both selectivity and latency signals undergo as they propagate from perirhinal cortex 14 

into the hippocampal system. 15 

  16 

Retrieving existing Memories: Assessing the Reinstatement of Temporal Context Model 17 

What allows the episodic memory system to differentiate similar memories that happened at 18 

different points of time and to selectively retrieve temporal clusters of memories? While temporal 19 

clustering of retrieval is ubiquitous [68, 69], the aspect of memory search that give rise to this effect 20 

remain poorly understood. A class of theoretical models for studying these questions are temporal 21 

context models (TCM) [70-73]. TCMs propose that neural activity in a subset of cells drifts as time 22 

progresses, leading to identical stimuli perceived at different times being accompanied by different 23 

neuronal states. This contextual information is then combined with sensory information and encoded 24 

into memory. Within this framework, successful retrieval of a memory results in re-instatement of the 25 

neuronal state at the time of encoding (“contextual reinstatement”). As a result, a ‘jump back in time’ or 26 

‘mental time travel’ occurs, a defining feature of episodic memory [74]. As part of reinstatement, the 27 

context serves as a cue to then retrieve other associated attributes of a memory, a process leading to 28 

the subjective impression of ‘recollecting’ [74]. Similarly, the reinstated context serves as a cue to recall 29 

other nearby memories, thereby explaining effects of temporal encoding order on recall [70-72]. A 30 

second prediction of TCM is that strong memories, which result in recollection, are accompanied by 31 
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reinstatement, whereas weaker memories are not. This is because the former is associated with a ‘jump 1 

back in time’ [75], a feature of reinstatement sensitive to MTL damage [76]. Intracranial recordings have 2 

revealed direct evidence for these predictions of TCM.  3 

Neural activity in the MTL drifts slowly over both short (seconds)- and long (minutes) timescales 4 

at both the single-neuron [77, 78] and field potential level [79, 80]. This effect is visible as auto-5 

correlation of activity at the single-neuron level over minutes [77, 78]. This temporal drift was not 6 

restricted to neurons which do not respond to sensory inputs because it is apparent event in neurons 7 

that are visually tuned [77]. This data shows that items which are seen at similar periods of time will be 8 

accompanied by more similar neural activity, thereby resulting in a more similar memory representation.  9 

The neural state at encoding is reinstated, that is the patterns of activity during encoding and 10 

retrieval of the same item are similar. Reinstatement is visible at the single-neuron level in several areas 11 

of the temporal lobe, including the hippocampus, amygdala, and middle temporal gyrus (MTG) [77, 78, 12 

81] (Fig. 2E-G). What remains poorly understood is what information is reinstated – is it specifically 13 

temporal context or rather other internal or external features? One notable exception is spatially tuned 14 

cells, which reveal specific reinstatement of spatial location [82], indicating that reinstatement can be 15 

specific. Remarkably, reinstatement is sufficiently powerful to be visible at the aggregate field potential  16 

[79, 80] and blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) [83] 17 

level. Reinstatement of activity has been seen both during recall (cued [80, 81] and free [79] recall) as 18 

well as recognition memory [77, 78]. In the former, such reinstatement occurs 0-2s before a subject 19 

indicates recall of an item [80, 81], whereas in the later reinstatement occurs following stimulus onset. 20 

Third, the extent of reinstatement is related to the quality of memory retrieval: it is predictive of whether 21 

cued recall occurs correctly or incorrectly [81] (Fig. 2E) and whether an item is recognized with high or 22 

low confidence [77].  23 

In the case of recognition memory, the same items are shown during both encoding and 24 

recognition, making it necessary to disambiguate between activity representing stimulus-specific sensory 25 

input from reinstated activity. However, the reinstated context changes only gradually, and should 26 

thereby still be similar to different encoded items which were shown closely (in time) before or after the 27 

recognized item. Indeed, both forward-and backward contiguity effects are visible at the single-neuron 28 

level [77] in recognition memory (Fig. 2F-G). Uniquely, in recognition memory tasks, recency effects can 29 

be differentiated from contiguity effects [57]. Using this approach, it has been shown that contiguity 30 

effects (due to reinstatement) are present at the single-neuron level in the absence of recency effects 31 
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[77]. While forward-and backward contiguity effects remain to be shown during cued or free recall at 1 

the single-neuron level, field potential studies show robust reinstatement during recall as well [79, 80]. 2 

Together, there is thus evidence at the single-neuron level for several predictions of TCMs, making them 3 

excellent candidates for continued theoretical study. Of note, TCM models make predictions that relate 4 

to the process and experience of recollection and memory search during free recall. While important, 5 

here our focus is only on the aspects of TCM that have been studied in the context of recognition 6 

memory. 7 

 8 

Converting Memories into Decisions: Assessing the Mnemonic Evidence Accumulation Model 9 

 Many of the decisions we make in daily life depend on previous experience. Take, for example, 10 

deciding whether a person you see on the bus is the same person you met last night at a party. This 11 

decision relies on memory retrieval, the integration of different kinds of information, and meta-cognitive 12 

processes to assess certainty. A model that encapsulates one point of view of how the nervous system 13 

makes decisions is the drift diffusion model (DDM) [84]. The DDM proposes that leaky integrators [85] 14 

accumulate evidence in favor of all possible choices and that the action for a particular choice is initiated 15 

once the total accumulated evidence for a choice exceeds a threshold (Fig. 3A). While the DDM was 16 

originally developed for memory-based decisions [86], much of the experimental work so far has focused 17 

on perceptual decisions. In particular, individual neurons have been found in macaques [87-89] and 18 

rodents [90] whose firing rate reflects integrated sensory evidence and predicts choices [84]. This 19 

discovery has led to an unprecedented mechanistic understanding of perceptual decision making. It 20 

remains unknown whether a similar mechanism is at work for declarative memory-based decisions and 21 

if so, whether the same or different neurons support this process.  22 

Based on prior work on perceptual decision making in macaques [87-89], connectivity analysis 23 

for areas that receive hippocampal output, lesion studies, and neuroimaging, one candidate area in 24 

humans that has emerged for where mnemonic evidence-integrating neurons might be located is the 25 

left posterior parietal cortex (PPC) [91, 92] (Fig. 3B; see [91-93] for detailed reviews). In recognition 26 

memory, different parts of PPC exhibit differences in BOLD signal activation between new vs. old, 27 

recollected vs. recognized, or high vs. low confidence items [91, 92]. Scalp EEG source localization 28 

similarly indicates that PPC is the source of an ERP that differentiates between new and old items [94]. 29 

PPC lesions largely do not reduce recognition accuracy (but see [95]), but rather manifest as 30 

impoverished autobiographical recall, reduced likelihood of recollection, and reduced confidence. Thus, 31 
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while information is present, PPC lesions lead to an inability to properly access this information for 1 

further processing – a kind of ‘memory neglect’ [93]. While it remains unclear what specifically the PPC 2 

contributes to memory retrieval, a hypothesis is that a key contribution is the accumulation of mnemonic 3 

evidence [91, 96]. 4 

Invasive recordings from human PPC [97-99] provide insight into this prediction. ECoG recordings 5 

from left PPC [97] reveal a striking functional heterogeneity when comparing response patterns of high-6 

gamma band power (HGP) between different parts of the PPC (Fig. 3B). In the intraparietal sulcus (IPS), 7 

HGP was higher for old compared to new items, whereas in the superior parietal lobule (SPL), HGP power 8 

was higher for new compared to old items. The time course of the signal relative to stimulus onset also 9 

varied between the two areas: HGP first differentiated between new and old stimuli in SPL (200-300ms), 10 

with signals in IPS differentiating only later (300-700ms). Aligned to button-press, signals in IPS 11 

differentiated between old and new stimuli up to ~200ms before button press, but not later. In light of 12 

the mnemonic integration framework, this data suggests that neurons in IPS integrate evidence for old, 13 

but not new, stimuli, and once a threshold is reached a motor action is initiated.  14 

Single-neuron recordings in the IPS [100] of two human subjects participating in a brain-machine 15 

interface clinical trial provide further evidence for a role of the PPC in memory retrieval [98]. Within a 16 

small 4x4 mm patch of PPC, two types of neurons with signals relevant for memory retrieval were found: 17 

memory-selective (MS) and confidence-selective (CS) neurons (Fig. 3D). There were two types of MS 18 

neurons: one that increased its firing rate for familiar stimuli, and one that increased its firing rate for 19 

novel stimuli (below referred to as the preferred stimulus). This firing rate increase was graded with 20 

memory strength as measured by the reported confidence (Fig. 3C-D). Notably, this modulation by 21 

confidence was restricted to the preferred stimulus of the MS cell, with the activity during non-preferred 22 

trials not modulated. CS cells, on the other hand, increased their firing rate either for high-or low 23 

confidence retrieval decisions regardless of whether the stimulus has been seen before. In contrast to 24 

recordings during the same task in the MTL [58], there was no evidence in PPC for neurons carrying 25 

information about stimulus identity. Rather, both CS and MS neurons signaled non-stimulus specific 26 

mnemonic information. Errors trial analysis further revealed that these neurons carried choice signals 27 

(Fig. 3E). The recorded neurons started to differentiate between the two choices well before the motor 28 

response but significantly later than the latency at which the MS signal is available in the MTL [58, 97, 29 

99, 100]. This result reveals a single-neuron candidate for mnemonic integrators in human cortex.  30 
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Although neurons in PPC are remarkably heterogeneous [98], BOLD-fMRI and ECoG studies [97] 1 

show that novelty, memory strength, or recollection is indicated by the average activity across large 2 

subareas of  PPC [99]. This raises the important question of how heterogenous signals at the single-3 

neuron level can give rise to such differences on a larger scale. One limitation is that the recordings 4 

discussed here were performed at the border between SPL and the supramarginal gyrus (SMG), making 5 

it possible that a transition area exists between the two. A critical open question is how declarative-6 

memory based information is accessed by neurons in PPC. One putative mechanism is that PPC neurons 7 

transiently phase-synchronize their activity with hippocampal theta oscillations when integrating 8 

hippocampal information but testing this prediction will require simultaneous recordings. While such 9 

recordings have not yet been performed, it is known that during autobiographical recall, theta-10 

oscillations transiently synchronize between PPC and MTL [101].  11 

 12 

Meta-Cognitive Confidence Judgments: Assessing the Balance of Evidence Model 13 

 The assessment of confidence is a hallmark of declarative memory. Theoretical work has 14 

advanced several potential ways by which confidence judgments might be made [102-105]. One class of 15 

models is the balance of evidence model (BEM) [105], which is an extension of the evidence 16 

accumulation model [106] (Fig. 3F). In the case of two possible choices (i.e. old or new), the BEM consists 17 

of two integrators that each accumulate evidence. The “balance of evidence” is the absolute difference 18 

between the two accumulated evidence values and is proportional to the confidence. Importantly, the 19 

two decisions (the actual choice and the confidence) are made at the same time using the same 20 

mechanisms. This contrasts with other models, in which the two decisions are made sequentially [107]. 21 

The BEM makes specific predictions about the underlying neural correlates (Fig. 3F). These include: there 22 

are separate neurons that integrate evidence only for old or new stimuli, the neurons that supply the 23 

evidence as well as the neurons that integrate the evidence are modulated by underlying memory 24 

strength for only their preferred stimuli (i.e. new or old), and the RT, accuracy, and confidence is 25 

proportional to the balance of evidence. The latter prediction implies that confidence is influenced by 26 

the accumulated evidence for both the winning and the losing choice. 27 

Support for some of the BEM’s predictions have been found in both macaques [87] as well as 28 

humans [58, 98] at the single-neuron level. First, during declarative memory-based decisions, putative 29 

neurons that integrate evidence in PPC [98] or that supply input to the integration process in MTL [58] 30 

are modulated by evidence strength as reported by subjective confidence (Fig. 3G-H). This modulation 31 
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is only apparent for the preferred, but not the non-preferred stimulus. MS cells in the MTL and memory-1 

choice cells in the PPC thus represent signals at the input and output stages of decision making that 2 

correlate with confidence as predicted by the BEM model. Second, estimating the balance of evidence 3 

in individual trials from the firing rate of MS neurons correlates well with RT, accuracy, and declared 4 

confidence. Together, this data thus reveals a remarkable predictive power of the theoretical quantity 5 

of balance of evidence [58], indicating that the BEM model has good explanatory power and can bridge 6 

experiment and theory. Note that these experiments make excellent use of the unique ability of humans 7 

to declare their confidence, thereby allowing a direct (albeit subjective) assessment of memory strength.  8 

 9 

Concluding remarks 10 

In this review, we summarized what invasive recordings at the single-neuron level in humans have 11 

revealed about the mechanism of human declarative memory. Our emphasis was on illustrating the 12 

power of this approach by demonstrating how it has enabled direct testing of predictions made by five 13 

models of relevance for declarative memory: the hippocampus/VTA loop model, the sparse coding 14 

model, the contextual reinstatement model, the evidence accumulation model, and the balance of 15 

evidence model (see Table 1 for a summary). While there are of course many other important models, 16 

here we focus on this subset because together they provide a good perspective of the power of the 17 

overall approach. In each case, the combination of human behavior and simultaneous single-neuron 18 

recordings has revealed critical new insights into different aspects of human memory. Jointly, this data 19 

now allows us to synthesize a view of the processing elements and the information flow among these 20 

processing elements in the human brain during memory encoding and retrieval (Fig. 4, Key Figure) and 21 

to tentatively map aspect of this circuitry to specific kinds of neurons in particular brain areas (of course 22 

this abstract model is far from being an actual implementable circuit). While here the focus was 23 

specifically on declarative memory, a similar combination of model-driven analysis of intracranial 24 

recordings has started to provide essential new insights into other human cognitive processes. While still 25 

in its early stage, this powerful approach has a bright future and we anticipate much exciting future work 26 

of this kind that will push ahead our understanding of human cognition in ways not possible with other 27 

experimental approaches (see Outstanding Questions). 28 
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Figures legends 1 

 2 

Figure 1: The Lisman Hippocampus VTA/SN loop model and novelty signaling human DA neurons. (A) 3 

Schematic of interactions and flow of novelty signals within the hippocampus-VTA/SN loop. Adopted 4 

from [2, 3, 108]. (B-D) Novelty signaling human DA neurons. (B) Example neuron that increases its firing 5 

when a stimulus is novel (blue) and decreases when the same stimulus is shown again (red). (C) 6 

Population summary. Novelty-sensitive DA neurons change their firing rate between the first (left) and 7 

second (middle) time the same image is seen in a continuous recognition memory task. Each dot is one 8 

neuron. (D) Analysis of extracellular waveforms of neurons recorded in the human SN indicates a 9 

population of wide-and narrow waveform neurons, which are putatively dopaminergic and GABAergic, 10 

respectively. Note that the novelty-signaling neurons (blue) had wide waveforms. (B-D) adjusted from 11 

[24]. Abbreviations: SN – substantia nigra, VTA – ventral tegmental area, PPTg - pedunculopontine 12 

tegmental nucleus. 13 

 14 

Figure 2: Sparse and selective coding of declarative memory content and reinstatement by single neurons. 15 

(A-C) Example of visually selective neurons. (A) Two visually selective neurons, one responding to many 16 

different images showing clothes (top, from hippocampus) and one only responding to a single image of 17 

a food item (bottom, from amygdala). Adapted from [43]. (B) Example of a highly invariant multimodal 18 

concept neuron that responds to images and written and spoken name of an experimenter, but not many 19 

other images (only examples are shown). Adapted from [44]. (C) Visually selective category neuron. Trials 20 

are ordered by visual category from which the images are chosen (all images shown are different). 21 

Stimulus on/offset is shown with dashed lines or a grey box (C).  (D) Example memory-selective neuron. 22 

Note that the images shown during novel (green) and familiar (red) trials are the same. Adapted from 23 

[57]. (E) Contextual reinstatement during free recall by middle temporal gyrus neurons. Adapted from 24 

[81]. (F-G) Contextual reinstatement by VS neurons during recognition memory. Adapted from [77]. 25 

 26 

Figure 3: Mnemonic evidence accumulation model and memory-choice cells. (A) Mnemonic evidence 27 

accumulation as a race process, with the choice made as the integrator (EV) that first reaches a preset 28 

threshold. (B) Anatomy of the PPC. Star marks the recording location for the data shown in (C-E). Adapted 29 

from [99]. (C) Example PPC neuron that increases its firing rate for a “new” decision in a graded manner 30 

modulated by confidence. Top shows the response of this neuron in individual trials, bottom the average 31 
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response of this neuron. (D) Population summary of memory-sensitive neurons in the PPC reveal that 1 

some neurons signal the confidence of the decision (green), whereas others only signal the new vs. old 2 

decision (red). (E) Group PSTH of memory-choice cells in PPC, grouped according to their preferred 3 

stimulus (new or old). The preference is defined according to ground truth. Note that during errors, 4 

neurons increase their firing rate for their preferred stimulus, indicating that they signal choices 5 

regardless of whether they are correct or not. Adapted from [98]. (F) The balance of evidence model. 6 

Note that this model integrates the difference (new-old or old-new), which is not the same due to 7 

rectification. (G-H) Cumulative firing rate of MS neurons, shown separately for high (G) and low (H) 8 

confidence trials. The balance of evidence ΔEV scales as a function of confidence. Adapted from [58]. 9 

 10 

Figure 4 (Key Figure): Summary of functional cell types and their putative interactions during recognition 11 

memory encoding and retrieval. Summarized are four cell types (filled colored circles): visually selective 12 

(VS) cells, memory selective (MS) cells, novelty-sensitive dopamine neurons, and choice neurons. There 13 

are two types of MS cells: Novelty and familiarity selective (NS and FS). Arrows indicate direction of 14 

information flow, but do not indicate monosynaptic connections. Anatomical areas are indicated in 15 

dashed boxes. The theoretical concepts/models (gray boxes) discussed are: i) the Hippocampus-VTA/SN 16 

loop model, which proposes that hippocampal novelty signals excite dopamine neurons in the VTA/SN, 17 

which in turn release dopamine in the hippocampus, which leads to long-lasting plasticity. ii) the sparse 18 

coding memory model, which suggests that distinct neurons encode semantic and episodic aspects of 19 

declarative memories in a sparse but distributed manner. iii) the temporal context model, which suggests 20 

that the neural state present at encoding is re-instated at retrieval. iv) mnemonic accumulation, which 21 

suggests that neurons exist that integrate memory signals to make choices. v) the balance-of-evidence 22 

model, which describes how the difference between two mnemonic integrators can be used to make 23 

metacognitive confidence judgments about memories. Jointly, the body of single-neuron experiments 24 

discussed provides evidence for key aspects predicted by these models, including novelty cells that 25 

exhibit rapid single-trial learning, representations of memory strength that predict subjective confidence 26 

judgments, sparse coding of semantic memories, reinstatement of neural state by VS cells during 27 

retrieval, and representations of memory-based choices that are putative mnemonic accumulators. 28 

 29 

Tables 30 

Table 1. Models of memory, their predictions and related human intracranial studies. 31 
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Model class Key predictions Related 

studies 

Hippocampus VTA/SN 

loop model  

Dopamine neurons respond to novel stimuli, this novelty 

response is indicative of memory formation success, and 

exhibits single-trial learning.  

[24, 27] 

Sparse and separate 

encoding of semantic and 

episodic aspects of 

declarative memories  

Highly visually selective cells (response sparsity), separate 

neurons encoding whether a stimulus has been seen 

before or not and other episodic aspects,  

[35-39, 58] 

Temporal context model, 

contextual reinstatement 

Jump-back in time during retrieval, slowly drifting neural 

state, recollection/high confidence recognition predicted 

by reinstatement 

[77, 78, 81] 

[79, 80] 

Mnemonic evidence 

accumulation  

Separate accumulators for “new” and “old” decisions. 

Accumulator output signal is modulated by memory 

strength. Accumulators predict choices rather than ground 

truth.  

[97, 98] 

Balance-of-evidence for 

metacognitive/confidence 

judgments  

Magnitude of difference between the separate integrators 

for “new” and “old” choices is proportional to confidence, 

whereas the sign of the difference is indicative of the 

choice. Both decisions can be made at the same point of 

time. 

[58] 

 1 

  2 
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Boxes 1 

 2 

Box 1. Clinical procedures are a gold mine for cognitive neuroscience at the single-neuron level. 3 

In a limited number of circumstances, the activity of single neurons in awake behaving humans 4 

performing memory tasks can be recorded [109]. There are three separate clinical scenarios where such 5 

work has been performed. First, patients with drug-resistant focal epilepsy undergoing monitoring with 6 

depth electrodes [109, 110]. Recordings are performed during the 1-3 week-long stay of such patients 7 

in an epilepsy monitoring unit [111] (see Figure I). Second, patients undergoing awake brain surgery for 8 

implantation of a deep brain stimulation (DBS) device for treatment of the symptoms of movements 9 

disorders [23, 24] or psychiatric indications such as depression or OCD [112, 113]. Third, patients 10 

participating in brain machine interface trials with invasive electrodes, such as the Utah array [100].  11 

Each of these approaches provides access to a different set of brain areas with different 12 

constraints. The strength of recording in epilepsy patients is ability to perform experiments in the relative 13 

comfort of the hospital room, performing experiments for several days, execution of relatively complex 14 

behavioral manipulations, and simultaneous recording of neurons from different brain areas. Limitations 15 

include restriction in accessible brain areas due to  microwires exiting at the tip, inability to move 16 

electrodes, and caveats posed by the underlying seizure disorder. The strength of recording intra-17 

operatively is ability to move the electrode to search for neurons and the ability to record anywhere 18 

along the track, which often includes areas not accessible in other settings such as the basal ganglia and 19 

striatum. Challenges of this approach include limited experiment time, impaired behavior due to after-20 

effects of anesthesia and inability to perform complex behavioral procedures. The strength of Utah-array 21 

recordings is the ability to record large numbers of neurons from a small 4x4 mm patch of cortex for long 22 

periods of time during complex behavior. Limitations include inability to access areas not on the cortical 23 

surface and inability to move electrodes.     24 

Notable, across approaches many cortical and subcortical areas of interest to models of memory 25 

can be accessed, including hippocampus, amygdala, dopamine neurons in the substantia nigra, posterior 26 

parietal cortex, and the frontal lobe. Indeed, single-neuron data that informs our understanding of 27 

human memory has already been obtained from all three clinical scenarios described (as summarized in 28 

this review), illustrating the power of utilizing several clinical scenarios to investigate the same scientific 29 

question.  30 

 31 

Figure I (place inside Box 1): Electrodes and recordings of single-neuron recordings in humans. (A) Hybrid 32 

Depth electrode that is frequently used for recordings in epilepsy patients. Adapted from [114]. (B) Utah 33 

array. (C) Example raw recording (0.3-3kHz bandpass filtered) and two isolated clusters on a microwire 34 

of the kind shown in (A). Adapted from [111].  35 

 36 

Box 2. The role of dopamine in declarative memory. 37 

Does dopamine have a role in the formation of hippocampal-dependent memories? While comparatively 38 

little studied in comparison to its role in reward, substantial evidence suggests that it does. First, the 39 

extent of DA neuron activity during viewing of novel stimuli correlates with the likelihood that the stimuli 40 

will later be remembered. This was originally shown using BOLD-fMRI with ROIs located in areas that 41 

contain, among others, DA neurons [115]. But since the BOLD signal is not cell-type selective, it is possible 42 

that the changes in BOLD signal observed were not due to changes in DA neuron activity. However, direct 43 

recordings from human DA neurons in the SN reveal that DA neurons increase their firing rate in response 44 

to novel stimuli and that the degree of this activation is indicative of whether the stimulus will later be 45 

remembered or forgotten [24]. Similarly, in macaques, DA neurons are activated by novel stimuli [116]. 46 
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However, to our knowledge, DA neuron activation and its relationship to behavior has not been tested 1 

in a hippocampal-dependent memory tasks in macaques. Second, blocking or otherwise interfering with 2 

DA receptors in the hippocampus impairs declarative memory encoding [117, 118] and modulates 3 

synaptic plasticity as assessed by LTP/LTD [3]. Thirdly, genetic studies in humans show that 4 

polymorphisms in dopamine-related genes explain variance in declarative memory ability and/or results 5 

in differential activation measured by BOLD fMRI or EEG [119]. Together, this data suggests that 6 

dopamine release is critical for encoding new declarative memories. What remains poorly understood, 7 

however, is what activates dopamine neurons in a novelty-dependent manner. How this occurs is what 8 

the hippocampus-VTA/SN loop model is concerned with (see main text). A critical experiment that 9 

remains to be done is to directly measure levels of dopamine in the human hippocampus at a fast time 10 

scale to assess how transient the changes in dopamine are after exposure to novel stimuli and whether 11 

the increase in dopamine is selectively target anatomically or to different cell types. Among the potential 12 

approaches to pursue this question are fast micro dialysis and cyclic voltammetry, both of which have 13 

been utilized in humans for other purposes [110, 120]. 14 

 15 

 16 

Glossary 17 

 18 

BOLD: Blood oxygen level-dependent signal, measured using fMRI. 19 

 20 

Confidence judgment: A subjective assessment of the likelihood that a given decision was correct or not, 21 

typically assessed on a 3 to 10-point scale ranging from “guessing” to “very confident”.  22 

 23 

Contiguity effect: Temporal clustering of retrieval at the behavioral (the item retrieved next is most likely 24 

the one studied right before or after the previously retrieved item) and neuronal (reinstated context is 25 

most similar to that present close in time to the retrieved item) level. 26 

 27 

Declarative memory: Memories that can be brought into conscious awareness and that can be described 28 

and assessed verbally. Includes memories for past events (episodic) and facts (semantic memory). 29 

 30 

Deep Brain Stimulation (DBS): A clinical treatment for movement disorders that is also sometimes used 31 

to treat psychiatric disorders. Applies high-frequency extracellular stimulation, which is thought to inhibit 32 

neural activity in the target area. 33 

 34 

Dopamine (DA): A neuromodulator important for memory (see Box 2). 35 

 36 

Electrocorticogram (ECoG): We use the term ECoG only to refer to recordings performed with subdural 37 

strip or grid electrodes that do not penetrate the brain. 38 

 39 

Engram: The physical substrate of a specific memory. 40 

 41 

Episodic memory: Memories of personally experienced events. 42 

 43 

Intracranial electroencephalography (iEEG): We use the term iEEG to refer to recordings with low-44 

impedance macro electrodes along the shaft of depth electrodes deep inside the brain (see Box 1).  45 

 46 
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Leaky integrator: An integrator with a decay rate such that inputs that rely further back in time have less 1 

influence on the current value than more recent inputs 2 

 3 

Memory selective cells (MS cells): Summary term for cells that respond differently as a function of 4 

whether a stimulus is novel (never seen before) or familiar (seen before at least once). 5 

 6 

Recognition memory: The ability to identify a previously seen stimulus as familiar. 7 

 8 

Semantic memory: Memories of concepts and facts about the world. 9 

 10 

Substantia nigra (SN): A part of the midbrain that contains cell bodies of dopamine neurons. 11 

 12 

Ventral tegmental area (VTA): A part of the midbrain that contains cell bodies of dopamine neurons. 13 

 14 

Visually selective cells (VS cells): Summary term that includes all variants of category-and concept cells. 15 

  16 
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