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Abstract: We present the application of a generic, semi-empirical first-order radiative transfer
modelling approach for the retrieval of soil- and vegetation related parameters from coarse-resolution
space-borne scatterometer measurements (σ0). It is shown that both angular- and temporal
variabilities of ASCAT σ0 measurements can be sufficiently represented by modelling the scattering
characteristics of the soil-surface and the covering vegetation-layer via linear combinations of
idealized distribution-functions. The temporal variations are modelled using only two dynamic
variables, the vegetation optical depth (τ) and the nadir hemispherical reflectance (N) of the chosen
soil-bidirectional reflectance distribution function (BRDF). The remaining spatial variabilities of the
soil- and vegetation composition are accounted for via temporally constant parameters. The model
was applied to series of 158 selected test-sites within France. Parameter estimates are obtained by
using ASCAT σ0 measurements together with auxiliary Leaf Area Index (LAI) and soil-moisture
(SM) datasets provided by the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land-surface
model within the SURFEX modelling platform for a time-period from 2007–2009. The resulting
parametrization was then used used to perform SM and τ retrievals both with and without the
incorporation of auxiliary LAI and SM datasets for a subsequent time-period from 2010 to 2012.

Keywords: remote sensing; microwave; radar; Advanced Scatterometer (ASCAT); soil moisture;
radiative transfer; vegetation; backscatter model

1. Introduction

The usage of microwave backscatter measurements for deducing biophysical characteristics of
the land surface is a well known and widely accepted approach [1–3]. To distinguish contributions
that originate from the soil-surface from those originating from the vegetation, a description of
the scattering-behaviour of the soil- and vegetation composition within the illuminated area is
necessary. The presented investigation is focussed on the use of satellite-borne scatterometer
measurements. Therefore, both the coarse spatial resolution (in the order of kilometres) and the
limited amount of computational complexity (that can be used to perform large-scale simulations
over long time-periods) must be taken into account within the development of a backscattering
model. Consequently, considering the coarse resolution of scatterometers and the limited number of
independent observables, it is evident that the functional representation of the scattering behaviour
must inevitably subsume many different aspects of both soil and vegetation into a constricted set of
parameters. To arrive at a suitable description of the scattering mechanisms, it is common practise to
use well-defined, idealized objects such as randomly oriented dielectric cylinders and discs to model
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the vegetation scattering-behaviour [4–6] and random rough surfaces [7,8] together with dielectric
mixing models (like [9]) to address bare soil-scattering. While such modelling approaches provide
valuable insights when being applied to well-defined experimental conditions, their application to
coarse-resolution space-borne scatterometer measurements results in a set of parameters that are
difficult to connect to accessible properties of the observed scene. Furthermore, since the calculation
of scattering characteristics based on pre-defined geometrical objects requires specification of their
geometry, orientation, and location distributions as well as dielectric properties, such models usually
incorporate a large number of parameters that allow a wide range of modelling possibilities. Using
measurements with a ground-resolution in the order of kilometres, neither the assessment nor
the interpretation of such parametrizations can be performed in a well-defined manner without
immense efforts to characterize each site individually. Consequently, the initially physically-based
parameters of the backscattering model are in the end treated merely as fit-parameters that are
used to empirically adjust the scattering pattern such that the model is capable of representing
the observed measurements. Therefore, when considering the practical aspects of this problem,
the generally rather complex mathematical formulation resulting from the specification of geometrical
structures will mostly be an obstacle to the semi-empirical calibration of the model, since after
all, the retrieved parameter values are anyway hardly connectible to identifiable properties of the
observed scene. In this paper, we present a generic first-order radiative transfer model parametrization
framework that can be regarded as a generalization of the water-cloud model [10]. The specification
of the scattering behaviour of both soil- and vegetation is achieved by using linear combinations
of idealized scattering distribution functions. The resulting model can thus use both angular-and
temporal variations of the backscattering measurements in order to deduce parameters related to
soil- and vegetation properties. Furthermore, the impact of first-order interaction effects can be
described in a consistent, analytic way by using the method presented in [11]. In Section 2.1,
the specifications and the used functional description of the scattering distributions are given.
The used datasets and model-parametrization are addressed in Sections 2.2 and 3, and finally Section 4
presents results of an application of the model to ASCAT backscatter timeseries from 2007–2012 over a
set of 158 test-sites representing the main agricultural and forest regions in France. Due to the fact that
an a priori parametrization of the scattering characteristics of a rough soil surface as well as a covering
vegetation-layer would require detailed information on each individual site that is not accessible
within the scope of the presented investigation, we focus on analysing possibilities for parametrizing
the presented model by using an optimization procedure that minimizes the difference between
(incidence-angle dependent) ASCAT and modelled σ0 datasets based on the following assumptions:

• All parameters except the optical depth of the vegetation layer (τ) and the (nadir) hemispherical
reflectance of the soil-surface (N) are assumed to remain temporally constant.

• A subset of parameters is chosen to represent the remaining spatial variability of the σ0 dataset
that is not covered by variations in τ and N. Since the numerical values of those parameters can
a priori only be restricted to a physically plausible range, the actual values for each scene are
obtained by an optimization-procedure using inputs of auxiliary Leaf Area Index (LAI) (assumed
to be ∝ τ) and soil-moisture (SM) (assumed to be ∝ N) timeseries provided by the Interactions
between Soil, Biosphere, and Atmosphere (ISBA) land-surface model within the SURFEX modelling
platform [12].

• The remaining (spatially and temporally constant) parameters are set based on empirical
adjustments to achieve a reasonable agreement between ASCAT and modelled σ0 for the majority
of processed points.

The parameter-values obtained within the calibration-period (2007–2009) are then used to perform
a retrieval of daily SM and/or 7-daily τ estimates for a subsequent time-period (2010–2012).
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2. Materials and Methods

2.1. A Generic, Semi-Empirical Radiative Transfer Modelling Approach

In the following, a generalization of the water cloud model that incorporates a description of
the incidence-angle behaviour of the vegetation-scattering pattern and an estimate of first-order
interaction-effects according to [11] is introduced. The bare-soil contribution is modelled using
parametric functions to represent the Bidirectional Reflectance Distribution Function (BRDF) of the
soil surface. Furthermore, to be able to account for the fact that the observed scene typically contains
both regions of dense vegetation-cover as well as effectively bare soil parts, a parameter accounting
for the “effective bare-soil fraction” ( fbs) is included. The resulting formula for the backscattering
coefficient (where the connection of the model-parameters to the biophysical variables has not yet been
set) is given by [11] (see Figure 1):

σ0 = 4π cos(θ0)

[
fbs · cos(θ0)BRDF︸ ︷︷ ︸

bare soil contribution (σs
0)

+(1− fbs) ·
(

γ2 cos(θ0)BRDF︸ ︷︷ ︸
vegetation covered soil contribution (γ2σs

0)

+ (1)

ω

2

(
1− γ2

)
p̂︸ ︷︷ ︸

vegetation contribution (σv
0 )

+ σint
0︸︷︷︸

interaction contribution

)]

with the 2-way attenuation factor γ defined as:

γ2 = e
− 2 τ

cos(θ0) with θ0 . . . viewing zenith angle (2)

The scattering behaviour of bare soil is hereby fully described by the specification of its BRDF.
The effects of the vegetation are described by the Single Scattering Albedo (ω), the Optical Depth
(τ) and the Scattering Phase Function (p̂) that accounts for the directionality of scattering within the
vegetation layer.
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Figure 1. Contributions to the backscattered signal.

The additional term σ0
int represents first-order (i.e., double-bounce) interaction effects, estimated

using approximate representations of p̂ and the BRDF. Details on the choices for the functional
representations of the bistatic scattering characteristics of the vegetation-coverage (p̂) and the bare soil
surface (BRDF) are discussed in the following sections.
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2.1.1. Parametrization of Scattering Distribution Functions

To approximate the scattering-behaviour of soil- and vegetation, an empirical description of p̂ and
the BRDF based on parametric functions is introduced. While the general framework can be adjusted
to mimic a wide range of scattering-characteristics, the final choice for a specific application must be
selected with respect to the characteristics of the considered measurements (i.e., frequency, polarization,
spatial resolution, . . .). In the presented study, the model is applied to observations from the ASCAT
instrument (see Section 2.2.1) where the average illuminated area for each observation is represented
by a circle with a radius of approximately 12.5 km. The vegetation scattering-phase-function p̂
(as well as τ and ω) and the BRDF of the soil surface thus represent a mixture of physical and
structural properties of the vegetation and soil composition within the observed scene. Therefore,
the complexity in modelling the scattering characteristics of soil- and vegetation is greatly reduced.
The vegetation scattering pattern p̂ as well as the BRDF of the soil surface are approximated by using
linear combinations of generalized Henyey-Greenstein [13] functions HG(t, Θ).

In its original formulation [13] HG(t, Θ) has been defined as a single-parametric function (3)
that can be used to mimic the scattering pattern of an isotropic (t = 0), forward (0 < t < 1) or
backward (−1 < t < 0) scattering target (see Figure 2). The function can be easily expanded in terms
of Legendre-polynomials, and is therefore directly applicable for estimating first-order interaction
contributions with the method presented in [11]. The functional form of HG(t, Θ) is given by:

HG(t, Θ) =
1

4π

1− t2

[1 + t2 − 2 t cos(Θ)]
3/2 (3)

=
1

4π

∞

∑
n=0

(2n + 1) tnPn(cos(Θ)) (4)

Pn(x) hereby represents the nth Legendre polynomial. The scattering-angle Θ can be expressed in
terms of the incident zenith- and azimuth angles θ0, φ0 and the corresponding emergent zenith- and
azimuth angles θs, φs via:

cos(Θ) = − cos(θ0) cos(θs)− sin(θ0) sin(θs) cos(φ0 − φs) (5)

= 0t

2.= 0t

4.= 0t

5.= 0t

incident
direction distribution of 

scattered radiation

0θ sθ

Figure 2. Illustration of HG(t, Θ) [14].
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The above definition of the Henyey-Greenstein function can be generalized to represent a broader
spectrum of possible scattering distributions by altering the definition of the scattering angle Θ and
introducing an additional parameter a ∈ [−1, 1] as follows [15]:

cos(Θa) = a cos(θ0) cos(θs)− sin(θ0) sin(θs) cos(φ0 − φs) (6)

In case a is set to ±1, the magnitude of the originating scattering pattern remains independent
of the difference between the incoming- and scattering angle (θ0 − θs). This is illustrated in
Figure 3a which shows a linear-combination of 4 generalized Henyey Greenstein functions with
the following parametrizations:

p̂ =
1
4

[
HG(A) + HG(B) + HG(C) + HG(D)

]
(7)

where the individual peaks are defined via:

A: t = −0.5 a = −1 (backward-peak)
C: t = −0.5 a = 1 (downward-peak)

B: t = 0.5 a = 1 (upward-peak)
D: t = 0.5 a = −1 (forward-peak)

in
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(b) Incidence angle dependent magnitude (|a| = 0.6 for all individual peaks)

Figure 3. Scattering distribution modelled by a linear combination of 4 generalized Henyey Greenstein
Functions (see (7)).
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If values of |a| < 1 are used, the magnitude of the resulting scattering-pattern increases with
increasing incidence-angle as illustrated in Figure 3b. While such a parametrization leads to a violation
of the normalization condition for volume-scattering phase-functions (see Section 2.1.2), it can be
used as a single-parametric way to mimic an incidence-angle dependent normalization for BRDF
representations as addressed in more detail in Section 2.1.3.

It must be noted that in case exclusively monostatic measurements are used, any contribution
from the scattering-patterns away from the monostatic direction will only add to the modelled signal
by means of first-order interaction contributions. Therefore, for monostatic retrievals, one does not
need to pay too much attention to the full bistatic shape of the pattern.

2.1.2. Vegetation Scattering Phase Function p̂

As highlighted by de Matthaeis and Lang [16], theoretical calculations suggest that the general
shape of the scattering pattern of a dielectric cylinder (at wavelengths in the microwave domain with
dimensions that represent average cylindrical vegetation structures) consists of two relative maxima,
one in the direction of the incident wave, and one in specular direction. From Figure 3a we see that
such a behaviour can for example be approximated by using a combination of peaks similar to cases
C and D as defined by Figure 3a. Using (3), together with ([17], Equation 18.17.6) it can furthermore
be shown that HG(t, Θ(a=±1)) is already normalized as desired for representing a volume-scattering
phase-function, i.e.,: ∫ 2π

0

∫ π

0
HG(v, Θ(a=±1)) sin(θs)dθsdφs = 1 (8)

Therefore, any linear combination of generalized Henyey-Greenstein functions (with a = ±1)
can directly be used as a well-defined representation for the scattering distribution function p̂(θ, φ) of
the vegetation-coverage. The specific choice of HG-functions that has been used within the presented
simulations is addressed in Section 3.3.

2.1.3. Parametrization of the Bidirectional Reflectance Distribution Function (BRDF)

To define a functional representation that can be used to mimic the scattering behaviour of bare
soil, the following general considerations must be considered:

• The overall shape of the BRDF is represented by a peak oriented in specular direction whose
width is related to the effective roughness and texture of the surface. The term effective is hereby
used to indicate that aside of soil-characteristics, also topography as well as other land-cover
classes (urban areas, water-bodies . . .) within the observed scene are implicitly subsumed in those
parameters.

• In contrast to the scattering-pattern used for representing the vegetation-coverage, the behaviour
of Fresnel’s reflection coefficients indicate that the amount of scattered radiation in specular
direction originating from a (perfectly smooth) surface has a complex (polarization dependent)
incidence-angle behaviour. A similar behaviour is expected to be observed when considering the
scattering pattern of a rough surface.

• A BRDF must be normalized according to [18]:

2π∫
0

π
2∫

0

BRDF(θ0, φ0, θs, φs) cos(θs) sin(θs)dθsdφs = R(θ0, φ0) (9)

where R(θ0, φ0) denotes the directional hemispherical reflectance.

A comprehensive incorporation of the aforementioned properties in a functional representation
of the BRDF requires extensive theoretical calculations [7,8]. However, a parametric description of
the BRDF that can be used to represent the bare-soil contribution of coarse-resolution monostatic
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scatterometer measurements within reasonable accuracy can be obtained by adjusting the previously
defined generalization of the Henyey Greenstein function (6) as follows:

BRDF(N, t, a) =
N

R0(t, a)
HG(t, Θ̃a) (10)

The scattering-angle generalization-parameter a is hereby restricted to 0 < |a| < 1 which
allows adjusting the incidence-angle dependency such that the magnitude of the scattering pattern is
increasing with increasing incidence-angle (see Figures 4 and 5). To obtain a simple way for specifying
the magnitude of the BRDF, the normalization-factor N

R0(t,a)
in (10) is defined such that the parameter

N represents the hemispherical reflectance at nadir. R0(t, a) is therefore found by evaluating (9),
at (θ0 = 0) i.e.,:

R0(t, a) =
∫ π

2

0

∫ 2π

0
HG(t, Θ̃a)

∣∣∣
θ0=0

cos(θs) sin(θs)dθsdφs

=
(1− t2)

2a2t2

[
(1 + t2 + at)−

√
(1 + t2 + 2at)(1 + t2)√

1 + t2 + 2at

]
(11)

The parameter t thus allows adjusting the scattering pattern from isotropic (very rough surface,
t = 0) to directional oriented in specular direction (smooth surface, t = 1). The parameter a can
be used to adjust the incidence-angle behaviour from being uniform (a = 1), to increasing with
increasing incidence angle (a < 1). The parameter N < 1 is used to set the nadir-hemispherical
reflectance. Additional complexity in the representation of the BRDF (for example the incorporation
of an isotropic contribution or peaks in the backscattering direction) can directly be introduced by
using linear-combinations similar to (7).

= 1a 75.= 0a 35.= 0a

0θ 0θ 0θ

Figure 4. Impact of the a-parameter on the incidence-angle dependency of the BRDF representation
defined in (10). (t = 0.4).
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Is/Iinc = cos(θ) ∗ BRDF(θ, φ)
)

.
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2.2. Dataset Description

2.2.1. ASCAT Backscattering Timeseries

The following investigation is based on backscattering-coefficient (σ0) timeseries provided
by the Advanced Scatterometer (ASCAT) instrument operated on board the Metop (A) satellite.
The measurement-geometry is illustrated in Figure 6, and the main characteristics of the used dataset
are summarized below. More detailed information on the measurement principle and the technical
description can be found in [19])

• Frequency: C-band (5.225 GHz)
• Polarization: vertical (transmission and reception)
• Swath grid sampling resolution: 12.5 km
• Revisit time: ∼1–2 days
• Antenna look angles: ∼25◦ to ∼65◦

Figure 6. ASCAT measurement geometry [19].

The model is applied to timeseries that include measurements from all beams (i.e., FORE, MID
and AFT as indicated in Figure 6) as well as ascending and descending orbits in order to maximize
the available incidence-angle range as well as the temporal resolution. Furthermore, all days where
soil freezing effects are expected have been excluded. The masking is hereby performed based on
solid-water content estimates from the top soil layer (∼1 cm) as provided by the SURFEX modelling
platform [12] alongside the auxiliary SM- and LAI datasets.
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2.2.2. Auxiliary SM and LAI Datasets

In the present study, the CO2-responsive version of the Interaction between Soil Biosphere and
Atmosphere (ISBA) [20,21] Land Surface Model (LSM) forced by the SAFRAN atmospheric analysis
is used to compute a soil moisture (surface and root-zone), soil temperature and Leaf Area Index
(LAI) database over continental France from 2007 to 2012. SAFRAN (Systeme d’analyse fournissant
des renseignements atmospheriques a la neige) [22] is a mesoscale atmospheric analysis system for
surface variables. It was initially developed in order to provide an analysis of the atmospheric forcing
in mountainous areas for snow depth and avalanche forecasting. The SAFRAN analysis provides
the main atmospheric forcing parameters (precipitation, air temperature, air humidity, wind speed,
incident radiation) using information from more than 1000 meteorological stations and more than
3500 daily rain gauges throughout France. An optimal interpolation method is used to assign values
for each analysed variable. It was shown that a good correlation between the SAFRAN database and
in situ observations exists [23].

The CO2-responsive version of the ISBA LSM [24,25] is included in the open-access SURFEX
modeling platform of Meteo-France [12]. ISBA simulates the diurnal cycle of water and carbon fluxes,
plant growth and key vegetation variables, such as LAI and above ground biomass. Also, in the
version used in this study, the hydrology is based on the equations of the force-restore approach [20,21].
The soil layer and soil moisture dynamics are modelled within a 3-soil-layer model [26] with the
soil and vegetation parameters being derived from a global database of soils and ecosystems [27] for
12 generic land surface patches which include nine plant functional types (needle leaf trees, evergreen
broadleaf trees, deciduous broadleaf trees, C3 crops, C4 crops, C4 irrigated crops, herbaceous, tropical
herbaceous, and wetlands), bare soil, rocks, and permanent snow and ice surfaces. Detailed model
descriptions can be found in [12]. For the purpose of the land surface simulations, the ISBA parameters,
provided by ECOCLIMAP-II [27] at a resolution of 1 km, were aggregated per plant functional type
to the model resolution of 8 km. The ISBA model simulation was performed at this resolution using
the ‘NIT’ biomass option. A seven-year simulation was made over France and a subset of 158 points
representing the main French agricultural and forest regions has been extracted (as in [28]).

ISBA simulations driven by SAFRAN were compared to in situ observations of SSM in
south-western France by Albergel et al. [29] and Draper et al. [30], using 12 stations of the
SMOSMANIA [31] observation network. The obtained Spearman temporal correlation coefficient
value ranges from 0.6 to 0.8 and the median value is 0.7.

3. Choice of Parametrization

In the presented experiments (Section 4), both the choice of the functional representations of p̂ and
the BRDF as well as the estimation of the associated parameters are based solely on measurements by
the ASCAT instrument and simulations of SM and LAI provided by the SURFEX modelling platform.
The hereby introduced parametrization is therefore specific to this instrument (ASCAT, see Section 2.2.1)
and auxiliary-data model (ISBA forced by SAFRAN, see Section 2.2.2). The overall approach however
is highly flexible and can be adjusted to various experiment-configurations. The following section
illustrates the considerations that led to the selected model parametrization.

The ASCAT-σ0 dataset consists of backscattering measurements with incidence-angles ranging
from 25 to 65 degrees, where 3–6 individual measurements at different incidence-angles are available
at each day. In an ideal framework, one would set-up the model-parameter estimation as a fully
automatic scheme that is capable of retrieving both daily soil-moisture estimates as well as temporally
varying estimates for τ, ω and the remaining scattering-function parameters. However, considering
the available σ0 dataset, it is evident that this would result in an extremely under-determined retrieval
procedure, where numerous possible parametrizations exist that would all be capable of representing
the given daily backscattering measurements within reasonable accuracy. Therefore, the complexity of
the parametrization was reduced by representing the temporal dynamics of the dataset exclusively via
the optical depth (τ) and the nadir hemispherical reflectance of the BRDF (N). All other parameters
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that are intended to represent geometrical and structural properties of the observed scene (pixel) are
assumed to remain constant over the considered time-period. Furthermore, since the effects of some
parameters can be very similar for a monostatic measurement geometry, the fit-procedure is restricted
to obtain spatially varying estimates only for the effective bare-soil fraction ( fbs), the asymmetry-factor
of the BRDF (t), the single-scattering albedo (ω) and the scaling-factor (s2) that relates soil-moisture
(SM) and N (as defined in (13)). All remaining parameters are kept both spatially and temporally
constant, and the numerical values are set based on empirical attempts to adjust forward-simulation
and inversion-performances over the chosen test-sites. The resulting dependency of modelled σ0(θ0)

on the dynamic parameters is illustrated in Figure 7. To show the flexibility of the modelling approach,
results for 4 different experiments based on the selected parametrization are shown in Section 4:

(1) forward-simulation of ASCAT σ0 timeseries using auxiliary LAI and SM datasets
(2) SM inversion using auxiliary LAI datasets
(3) τ inversion using auxiliary SM datasets
(4) simultaneous τ and SM inversion
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Figure 7. Illustration of the behaviour of modelled σ0 as well as the resulting soil-, vegetation-
and interaction-contributions and the corresponding slopes σ′0 = dσ0

dθ with respect to changes in
the model-parameters in linear- (top) and dB (bottom) scale.
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3.1. Connection to Biophysical Variables

To connect the results of the above introduced modelling approach to indices that are related
to soil- and vegetation properties, a relation between the parameters of the model and the desired
biophysical variables is set. Within the following simulation, we investigated the performance of the
modelling approach to simulate backscattering coefficient measurements from the ASCAT instrument
by using simple empirical relations to connect the optical depth τ to the leaf-area index LAI and the
nadir-hemispherical reflectance N to the soil-moisture content SM:

τ = v2 ∗ LAI (12)

N = s2 ∗ SM (13)

The numerical values for s2 and v2 are set as follows:

• The range of the parameter s2 is constrained by ensuring that the resulting range of N remains
physically plausible. Reported estimates of vertically polarized directional emissivity ε(θ) at
similar frequencies [32–34] (which can be related to the directional hemispherical reflectivity
via Kirchhoffs law [35] (R(θ) = 1− ε(θ))) suggest a range of 0 . N . 0.1. Based on the
reference-dataset, the range for SM is set to SM . 0.45, and therefore the boundaries for s2

within the fit-procedure were set to 0.1 ≤ s2 ≤ 0.3.
• The connection between τ and LAI was set to v2 = 0.125, such that an LAI of 8 represents

an optical depth of τ = 1 which roughly follows reported ranges of vegetation optical depth
estimates at L-, C-, or X-band [36–38].

3.2. Numerical Value of the Single Scattering Albedo

Within the literature, many different estimates on the numerical value of the single scattering
albedo ω can be found. Retrieved values (almost entirely based on passive observations) are generally
found in the range 0.05 < ω < 0.15 [39]. Theoretical models that estimate ω from assumptions on
geometrical and dielectrical properties of the vegetation-constituents usually obtain much higher
values. For example, Ferrazzoli et al. [40] obtains values between ∼ 0.4 to 0.6 for the “branch-layer of an
old forest at L-band (θ0 = 35◦)”, Xie et al. [41] reports ω-values ranging from 0.3 to as high as 0.8 for
“soy- and cotton fields with varying leave- and stem parameters at C-, X- and Ku-band” and Liao et al. [42]
investigates the dependence of ω on the vegetation-water content of corn-fields and finds values
between 0.4 and 0.6 for V-polarized radiation at 1.26 GHz.

The reason for this discrepancy is that most studies aiming to retrieve soil-and vegetation
parameters from passive microwave observations imply so-called “effective single-scattering
albedo (ωp) parametrizations that are defined to implicitly include multiple scattering effects [43].
The numerical value of this effective albedo ωp is generally found to range between 0. and
0.15 [40,43,44]. It is important to notice that such effective single-scattering albedo values are
strongly dependent on the retrieval-model used for obtaining the values, and connections between the
ωp-values retrieved from passive observations and the actual ω-values are not straightforward as can
be seen for example from the works of Kurum et al. [43,45–47].

Within the active remote sensing community, the vegetation coverage is generally modelled using
the zero-order “water-cloud model” parametrization as introduced by Attema and Ulaby [10], where
the vegetation-contribution (σv

0 in Equation (1)) is parametrized similar to [48]:

σv
0 (θ0) = A ·V1 · cos(θ0)

(
1− γ2

)
with γ = e

− τ
cos(θ0) (14)

Consequently, ω would hereby be related to the model-parameters A and V1 via:

ω p̂back = A V1 (15)
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where p̂back denotes the value of p̂ in the backscattering direction (i.e.,: θs = θ0 and φs = π + φ0).
Thus, stating the actual value of ω is circumvented by considering only the backscattered part of

the scattering pattern and neglecting any multiple-scattering contributions (whose evaluation would
require separate estimates of ω and p̂).

The model presented within this paper explicitly includes a parametrization of p̂ as well as an
estimate of first-order interaction effects. Consequently, the value of ω is expected to be within the
range of theoretical estimates, i.e., 0 < ω < 0.8. Since the constitution of the vegetation-coverage is
highly dependent on the selected test-sites, the actual value of ω is determined by the fit-procedure for
each site individually.

It must be noted that the choice for p̂ and its resulting magnitude in the backscattering direction
p̂(θ0 → θ0) determines to a great extent the range of numerical values of the derived ω estimates.
The spatial dynamics of the estimates on the other hand represent actual changes between the
σ0 datasets that are interpreted as changes in ω within the retrieval procedure. The reason the
parametrization of p̂ has been fixed while ω is retrieved by the fit-procedure stems from the fact
that differences in the modelled (monostatic) σ0 datasets triggered by a change in p̂(θ0 → θ0)

compared to a change in ω are only evident within the interaction-contributions. The share of
those contributions in the total signal however is generally too low to be used as an indicator for the
retrieval-procedure to distinguish between the two effects, and consequently when using exclusively
monostatic measurements, either p̂ or ω must be set empirically or based on auxiliary information to
avoid ambiguous retrievals.

3.3. Choice of a Vegetation Scattering Phase Function

The vegetation-scattering phase-function p̂ is parametrized using a linear-combination of three
HG-functions, one representing a forward-scattering contribution (t = 0.4), one representing a bounce-off
contribution in specular direction (t = −0.4) and one representing an isotropic contribution (t = 0).
The ratio between forward, specular and isotropic contributions was set such that 50% of the radiation is
scattered isotropically, and the remaining 50% are split equally between the forward- and specular peak.
The number of expansion-coefficients in (3) (used for estimating the interaction-contribution) was set to
n = 8 for the directional HG functions. The resulting shape is illustrated in Figure 8.

p̂ = 0.5 · HG(t = 0)︸ ︷︷ ︸
isotropic contribution

+ 0.25 · HG(t = 0.4, a = 1)︸ ︷︷ ︸
forward-scattering contribution

+ 0.25 · HG(t = −0.4, a = −1)︸ ︷︷ ︸
specular (’bounce-off’) contribution

◦= 150θ

◦= 350θ

◦= 550θ

◦= 750θ

Figure 8. Polar-plot of the resulting shape of p̂.
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3.4. Choice of a Surface BRDF

The BRDF is directly parametrized using (10). Similarly to the ambiguity between p̂(θ0 → θ0)

and ω, we find that the impact of the a-parameter on the backscattered radiation is not clearly
distinguishable from the impact of the t-parameter (within the available incidence-angles of the
ASCAT-instrument ranging from 25 to 65 degree, see Figure 5). Therefore, we chose to set a = 0.6
for the entire set of processed points, and the value of the t-parameter is then determined by the
fit-procedure for each site individually. The considered numerical range was chosen to be 0 < t < 0.6,
since for t > 0.6 soil-scattering would occur mostly in specular direction, while soil-surfaces are
generally represented as rough surfaces for observations within the microwave domain. Based on
this restriction, the number of expansion-coefficients in (3) (used for computing the estimate of the
interaction-term) was set to n = 10. The resulting shape of the BRDF and the angular dependency of
the hemispherical reflectance R(θ0) are shown in Figure 9a,b.

◦= 150θ

◦= 350θ

◦= 550θ

◦= 750θ

(a) Polar-plot of the resulting BRDF for t = 0.3

05.= 0t

2.= 0t

4.= 0t

6.= 0t

(b) R(θ0) for different choices of t (N = 0.1)

Figure 9. Illustration of the used BRDF and its associated hemispherical reflectance R(θ0).

3.5. Effective Bare Soil Fraction

The fbs parameter serves as a parameter that can be used to enhance the impact of the soil
contribution in the total backscattered radiation. Due to the fact that it simultaneously reduces the
impact of the volume-contribution, the determination of its numerical value based on an automated
least-squares fitting procedure poses some problems:

• In case fbs is too large, a change in the vegetation-parameters will have a rather small impact
on the calculated σ0, and consequently the obtained vegetation-parameter-estimates from the
fit-procedure are very likely to show ambiguity

• If however a sufficient amount of vegetation-contribution is necessary in order to adequately
represent the incidence-angle behaviour of the provided σ0 dataset, an increase in fbs can be
compensated by simultaneously increasing ω. Under certain circumstances this behaviour can
lead to a chain-reaction within the fit-procedure that will drive both fbs and ω to its maximally
allowed value.

To avoid the aforementioned problems, the boundaries of the fbs-parameter have been set to
0 ≤ fbs ≤ 0.25. This choice also reflects the fact that we do not expect areas with rather large fractions
of bare-soil within the considered sites.

3.6. Fit-Procedure

The model is fitted to ASCAT backscattering observations using a “Trust Region Reflective” non-linear
least-squares fitting procedure (scipy.optimize.least_squares) as implemented within the scientific
Python-library scipy [49,50]. To reduce computational complexity, an analytic estimation of the Jacobian
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at each iteration-step is provided by using a zero-order approximation of the model (i.e., neglecting the
interaction contributions). Evaluation of the interaction-term [14] within the calculation of the residuals
is performed using the symbolic computation-libraries sympy and symengine [51] in combination with
numpy [52]. To increase convergence, a scaling of the individual parameters within the fit-procedure
based on inverse norms of the columns of the Jacobian matrix as described in [53] has been used.

The used routines are available as part of the (open access) python module RT1 that can be
accessed via https://github.com/TUW-GEO/rt1.

3.7. Incorporation of Auxiliary Datasets

Estimates for auxiliary LAI- and SM-datasets are provided by the SURFEX modelling platform
with respect to underlying land-cover classifications within an area of 8 × 8 km surrounding the
center of the ASCAT grid point location. Even though the SURFEX platform distinguishes more
different landcover classes, the presented study considered only estimates of the dominant vegetation
classes, i.e.,: Broadleaf Forests (BF), Coniferous Forests (CF), Straw Cereals (SC) and Grasslands
(GR). In order to gain estimates of LAI and SM that are representative for the average observed
scene with respect to ASCAT observations, the provided timeseries are aggregated according to the
associated fractional coverages covi as follows:

LAI = ∑
i

(
covi

∑i covi
∗ LAIi

)
SM = ∑

i

(
covi

∑i covi
∗ SMi

)
with i ∈ [BF, CF, SC, GR] (16)

The resulting LAI and SM timeseries are then used to force the temporal variability of τ and N
via (12) and (13) as indicated below:

Forward Simulation
(2007–2009)

SM Inversion
(2010–2012)

τ Inversion
(2010–2012)

SM and τ Inversion
(2010–2012)

SM input used YES NO YES NO

LAI input used YES YES NO NO

4. Results and Discussion

In the following section, results for an application of the proposed parametrization to 158 test-sites
within France (indicated in Figure 10) are presented. Figure 11 shows density-plots of σmodelled

0 vs.
σASCAT

0 for the forward-simulation (2007–2009) and parameter-inversions (2010–2012). It can be
seen that a good overall correlation can be achieved for both forward- and inversion procedures,
indicating that the chosen model-parametrization can successfully mimic the dynamics of the ASCAT
σ0 timeseries. The successful calibration of the model shows that the two completely independent
data-sources (i.e., SURFEX simulations and ASCAT σ0 measurements) are consistent. The increase
in correlation between calibration and inversion results stems from the fact that the least-squares
fitting procedure improves the temporal dynamics by adjusting daily SM- and/or τ values. For the
forward-modelling experiment, temporal dynamics are predetermined by auxiliary LAI and SM
datasets. The fact that no significant increase in correlation can be obtained in the τ-retrieval indicates
that the modelled σ0 dataset is less sensitive to changes in τ compared to changes in SM. As a
consequence, inconsistencies in the auxiliary SM dataset have a greater impact on the retrieved τ

estimate than vice-versa.

https://github.com/TUW-GEO/rt1
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*

Figure 10. R2 of retrieved vs. SURFEX SM estimates for retrieval with auxiliary LAI (∝ τ) input.
To increase contrast, the color-range is reduced to (R2 ∈ [0.25, 0.55]). The arrow indicates the site
selected in Figures 15 and 16.

Figure 11. Scatterplots of modelled vs. measured σ0 in dB for all four experiments. Each plot has been
generated using the results from all all processed sites.
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Histograms of the resulting parameter-values from the calibration-procedure are depicted in
Figure 12. An analysis of the dependencies to fractional vegetation-coverages as well as mean-
and standard-deviations of auxiliary SM- and LAI timeseries indicated no significant correlations.
However, this statement must be treated with care, since the amount of data within this study is rather
limited (158 sites), and hardly any of the sites is covered more than 50% by a single vegetation-type.
Thus, for a significant conclusion, a larger sample-size and a more rigorous selection of sites would
be necessary.
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Figure 12. Histogram of the resulting parameter-values. (Lower and upper bounds used in the
retrieval-procedure that deviate from 0. and 0.6 are indicated explicitly.)

The Pearson-correlation coefficients (R2) of retrieved vs. auxiliary SM timeseries (2010–2012) for
all sites are depicted in Figure 13. It can be seen that a good overall correlation is obtained where a slight
increase in R2 can be observed when auxiliary LAI timeseries are used to force the temporal variability
of τ compared to a simultaneous retrieval of both τ and SM. Due to the fact that the model-calibration
(from 2007–2009) has already been performed with the SURFEX SM dataset, the observed bias between
retrieved and auxiliary 3-year mean SM values is expectedly low, with a maximum of 0.029 (mean
0.01) for SM retrieval with auxiliary LAI input and 0.049 (mean 0.014) for simultaneous SM and τ

retrieval. To assess the origin of low R2 values, the results in Figure 13 are color-coded with respect to
the topographic complexity (ctopo) (defined as the normalized standard-deviation of elevation within
an ASCAT-pixel (see Appendix A)). Most of the lowest R2 values (as well as most unusually high
ω-values) are found in regions with high ctopo, a result that can be understood by looking at the
following effects associated with ctopo:

• High ctopo is generally observed in mountainous regions which also show high percentage
of freezing-periods throughout the year. Therefore, a high percentage of the data is masked
during processing, which results in a distortion (or disappearance) of the seasonality within the
σ0 timeseries.

• A σ0 measurement of a scene with high ctopo represents an average of reflections originating
from strongly fluctuating topographies. Since σ0 is highly dependent on the incidence-angle
θ0, the obtained pair of (σ0, θ0)-values is consequently hardly representative for the actual
measurement.

In the first step, both effects lead to ambiguities in the calibration-procedure. For the hereby used
model-parametrization, this results in unusually high ω-values. In the second step, the performance
of the SM retrieval is diminished due to the usage of inconsistent model-parameters alongside the
inherent issues with the representativeness of the used (σ0, θ0) pairs for sites with high ctopo.
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SM SM SM SM SM

Figure 13. Dependency of R2 for retrieved vs. SURFEX SM-timeseries (with and without the use of
auxiliary LAI datasets) to ω. To highlight the impact of topography on the obtained ω- and R2-values,
results are color-coded with respect to ctopo. The labelled lines indicate the 15, 50 and 75 percentiles.

Considering the τ retrievals, a simple evaluation of its R2 values to auxiliary LAI datasets is not
meaningful, since the obtained τ-timeseries generally show a high period-to-period variability and the
associated seasonalities (obtained via rolling mean values) exhibit time-shifts of several days to several
months with respect to the auxiliary LAI datasets. However, some insights can be drawn by looking
at the behaviour of spatially averaged timeseries over all considered sites. The resulting SM- and τ

timeseries for retrieval with auxiliary LAI- (or SM) inputs are shown in Figure 14a. It is found that the
spatially averaged SM timeseries generally show a good agreement with the averaged auxiliary SM
dataset. In contrast, the resulting τ timeseries exhibits a time-shift of several months with respect to the
auxiliary LAI dataset, where the maximum is located around April/May. At a closer look, the obtained
differences of retrieved τ and auxiliary LAI are however strongly dependent on differences between
retrieved SM (with aux. LAI input) and auxiliary SM. In fact, the retrieved SM timeseries (with aux.
LAI input) generally suggests lower soil-moisture compared to the auxiliary SM dataset from March
to June. Since changes in SM have a higher impact on σ0 than changes in τ, the effect is much more
pronounced in the resulting τ timeseries.

The collocation of SM- and τ differences suggests that the origin of the unexpectedly early peak
in the τ timeseries is a systematic effect that stems from inconsistencies within the used auxiliary
datasets from March to June. Since in Figure 14a, either SM or τ has been provided as auxiliary dataset,
any inconsistencies will lead to an erroneous subdivision of the ASCAT σ0 dataset into soil- vegetation-
and interaction contributions. The resulting agreement between modelled and measured σ0 (Figure 11)
indicates that the auxiliary SM dataset is not sufficiently representative to be used as an input-dataset
for τ retrieval since even minor discrepancies might have a considerable impact on the retrieved τ

values. On the other hand, the auxiliary LAI dataset adequately represents the temporal dynamics
of the vegetation-coverage, leading to a good agreement of the modelled σ0 dataset as well as the
resulting SM timeseries. When looking at the combined SM- and τ retrieval-results (Figure 14b),
a very similar SM timeseries is found, where the lower values between March-June are still present.
The associated τ timeseries now has its maximum around June-July, similar to an auxiliary LAI-dataset
where exclusively grasslands have been considered (indicated by the dashed line).

The origin of the repeatedly observed lower SM values in Spring however remains subject to
research, where possible explanation-models are:

• The topmost soil-layer sensitive to C-band microwave observations in fact exhibits lower SM
values during Spring compared to the SURFEX reference dataset.

• The retrieval of low SM values is actually caused by structural changes in the scattering behaviour
of the vegetation-coverage (or the soil-layer) which have not been accounted for in the used
model parametrization.
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(a) Results for separate retrieval of SM- or τ using respective auxiliary input-datasets.
R2(SM) = 0.76 | R2(τ30 day vs. LAI) = 0.07 | R2(τ30 day vs. LAIGR) = 0.24

(b) Results for simultaneous retrieval of both SM- and τ without auxiliary datasets.
R2(SM) = 0.62 | R2(τ30 day vs. LAI) = 0.3 | R2(τ30 day vs. LAIGR) = 0.57

Figure 14. Retrieval results for SM- and τ in comparison to auxiliary SM- and LAI datasets.
Each timeseries corresponds to a spatial average over all processed sites. The gray shading in the
τ retrievals represents the variability of the results with respect to different choices of rolling-mean
value periods from 2 to 120 days. The dashed line (LAISURFEX

GR ) represents an LAI timeseries where
exclusively grasslands have been considered.

To provide a closer insight in the retrieval-procedure and the associated results, Figure 15 shows
details for a single selected site. The top images depict the incidence-angle behaviour of the ASCAT
σ0 dataset from 2010–2012 together with the resulting modelled σ0 values and its separation into soil-
vegetation- and interaction-contributions. Below, the very same dataset is visualized as a time-series,
where the emerging seasonality of the individual contributions and their respective share in the
modelled σ0 dataset becomes visible.

The corresponding SM and τ datasets obtained from the retrieval-procedure are shown in the last
two graphs. For this specific point, the seasonality of τ closely follows the seasonality of the auxiliary
LAI dataset. The high variability of the retrieved τ estimates indicate that a simultaneous retrieval of
both SM and τ suffers from ambiguities since in certain time-periods, the effects of a change in SM or τ

on σ0 cannot be satisfactorily distinguished based on the available ASCAT σ0 measurements. However,
additional constraints concerning the allowed numerical range of SM and τ as well as a more rigorous
selection of time-periods used in the τ-retrieval bears potential for improving the obtained separation
of SM and τ.

To illustrate how changes in SM and τ actually affect the modelled σ0 dataset, Figure 16 shows
daily retrieval details for August 2010 (of the same site as in Figure 15). The top figure-rows show
the available ASCAT σ0 measurements and the resulting modelled σ0 graphs for 2 consecutive days
(indicated by red and black colors), and the resulting SM- LAI- and τ timeseries are depicted below.

Analysis of such plots serves as a tool for deducing possible origins for ambiguity in the
retrieval-process as well as for optimizing the representations of the used scattering-distributions to
better match the observed incidence angle behaviour and day-to-day dynamics for a given site.
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Figure 15. Details on the retrieval results of a single site for simultaneous retrieval of SM and τ.
The site is located at (lat/lon) = (45.83/0.7) (see Figure 10). Used fractional vegetation-coverages as
well as the resulting model parameters are indicated below the legend. The first images show the
incidence-angle dependency of the ASCAT σ0 measurements as well as the modelled σ0 dataset and
its associated separation into soil-, vegetation- and interaction-contributions. Below, the very same
dataset is depicted as timeseries together with the resulting SM- and τ timeseries as well as associated
auxiliary SM- and LAI datasets. The additional SWC timeseries depicts the solid-water content dataset
used for masking frozen-soil conditions.
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Figure 16. Daily retrieval details for August 2010 of the same site as in Figure 15. The first three rows show ASCAT σ0-measurements (dots) together with the resulting
separation into soil- (blue) vegetation- (green) and first-order interaction-contributions (orange). Each plot illustrates the results of 2 consecutive days, identifiable by
the label-colouring of the SM- and LAI-timeseries below.
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5. Conclusions

In this paper we introduced a radiative-transfer based modelling framework for satellite-borne
(microwave) σ0 measurements of vegetated terrain. We showed that the presented modelling approach
can successfully be used for forward-simulation and soil-moisture inversion of incidence-angle
dependent ASCAT σ0 measurements over a set of 158 sites within France. The hereby used
model-parametrization incorporates only two temporally varying parameters, namely soil-moisture
(SM) and vegetation optical depth (τ). Resulting SM- and τ-timeseries are compared to auxiliary SM-
and LAI datasets to assess the overall retrieval performance as well as possible issues concerning the
representativeness of used auxiliary datasets. The high flexibility of the functional representations
for the scattering distributions can be used to adjust the model to various land-cover types without
changing the principal modelling framework. This allows generating comparable sets of models
that represent a wide range of soil- and vegetation types. Analysis of the different contributions to
the total backscatter provides a deeper understanding on the mechanisms that lead to the measured
backscattering signal of scatterometer measurements. While the presented application of the model
has been based on an empirical selection of parametric scattering distributions, the investigation of
a-priori specifications of the scattering distributions based on soil- and vegetation characteristics as
well as an incorporation of its seasonal variations via temporally varying parameters might provide
valuable improvements to soil-moisture and/or vegetation optical depth retrievals.
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Abbreviations

The following symbols and abbreviations are used in this manuscript:

ASCAT Advamced Scatterometer
ISBA Interactions between Soil, Biosphere and Atmosphere land-surface model
SURFEX Surface Externalisée (in French), (a surface modelling platform developed by Météo-France)
BF Broadleaf Forest
CF Coniferous Forest
SC Straw Cereals
GR Grasslands
Iinc, Is (incident, scattered) intensity

σ0 Normalized backscattering coefficient
(

σ0 = 4π cos(θ) Is
Iinc

)
(see (1) and [54])

σs
0 σ0 contribution originating from bare soil scattering

σv
0 σ0 contribution originating from scattering events within the vegetation-layer

σvs
0 1st order scattering contribution to σ0 (vegetation-layer→ soil-surface→ detector)

σsv
0 1st order scattering contribution to σ0 (soil-surface→ vegetation-layer→ detector)

σint
0 1st order interaction-contribution

(
σint

0 = σvs
0 + σsv

0
)

Θ (Θa) (generalized) scattering angle (see (5) and (6))
θ, (θ0, θs) polar zenith-angle (of incident, scattered radiation) in a spherical coordinate system
φ(φ0, φs) azimuth-angle (of incident, scattered radiation) in a spherical coordinate system
τ Optical depth (see [11])
ω Single scattering albedo (see [11])

γ 2-way attenuation factor
(

γ = e−
τ

cos(θ)
)

p̂ Volume-scattering phase-function (see Section 2.1.2)
BRDF Bidirectional reflectance distribution function (see Section 2.1.3)
R(θ, φ) Hemispherical Reflectance (see (9))
t Asymmetry-factor of the used BRDF-representation (see (9))
LAI Leaf area index
v2 Scaling factor between τ and LAI (see (12))
SM Volumetric soil-moisture content
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N Nadir hemispherical reflectance of BRDF defined in Section 2.1.3
s2 Scaling factor between N and SM (see (13))
fbs Effective bare-soil fraction (see Sections 2.1 and 3.5)
HG Henyey-Greenstein function (see (3))
R2 (squared) Pearson correlation coefficient
ctopo Topographic complexity (see Appendix A)

Appendix A. Topographic Complexity (ctopo)

The topographic complexity ctopo is introduced as a measure of topographic variability within the
footprint. ctopo is calculated by evaluating the 2d-hamming-window weighted standard-deviations
of the elevation-data provided by the GTOPO30 DEM (courtesy of the U.S. Geological Survey (https:
//usgs.gov)) within an approx. 24 km2 grid (to obtain values comparable to ASCAT σ0 footprints,
see [55]). The resulting values of ctopo for the considered sites are then normalized to range between 0
and 1.
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