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This work shows the interest to use a real time white laser-based ellipsometer to 

characterize complex electrolyte | electrode interface during electrochemical process in 

aqueous-based medium. This method is proposed to probe electrochemical interfaces 

which are usually not suitable to the full extent application of ellipsometry due to great 

disturbance of the reflected light flux provoked by gas evolution or roughness. In situ 

spectroelectrochemical ellipsometry combining such a visible super continuum fiber 

laser-band source was not previously reported to the best of the authors' knowledge. The 

setup was employed to monitor an electrochemical process whose the mechanism was 

previously incompletely described: the pre-spark anodization regime of plasma 

electrolytic oxidation process of Mg alloy AZ91D in 3 M KOH electrolyte. Above the 

anodization voltage of 4 V, the side water oxidation reaction induced light diffusion that 

reduces reflected light beam intensity. The process is here monitored in an extended 
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 2 

voltage range from 4 to 40 V and in an extended spectral range (495-800 nm). In the 

presented case, the use of a visible super continuum fiber laser-band source  enhanced the 

signal-to-noise ratio giving access to a more deeper picture of the triplex layer structure 

during surface repassivation by monitoring the evolution of the outer, inner and 

interfacial layers. 

I. INTRODUCTION 

If there is “no-one-solves-all” technique, Spectroscopic Ellipsometry (SE) can 

undoubtedly participate to efforts to the knowledge of a global picture of the liquid-solid 

interface1 as it is the case for passive oxide on metals.2–9 It can bridge some of the 

inherent difficulties investigating such oxide growth mechanisms as pointed by 

MacDonald10,11 viz. (i) the alteration during transfer of specimens to further vacuum 

surface analysis techniques, (ii) the significant cost in time and money of TEM sampling 

and analyzing, or (iii) the multilayered structure modelling often simplified to a single 

one. 

We have previously monitored, by in situ SE, the wet anodization of AZ91D Mg 

alloy in 3 M KOH medium 12 in order to enhance the understanding of the subsequent 

sparking regime initiation of the plasma electrolytic oxidation surface treatment, 13–17 

beyond other established literature.18–20 In this former study only the low voltage range 

i.e. 0-4 V was monitored using a Xe lamp as light source due to the disturbance provoked 

at the interface by water-oxidation-O2 bubbles inducing light diffusion and impinging 

detected flux. A MgO growth at a constant rate of 0.4 nm.V-1 was then highlighted. 

Beyond 4 V, the study was completed by ex situ SE characterizations at three final Th
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voltages (20 V, 30 V and 40 V) leading to propose a global sketch of the insulating layer 

grown before the apparition of discharges.  

This present article brings new detailed data to the aforementioned peculiar 

anodization mechanism through in situ SE study extended up to 40 V, which was made 

possible thanks to the use of a visible supercontinuum fiber laser-based source increasing 

the signal-to-noise ratio of the out-coming polarized light. In addition, it was also 

possible to extend the spectral range fom 495 nm to 800 nm instead of the initial spectral 

range from 495 nm to 700nm. To the knowledge of the authors, it should be notice that 

the ellipsometric setup is quite original, only Miyamoto et al. recently diagnosed 

microstructure change in plasma facing materials using in situ reflectivity measurements 

based on a super continuum white laser source.21 

In these conditions, SE confirms the previous general sketch and finely evidences 

the precipitation of the porous Mg(OH)2 layer above 4 V and the underlying repassivated 

MgO layer, from strong variations observed in the breakthrough area (4-15 V) until a 

smoother morphological evolution up to 40 V.  

 

II. EXPERIMENTAL SETUP AND METHODOLOGY 

A. Materials and sample preparation 

The AZ91D magnesium alloy supplied by Dead Sea Magnesium Ltd. (Israel) was 

used as substrate material with a chemical composition (wt.%) of Al 9, Zn 0.7, Mn 0.3, 

Fe < 0.005, Cu < 0.03, Si < 0.1, Mg balance. The samples with a dimension of ca. 25 mm 

x 25 mm x 2 mm were mechanically abraded with successively finer grades of SiC 

Emery papers up to 1200 and then mirror polished with silica dispersed in water (particle 
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 4 

size 0.1 µm). They were finally rinsed with distilled water and ethanol, then finally dried 

in air at room temperature. 

B. Electrochemical and optical instrumentation 

Potentiodynamic measurements (0-40 V) were performed on AZ91D plates with a 

scan rate of 0.1 V.s-1, in a KOH (3 M) electrolytic solution by using a Modulab HV100 

potentiostat (Solartron Analytical). In situ SE data were simultaneously acquired with the 

electrochemical data, using an ellipsometer based on a rotating compensator technology 

with a homemade coupling flow cell directly mounted on the goniometer. The coupling 

flow cell (Fig.1), made of PEEK, includes two quartz windows, allowing the reflection of 

the ellipsometer beam on the working electrode surface (1 cm 2), in a vertical mode. The 

ca. 40-ml flow cell also contains a platinum grid counter-electrode facing the working 

plate, and a reference electrode of KCl saturated calomel electrode (SCE). The renewal of 

the electrolyte in the cell is assured with MARPRENE® tubes connected to both inlet and 

outlet via two peristaltic pumps (Model 323E, Watson Marlow). The in-coming beam 

consists of a supercontinuum fiber laser-based source (Model SM-30-UV, Leukos), and 

the out-coming beam is split into two perpendicularly polarized waves and 

simultaneously analyzed by two CCD detectors, which are synchronized, providing final 

spectrum of averaged ellipsometric angles (λ) and (λ), free of systematic errors. More 

details can be found elsewhere.22 For each monitoring, ((), ()) are measured in the 

spectral range 495-800 nm according an integration time of 0.39 s. The optical 

measurements are performed at angle of incidence of 66°.  In addition, the reflected light 

intensity can be calculated from the ellipsometric signal (see Ref. 5). All the 

electrochemical data are simultaneously recorded and synchronized with the optical ones 
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 5 

through a dedicated acquisition board. All the experiments are conducted at room 

temperature (24°C). 

 

FIG. 1. Top-view scheme of the coupling flow cell used for the electrochemical 

anodization at high voltage in KOH electrolyte in a three electrodes configuration: the 

working electrode (a), the counter electrode (b) and the reference electrode (c). Visible 

supercontinuum laser beam enters and leaves the cell through quartz windows (d). 

Electrolyte circulation enters and leaves the cell through inlet and outlet (e). 

 

III. MODELLING 

A. Ellipsometry 

SE measures the changes in the polarization state between incident and reflected 

light on the sample.23 The measured values are the angles ( ) related to the ratio of the 

Fresnel amplitude reflection coefficients of the sample by fundamental equation:  

𝑟𝑝 𝑟𝑠⁄ = tan𝜓 𝑒𝑗Δ (1) 

with p- and s-polarized light in the plane of incidence and perpendicular to the plane of 

incidence, respectively. The parameters of the optical models were determined by 

minimizing the unweighted mean square error (2) defined as: 
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 6 

𝜒2 =
1

𝑁−1
∑ [(Ψ𝑖

𝑐(𝜆) − Ψ𝑖
𝑒(𝜆))2 + (Δ𝑖

𝑐(𝜆) − Δ𝑖
𝑒(𝜆))²]𝑁

𝑖=1  (2) 

where ‘c’ stands for the calculated and ‘e’ for the experimental ellipsometric angles and 

N the number of experimental couples of data.   

B. Optical model 

Figure 2 shows the model used to adjust the experimental data from 4 V to 40V. 

The alloy substrate is covered by a native oxide film consisting of an interfacial layer 

(thickness dinterface) covered by a dense and pure magnesium oxide layer (thickness dMgO). 

The interfacial layer is composed by mixing a fMgO % MgO compound  and (1-fMgO) 

%AZ91D alloy, where fMgO is the fitted volume fraction of MgO in the interfacial layer. 

The effective dielectric function of this composite layer, noted interface is modelled using 

the EMA based on the Bruggeman’s model following the second-order equation: 

0 = fMgO
εMgO(λ)−εinterface(λ)

εMgO(λ)+2εinterface(λ)
+ (1 − fMgO)

εAZ91D(λ)−εinterface(λ)

εAZ91D(λ)+2εinterface(λ)
 (2) 

In the 495-800 nm wavelength range, the dielectric function of periclase MgO() 

was taken from literature data.24 For the substrate, the dielectric function of the AZ91D 

Mg alloy AZ91D() was determined from variable angle spectroscopic ellipsometry 

measurements using a wavelength point-to-point exact numerical inversion taking into 

account the surface roughness. See supplementary material 1 at [URL will be inserted by 

AIP Publishing] for the spectra of its corresponding complex refraction index 

NAZ91D()=√𝜀𝐴𝑍91𝐷(𝜆). The dense MgO layer is modelled with the aforementioned 

dielectric function MgO(). An outer porous layer is implemented of magnesium 

hydroxide (thickness dMg(OH)2 and volume fraction of Mg(OH)2 fMg(OH)2). This additional 

outer EMA layer is calculated in a same way as Eq.(2) using water() and Mg(OH)2().25  
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 7 

The dielectric function of the electrolytic medium was modelled with the 

dielectric function of water26, water() in the 495-800 nm range. AZ91D() MgO (), 

Mg(OH)2 () and water() functions are considered as constant with the anodization 

voltage. Consequently, five variables were fitted, namely dinterface, fMgO, dMgO,  dMg(OH)2, 

and fMg(OH)2.   

The calculated angles ((), ()) values well match the experimental ones as 

proven by the low 2 values less than or equal to 1 (Fig.3, second right axis, as discussed 

thereafter), indicating that the optical model is adequate to describe the structure of the 

anodized film over the full covered voltage range.  

 

FIG. 2. Optical model used along the anodization of AZ91D alloy in KOH 3 M at 0.1 

V.s−1. Fitted variables consist of thicknesses (d) and volume fractions (f). Dielectric 

functions were all fixed and come from literature (MgO, Mg(OH)2, electrolyte) or are 

experimentally predetermined (AZ91D). 

 

IV. RESULTS AND DISCUSSION 

A. Preliminary analysis of the reflected light intensity 

Figure 3 shows the reflected light intensity (left axis) simultaneously recorded to 

the potentiodynamic curve (first right axis) obtained for Mg AZ91D alloy in pure 3 M 
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 8 

KOH electrolyte. For the sake of brevity only one wavelength (600 nm) is shown for the 

optical signal. For applied voltages of up to 4 V current density values of 0.2-0.3 mA.cm-

2 are observed (first passive state), whereas ten times higher ones are noticed when the 

voltage comes to 15 V (second passive state). The key region is between these two 

passive states named here as breakthrough. The optical signal is therein disturbed, 

dropping to 20% but it goes up to a final plateau, with a relative high reflective intensity 

superior to 50 %. Consequently, concerning the optical data, the signal-to-noise ratio 

remains high and the overall level of confidence is considered as high enough. As a fit 

quality criterion, the 2 values also depicted in Fig.3 (second right axis) are found low.  

 

FIG. 3. Variation of the reflected intensity of the beam light at 600 nm (open circle 

symbols, left axis) during the potentiodynamic scan (bold line, first right axis) of the 

anodization of AZ91D alloy in KOH 3 M at 0.1 V.s−1. Best fitted 2 values are given in 

the second right axis.  
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 9 

B. Analysis of the anodization process 

Figure 4 shows the morphological properties determined by ellipsometry. From 0 

to 4 V, the previous in situ monitoring experiments 12 have shown that a pure and 

compact MgO layer linearly increases. Above 4V, this work demonstrates that the film 

has to be considered as triplex according to the model of the figure 3. Indeed the 

corresponding the 2 values are inferior to 0.5 proving the suitability of the optical 

interface model.  
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 10 

 

 

 

 

FIG. 4. Best fitted variables monitored by SE of (a) external Mg(OH)2 layer (b) inner 

MgO layer and (c) interfacial layer. fMgO is fixed in the 0-4 V range (dashed line). The 
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 11 

grayed area corresponds to the voltage range where optical model errors introduced 

artifacts in the fitted parameters.  

From 4 to 7 V, the upper magnesium hydroxide reaches a thickness of ca. 300 nm 

(Fig. 4a, left axis). Its porosity is important as indicated by the fMgOH2 values (Fig. 4a, 

right axis). In the meantime, under this membrane, both MgO dense and interfacial layer 

vary significantly. The dense oxide layer sharply grows up to 50 nm at 5.5 V (Fig.4b), 

meanwhile the interfacial layer decreases abruptly. From 5.5 to 7 V the dense MgO layer 

in turn dramatically vanishes, before going up again towards a final repassivation. This 

evolution highlights the partial exposure of the base substrate. The second and final 

passive state at 7 V consecutive to the breakthrough occurrence consists of a rougher 

interfacial layer (~25 nm) and a thicker dense oxide layer (~50 nm). The repassivation 

starts under the outer membrane: a net uptake of dense MgO component in the 

Mg(OH)2/MgO/interface is rapidly raised from 7 to 8 V i.e. ~35 nm.V-1 assuming a linear 

evolution. In addition to the oxide growth, the water oxidation at the interface is still 

promoted, interfering somewhat with the reflected light beam which intensity passes 

through a minimum in this area (Fig. 3). From 10 V the second passive state evolves 

slightly up to 40 V. Concerning the MgO layer, its thickness goes from 55 to 74 nm. By 

taking into account its effective thickness (See supplementary material 2 at [URL will be 

inserted by AIP Publishing]) i.e. from 69 to 83 nm, a second wide linear growth regime 

of 0.7 nm.V-1 is highlighted and therefore refining the previous rougher estimation.12 The 

Mg(OH)2 layer is becoming denser (Fig. 4) with a nearly constant effective thickness of 

106 nm (See supplementary material 2 at [URL will be inserted by AIP Publishing]). 

These observations are in good agreement with the hypothesis of anodization mechanism 
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 12 

governed by stress-induced MgO cracking and Mg(OH)2 precipitation process.These 

results finely confirm the protective role of the outer layer limiting the dissolution of the 

underlying MgO layer. 

 

V. CONCLUSIONS 

Among other techniques, SE participates as an analytical tool to diagnose solid-

liquid interfaces during wet processes and helps understanding the electrochemical 

processes. Probing such complex electrode/electrolyte interfaces is sometimes turmoil 

due to side reactions producing gas species impinging the reflected light beam in a 

manner that data are inoperative or just missing. This article has presented a setup 

arrangement combining a real time ellipsometer, an electrochemical coupling cell and a 

super continuum white laser to get a significant increase of the out-coming light in such 

depreciated monitoring conditions. The proposed setup was applied successfully to 

monitor the case of the pre-sparking anodization of a piece of magnesium alloy AZ91D 

by finely revealing the morphological characteristics of its multilayered structure. The 

consolidation of such in situ SE methodology with the use of a white laser is highlighted 

to be a convenient method for probing liquid processes that are traditionally excluded 

from the full extent of SE. 
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Figure captions 

FIG. 1. Top-view scheme of the coupling flow cell used for the electrochemical 

anodization at high voltage in KOH electrolyte in a three electrodes configuration: the 

working electrode (a), the counter electrode (b) and the reference electrode (c). Visible 

supercontinuum laser beam enters and leaves the cell through quartz windows (d). 

Electrolyte circulation enters and leaves the cell through inlet and outlet (e). 

FIG. 2. Optical model used along the anodization of AZ91D alloy in KOH 3 M at 0.1 

V.s−1. Fitted variables consist of thicknesses (d) and volume fractions (f). Dielectric 

functions were all fixed and come from literature (MgO, Mg(OH)2, electrolyte) or are 

experimentally predetermined (AZ91D). 

FIG. 3. Variation of the reflected intensity of the beam light at 600 nm (open circle 

symbols, left axis) during the potentiodynamic scan (bold line, first right axis) of the 

anodization of AZ91D alloy in KOH 3 M at 0.1 V.s−1. Best fitted 2 values are given in 

the second right axis.  

FIG. 4. Best fitted variables monitored by SE of (a) external Mg(OH)2 layer (b) inner 

MgO layer and (c) interfacial layer. fMgO is fixed in the 0-4 V range (dashed line). The 

grayed area corresponds to the voltage range where optical model errors introduced 

artifacts in the fitted parameters.  

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.11

16
/1.

51
22

32
0



Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.11

16
/1.

51
22

32
0



Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.11

16
/1.

51
22

32
0



Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.11

16
/1.

51
22

32
0



Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.11

16
/1.

51
22

32
0



Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.11

16
/1.

51
22

32
0



Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.11

16
/1.

51
22

32
0


	Manuscript File
	1
	2
	3
	4a
	4b
	4c

