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Abstract 

Previous genetic analyses showed phenotypic interactions between 5-Amino-4-Imidazole 

CArboxamide Ribonucleotide 5’-phosphate (AICAR) produced from the purine and histidine 

pathways with methionine biosynthesis. Here, we revisited the effect of AICAR on methionine 

requirement due to AICAR accumulation in the presence of the fau1 mutation invalidating folinic acid 

remobilization. We found that this methionine auxotrophy could be suppressed by overexpression of 

the methionine synthase Met6 or by deletion of the serine hydroxymethyl transferase gene SHM2. We 

propose that in a fau1 background, AICAR, by stimulating the transcriptional expression of SHM2, 

leads to a folinic acid accumulation inhibiting methionine synthesis by Met6. In addition, we 

uncovered a new methionine auxotrophy for the ade3 bas1 double mutant that can be rescued by 

overexpressing the SHM2 gene. We propose that methionine auxotrophy in this mutant is the result of 

a competition for 5,10-methylene-tetrahydrofolate (THF) between methionine and deoxythymidine 

monophosphate (dTMP) synthesis. Altogether, our data show intricate genetic interactions between 

one-carbon units, purine and methionine metabolism through fine-tuning of serine hydroxymethyl 

transferase by AICAR and the transcription factor Bas1. 

 

 

Introduction 

 A growing number of metabolites are found to play important regulatory roles thereby directly 

connecting metabolic status and cellular functions. This is the case for 5-amino-4-imidazole 

carboxamide ribonucleotide 5’-phosphate (AICAR) which is an intermediate in the purine de novo 

synthesis pathway (Fig. 1) (Daignan-Fornier and Pinson 2012). In yeast, AICAR co-regulates purine 

synthesis and phosphate utilization by promoting interaction of the transcription factor Pho2 with 

either Bas1 or Pho4 (Pinson et al. 2009). In mammals, AICAR is an agonist of the AMP-activated 

kinase (AMPK) (Corton et al. 1995, Sullivan et al. 1994) and feeding sedentary mice with AICA-

riboside, an AICAR precursor, mimics muscular exercise (Narkar et al. 2008). Over-accumulation of 

AICAR is probably detrimental, as suggested by the multiple deficiencies associated with AICAR 
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transformylase IMP-cyclohydrolase (ATIC) defect in human (Marie et al. 2004). Importantly, its 

antiproliferative effects (Rattan et al. 2005) are largely AMPK-independent (Ceschin et al. 2014, Liu 

et al. 2014). In yeast, AICAR accumulation is found in an ade16 ade17 double mutant lacking ATIC 

(Pinson et al. 2009). Massive AICAR accumulation associated to constitutive activation of the first 

step of the purine pathway combined to ade16 ade17 mutations abolishes yeast proliferation (Rebora 

et al. 2005). However, when the purine pathway is not hyper-activated, the ade16 ade17 mutant is 

viable but displays a yet unexplained auxotrophy for histidine (Tibbetts and Appling 2000). This 

auxotrophy is not dependent on the Pho2 or Bas1 transcription factors that regulate the purine and 

histidine pathways and can be suppressed by overexpression of the putative phosphomutase Pmu1 

(Rebora et al. 2005) or by mutations resulting in decreased AICAR concentration (Hurlimann et al. 

2011). Additionally, when combined with the fau1 mutation affecting folinic acid utilization (Fig. 1), 

the ade16 ade17 mutant is unable to grow in the absence of methionine (Holmes and Appling 2002). 

This phenotype can be suppressed by upstream mutations in the purine and histidine pathways 

blocking AICAR synthesis (Holmes and Appling 2002). Thus, while a triple ade16 ade17 fau1 mutant 

is auxotrophic for methionine, a quintuple ade16 ade17 fau1 ade2 his4 mutant is not. Appling and 

coworkers proposed that the methionine auxotrophy of ade16 ade17 fau1 could be due to inhibition of 

methionine metabolism by combined elevated levels of AICAR and folinic acid (Holmes and Appling 

2002). It is noteworthy that similarly to the ade16 ade17 double mutant, an ade3 mutant unable to 

synthesize 10-formyl-THF, a co-substrate for ATIC (Fig. 1), accumulates AICAR (Hurlimann et al. 

2011) and displays methionine auxotrophy when associated with a fau1 knock-out mutation (Rebora et 

al. 2005). In this work, we used genetic approaches to explore how AICAR connects purine and 

methionine metabolism in yeast.  

 

 

Material and methods 

 

Yeast media  

 

SD is a synthetic minimal medium containing 0.5% ammonium sulfate, 0.17% yeast nitrogen base 
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without amino acids and ammonium sulfate (Difco), 2% glucose and supplemented or not with 

adenine (0.30 mM; + A), histidine (0.06 mM; + H), leucine (0.40 mM; + L), methionine (0.13 mM; + 

M) and/or uracil (0.30 mM; + U). S-Adenosyl methionine, folic acid, glycine, homocysteine, or serine 

were added in the medium when indicated at 0.10 mM, 2.20 mM, 0.25 mM, 0.20 mM, and 3.5 mM 

respectively.  

 

Strains and plasmids 

 

All yeast strains are listed in Table 1 and belong to, or are derived from, a set of disrupted strains 

isogenic to BY4741 or BY4742 purchased from Euroscarf. Multi-mutant strains were obtained by 

crossing, sporulation and micromanipulation of meiosis progeny. The plasmid allowing expression of 

SHM2 gene under the control of a tetracycline repressible promoter (tet-SHM2; p3487) was obtained 

by PCR amplification of the SHM2 open reading frame using yeast genomic DNA as template and 

oligonucleotides 5’-CGCGGATCCACATGCCTTACACTCTAT-3’ and 5’-

CGCCTGCAGTTACACACAGCCAATGGGTATTC-3’. The PCR product was digested with BamHI 

and PstI and cloned in PCM189 plasmid (Gari et al. 1997) opened with the same restriction enzymes. 

 

Growth test 

 

Yeast cells from an overnight pre-culture were re-suspended in sterile water at 3.10
7
 cells/ml and 

submitted to 1/10 serial dilutions. Drops (5 µl) of each dilution were spotted on freshly prepared 

medium plates and were incubated at 30°C or 37°C for 48-72 h before imaging.  

 

Northern blot analysis 

 

The transcript levels of SHM2 and ACT1 were determined by northern blot analysis as described 

(Pinson et al. 2004). The SHM2 radiolabeled probe was obtained by PCR using oligonucleotides 5’-

ATGCCTTACACTCTATCCGAC-3’ and 5’-CATAGCACCACGTGGACCTCTC-3’ on yeast 
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 5 

genomic DNA as template. The ACT1 probe was already described (Denis et al. 1998).  

 

Isolation of multicopy suppressors of the methionine auxotrophy phenotypes  

 

Multicopy suppressors of the ade3 bas1 methionine auxotrophy phenotype were obtained by 

transforming the Y2844 strain with a plasmid multicopy library (PFL46LII backbone, 2µ LEU2; 

generous gift from F. Lacroute). Positive clones were obtained by replica-plating of the transformants 

on SD +AHU medium containing or not methionine. Thus, the multicopy plasmid (p3147) was 

extracted from the unique positive clone. Sequencing revealed a DNA fragment from chromosome XII 

(coordinates from 255850 bp to 261890 bp) containing SHM2 and REX2 genes. Similarly, multicopy 

suppressors of the ade3 fau1 methionine auxotrophy phenotype were obtained by transforming the 

Y2031 strain with the same plasmid multicopy library (PFL46LII backbone). Positives clones were 

then identified by replica-plating of the transformants on SD +AHU medium containing or not 

methionine. Three positive clones were so identified, all containing the MET6 encoding region. The 

plasmid (p3157) containing the chromosome V fragment with coordinates from 339444 bp to 342871 

bp was further studied.  

 

 

Results 

 

The methionine auxotrophy due to AICAR accumulation in the fau1 background is dependent on Bas1 

but not Pho2 or Pho4 

 

As mentioned in the introduction, a triple ade16 ade17 fau1 mutant is auxotrophic for methionine due 

to AICAR accumulation (Holmes and Appling 2002) (Fig. 2a) and similarly, an ade3 fau1 double 

mutant is auxotrophic for methionine (Rebora et al. 2005) (Fig. 2b). Of note, as reported before, we 

noticed that the methionine auxotrophy was enhanced at high temperature (Rebora et al. 2005) and 

therefore several experiments were ran at 37°C. As for ade2 his4 ade16 ade17 fau1 (Holmes and 
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 6 

Appling 2002), we found that the ade8 his1 upstream mutations abolishing AICAR synthesis (Fig. 1) 

reversed the methionine auxotrophy of an ade3 fau1 mutant (Fig. 2b). AICAR accumulation was thus 

critical for the methionine auxotrophy of these mutants. How does AICAR result in this methionine 

requirement phenotype? A well-known physiological effect of AICAR is to promote interaction 

between two pairs of transcription factors (Bas1/Pho2 and Pho4/Pho2) and thereby activate 

transcription of a set of about 60 genes (Pinson et al. 2009). We asked whether this documented 

mechanism could be responsible for the methionine auxotrophy observed in a fau1 mutant 

accumulating AICAR and thus whether the transcription factors Bas1, Pho2 and/or Pho4 were 

involved in the methionine requirement phenotype. This was done by combining ade3 fau1 with bas1, 

pho2 or pho4 mutations. The growth defect of the ade3 fau1 double mutants in the absence of 

methionine was clearly not rescued by the pho2 or pho4 mutations (Fig. 2c), thus suggesting that the 

methionine auxotrophy is not strictly dependent on the activation of these transcription factors by 

AICAR. For the Bas1 transcription factor, we could not reach a conclusion in this genetic background, 

since we made the unexpected observation that a double ade3 bas1 mutant (Y2043) was itself 

auxotrophic for methionine even in the absence of the fau1 mutation (Fig. 2c, see section below). To 

circumvent the methionine auxotrophy of ade3 bas1, we constructed a triple ade16 ade17 bas1 

mutant. Growth of this AICAR-accumulating mutant was clearly not affected in the absence of 

methionine (Fig. 2d), indicating that for this specific phenotype, ade3 did not mimic ade16 ade17. We 

thus took advantage of the fact that ade16 ade17 bas1 did not require methionine for growth, to 

construct an ade16 ade17 bas1 fau1 mutant that allowed us to evaluate the role of Bas1p in the ade16 

ade17 fau1 methionine requirement. Our results establish that, by opposition to Pho2 and Pho4 (Fig. 

2c), Bas1p is strictly required for methionine auxotrophy of the fau1 mutant under AICAR-

accumulating conditions (Fig. 2e). It is therefore likely that AICAR accumulation in the ade16 ade17 

mutant activates a Bas1p-specific target that makes the ade16 ade17 fau1 triple mutant methionine-

requiring. Of note, while most of the genes requiring Bas1 for their expression also require Pho2, 

expression of several of these genes is much more affected by the absence of Bas1 than that of Pho2 

(Denis and Daignan-Fornier 1998, Denis et al. 1998).  
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The methionine auxotrophy due to AICAR accumulation in the fau1 mutant is suppressed by over 

expression of MET6 and by deletion of SHM2 

 

In order to find clues for the methionine auxotrophy of fau1 mutants accumulating AICAR, the ade3 

fau1 double mutant was transformed with a genomic library carried on a multicopy plasmid to identify 

genes suppressing this methionine auxotrophy when overexpressed. As a result, three positive clones 

were isolated, all containing a plasmid allowing overexpression of the MET6 gene. One of them 

containing only the MET6 gene fully bypassed the methionine auxotrophy of the ade3 fau1 strain (Fig. 

3a). This result suggested that there is insufficient Met6p activity in fau1 mutants accumulating 

AICAR and that overexpression of MET6 can allow sufficient methionine synthesis for prototrophy. 

MET6 encodes methionine synthase which catalyzes the conversion of homocysteine into methionine 

(Fig. 1, orange box). Met6 activity requires the one-carbon unit donor, 5-methyl-THF and is thereby 

directly connected metabolically to Fau1 which is required for mobilization of folinic acid (5-formyl-

THF), a major source of one-carbon units (Fig. 1, yellow box). We reasoned that in the absence of 

fau1, specific folate derivatives could be limiting and/or inhibitory. We first asked whether folate 

limitation could be responsible for methionine auxotrophy of the ade3 fau1 mutant. The methionine 

auxotrophy of ade3 fau1 was clearly not rescued by addition of folic acid (Fig. 3b), as an external 

source of folate derivatives (Fig. 1, blue box) (Holmes and Appling 2002). This result suggested that 

folate limitation due to folinic acid sequestration in the fau1 mutant is probably not the major reason 

for methionine auxotrophy. To address the second hypothesis, i.e. inhibition of Met6 by a one-carbon 

unit compound, the ade3 fau1 mutant was grown on various organic sulphur sources. The methionine 

auxotrophy of the ade3 fau1 mutant was clearly rescued by AdoMet, which decreases the requirement 

for methionine (Fig. 1, green box), while it was not rescued by homocysteine, the methionine 

precursor (Fig. 3c, orange box). This result indicates that methionine auxotrophy of the ade3 fau1 

mutant is due to insufficient synthesis of methionine from homocysteine by Met6 (Fig. 1). Since the 

fau1 mutant accumulates folinic acid, and that this accumulation is further enhanced ~4 times in the 

ade16 ade17 fau1 mutant (Holmes and Appling 2002), we explored the possibility that folinic acid 

could have an inhibitory effect on methionine synthesis. We thus combined the ade16 ade17 fau1 
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mutations with a shm2 knock-out, because the serine hydroxymethyltransferase Shm2 was proposed to 

be responsible for synthesis of folinic acid (Holmes and Appling 2002, Stover and Schirch 1990) 

which cannot be remobilized in the fau1 mutant (Fig. 1, yellow box). Importantly, the ade16 ade17 

fau1 methionine auxotrophy was fully suppressed by shm2 knock-out (Fig. 3d), strongly suggesting 

that folinic acid synthesis via Shm2p is responsible for methionine auxotrophy, possibly through 

Met6p dysfunction as suggested by Holmes and Appling (Holmes and Appling 2002) and as indicated 

by isolation of MET6 as a multicopy suppressor gene (Fig. 3a). All together, these results suggested 

that the methionine auxotrophy of fau1 mutants could be the result of Met6 inhibition by folinic acid 

that is increased in cells accumulating AICAR (Holmes and Appling 2002) in which transcriptional 

expression of SHM2 is drastically increased  (Hurlimann et al. 2011, Pinson et al. 2009). 

 

 

The methionine auxotrophy of ade3 bas1 is suppressed by overexpression of SHM2  

 

The newly uncovered methionine ade3 bas1 auxotrophy (Fig. 2c) was further examined. As expected, 

it was complemented by introduction of either ADE3 or BAS1 wild-type genes carried on centromeric 

plasmids (Fig. 4a). We then searched for multicopy suppressors that would restore methionine 

prototrophy. This approach allowed us to identify a unique multicopy suppressor plasmid which 

turned out to contain the SHM2 and REX2 genes. As SHM2 appears intimately linked to methionine 

auxotrophy (see previous section), we constructed a plasmid allowing expression of SHM2 alone (tet-

SHM2) and observed that this overexpression was sufficient to restore growth of the ade3 bas1 mutant 

in the absence of methionine (Fig. 4b). This result suggests that low expression of SHM2 due to the 

bas1 mutation (Denis and Daignan-Fornier 1998) could lead to methionine auxotrophy when 

combined with ade3. It is noteworthy that the shm2 knock-out is synthetic lethal with ade3 (Rebora et 

al. 2005) and expression of SHM2 is activated by Bas1p at the transcriptional level (Denis and 

Daignan-Fornier 1998). Hence, in the ade3 bas1 double mutant, low expression of SHM2 due to the 

bas1 mutation (Denis and Daignan-Fornier 1998) could lead to a synthetic auxotrophy to methionine 

when combined to the ade3 mutation. Importantly, while the ade3 and ade16 ade17 mutants affect a 
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common step in the purine de novo pathway (Fig. 1), the ade16 ade17 bas1 mutant is not auxotrophic 

for methionine (Fig. 2d). Together these results indicate that the methionine auxotrophy of the ade3 

bas1 mutant is due to the combined low expression of SHM2 in the bas1 mutant and to a specific 

effect of the ade3 mutation. Shm2 and Ade3 enzymes both contribute to the synthesis of 5,10-

methylene THF, a precursor of methyl-THF which is required for methionine synthesis (Fig. 1). The 

methionine auxotrophy of the ade3 bas1 double mutant could therefore result from a limitation for 

5,10-methylene THF. In addition, 5,10-Methylene THF, is utilized for dTMP synthesis and therefore 

methylenetetrahydrofolate reductase (Met12, Met13) and thymidilate synthase (Cdc21) compete for 

5,10-methylene THF as a substrate (Fig. 1). In a double ade3 shm2 mutant, there would be no 

cytoplasmic route left for 5,10-methylene-THF synthesis and thus the lethality of this double mutant is 

probably due to the lack of dTMP synthesis which is essential for life. A partial limitation for 5,10-

methylene-THF in the ade3 bas1 mutant would affect methionine synthesis but allow sufficient dTMP 

synthesis to maintain viability. Accordingly, methionine auxotrophy of the ade3 bas1 mutant was 

rescued by AdoMet, which diminishes the requirement for methionine (Fig. 1), but not by 

homocysteine which requires methylene THF to be metabolized to methionine (Fig. 4c). Thus, by 

supplying AdoMet to the cell, the residual methionine synthesis would become sufficient to allow 

growth in the absence of exogenous methionine (Fig. 1). By contrast, medium supplementation with 

folic acid, an external precursor of folate derivatives which requires Shm2 to be metabolized to 5,10-

methylene-THF (Fig. 1), could not rescue the methionine auxotrophy (Fig. 4d).  

 

 

Shm2 a key enzyme at the crossing point between purine, methionine and folate metabolisms 

 

In this work, we have found that the shm2 knock-out suppressed the methionine auxotrophy of the 

ade16 ade17 fau1 mutant (Fig. 3d), while on the opposite, SHM2 overexpression suppressed the 

methionine auxotrophy of the ade3 bas1 mutant (Fig. 4a). Consistently with the suppression of the 

methionine auxotrophy by bas1 but not pho2 knock-out (Fig. 2c), we found that SHM2 transcriptional 

expression is much more dependent on Bas1 than on Pho2 (Fig. 5a). This result establishes that the 
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ade3 fau1 methionine auxotrophy is the result of the transcriptional activation of SHM2 by Bas1 in 

strains accumulating AICAR. Hence, both too low and too high expression of SHM2 can result in a 

methionine requirement in the ade3 background. Accordingly serine and glycine, which can be 

substrates or products of Shm2 (Fig. 1), had very different effects on the ade3 fau1 and ade3 bas1 

mutants (Fig. 5b). Indeed glycine rescued the methionine auxotrophy of ade3 fau1. By contrast, serine 

rescued the methionine auxotrophy of ade3 bas1 (Fig. 5b). These results suggest that the 

serine/glycine balance favoring either the forward or the reverse reaction catalyzed by Shm2 can result 

in very different phenotypical outcomes. In conclusion, all these results point to the central role of the 

serine hydroxymethyl transferase Shm2 in the crosstalk between purine, methionine and folate 

pathways.    

 

Discussion 

 

 In this paper we show that the methionine auxotrophy of ade3 bas1 and ade3 fau1 double 

mutants is due to inadequate expression of SHM2 which is too low in the ade3 bas1 mutant and too 

high in the ade3 fau1 mutant. Our results point to regulation of SHM2 expression as a critical 

controlling step connecting purine, methionine and one-carbon metabolism in yeast and potentially in 

other organisms. The main role for Shm2 in this process appears to be folate inter-conversion required 

to maintain proper amount of folate intermediates for methionine synthesis. 

 The newly uncovered methionine auxotrophy of the ade3 bas1 double mutant can be rescued 

by overexpression of Shm2. We propose that methionine auxotrophy observed for this mutant results 

from a competition for 5,10-methylene-THF between two branches of the pathway, methionine and 

dTMP synthesis (Fig. 1). On the opposite, the knock-out of SHM2 can efficiently suppress the 

methionine requirement of a fau1 mutant accumulating AICAR. Importantly both ade3 fau1 and ade3 

bas1 mutants were rescued by methionine or by S-adenosylmethionine but not by homocysteine (Fig. 

3c and 4c) strongly suggesting that these mutants affect the methionine synthetase step either by 

inhibiting Met6 activity, as proposed for ade3 fau1, or by limiting its supplying with 5,10-methylene-

THF co-substrate, as proposed for ade3 bas1. All together our data show intricate genetic interactions 
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between purine, one-carbon units and methionine metabolism through fine-tuning of serine 

hydroxymethyl transferase. 

 The Bas1 transcription factor is a critical regulator of SHM2 expression (Denis and Daignan-

Fornier 1998, Subramanian et al. 2005) and responds to both AICAR (Pinson et al. 2009) and glycine 

(Subramanian et al. 2005), thus integrating these signals to properly modulate one-carbon units inter-

conversion. Importantly, in wild-type yeast cells, physiological AICAR variations in response to 

adenine availability significantly impact on expression of SHM2 (3.8 fold up-regulation when adenine 

is lacking) (Servant et al. 2012), an effect similar to what is found for all the purine de novo pathway 

genes (except ADE16) (Daignan-Fornier and Fink 1992, Denis et al. 1998, Servant et al. 2012). 

Physiological AICAR variations thereby modulate expression of the key SHM2 gene which connects 

purine, methionine and folate metabolic pathways. Importantly, AICAR (also named ZMP) was 

recently shown to co-regulate purine and one-carbon metabolism in bacteria via a riboswitch 

mechanism (Kim et al. 2015). This evolutionary conservation further confirms the highly strategic role 

of this metabolite in cross-pathway regulation. 
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Table 1 Yeast strains used in this study 

Strain  Genotype Reference 

BY4741 MATa his31 leu20 met150 ura30 Euroscarf 

BY4742 MAT his31 leu20 lys20 ura30 Euroscarf 

Y1162 MAT his31 leu20 ura30 ade16::KanMX4 ade17::KanMX4 This study 

Y2031 MATa his31 leu20 ura30 ade3::KanMX4 fau1::KanMX4 This study 

Y2043 MATa his31 leu20 ura30 ade3::KanMX4 bas1::KanMX4 This study 

Y2816 MAT his31 leu20 ura30 ade3::KanMX4 fau1::KanMX4  This study 

Y2829 MAT his31 leu20 ura30 fau1::KanMX4 This study 

Y2831 MAT his31 leu20 ura30 ade3::KanMX4 fau1::KanMX4 pho2::KanMX4 This study 

Y2839 MAT his31 leu20 ura30 ade3::KanMX4 bas1::KanMX4 This study 

Y2840 MAT his31 leu20 ura30 ade3::KanMX4 bas1::KanMX4 fau1::KanMX4 This study 

Y2844 MATa his31 leu20 ura30 ade3::KanMX4 bas1::KanMX4 This study 

Y2845 MAT his31 leu20 ura30 ade3::KanMX4  This study 

Y2946 MAT his31 leu20 ura30 Pinson et al 2009 

Y2954 MAT his31 leu20 ura30 ade16::KanMX4 ade17::KanMX4 bas1::KanMX4 Pinson et al 2009 

Y4252 MAT his31 leu20 ura30 ade3::KanMX4 pho2::KanMX4 This study 

Y4276 MATa his31 leu20 ura30 ade16::KanMX4 ade17::KanMX4 This study 

Y4277 MAT his31 leu20 ura30 ade16::KanMX4 ade17::KanMX4 fau1::KanMX4 This study 

Y4278 MATa his31 leu20 ura30 ade16::KanMX4 ade17::KanMX4 fau1::KanMX4 shm2 ::kanMX4 This study 

Y4279 MAT his31 leu20 ura30 ade16::KanMX4 ade17::KanMX4 shm2::KanMX4 This study 

Y4924 MATa his31 leu20 ura30 ade3::KanMX4 fau1::KanMX4 pho4::KanMX4 This study 

Y4925 MAT his31 leu20 ura30 ade3::KanMX4 pho4::KanMX4 This study 

Y4985 MAT his31 leu20 ura30 ade3::KanMX4 fau1::KanMX4 ade8::KanMX4 his1::KanMX4 This study 

Y5613 MATa his31 leu20 ura30 ade16::KanMX4 ade17::KanMX4 fau1::KanMX4 bas1::kanMX4 This study 

Y7210 MAT his31 leu20 ura30 ade3::KanMX4 fau1::KanMX4 This study 
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Legends of figures  

 

Fig. 1 Schematic representation of the de novo purine and histidine pathways in yeast and their 

connection to the one-carbon unit metabolism and the methyl cycle. Only the enzymes mentioned in 

the text are listed in green or dark blue (Fau1). Ado: adenosine; AdoMet: S-adenosyl-methionine; 

AICAR: 5-amino-4-imidazole carboxamide ribonucleotide 5’-phosphate (in red); DHF: dihydrofolic 

acid; dTMP: deoxythymidine 5’-monophosphate; dUMP: deoxyuridine 5’-monophosphate; IMP: 

inosine 5’-monophosphate; PRPP: 5-phosphoribosyl-1-pyrophosphate; SAH: S-adenosyl 

homocysteine; SAICAR: succinyl-AICAR; S-AMP: Succinyl adenosine 5’-monophsophate. THF: 

tetrahydrofolic acid. 

 

Fig. 2 AICAR accumulation leads to a Bas1-dependent methionine auxotrophy of fau1 mutants. a) 

The triple ade16 ade17 fau1 mutant is auxotroph for methionine. Strains: Y1162 and Y4277 b) 

Methionine auxotrophy of ade3 fau1 double mutant is abolished in the absence of AICAR. Strains: 

Y2816, Y2845 and Y4985 c) Deletion of PHO2 and PHO4 genes does not restore growth of the ade3 

fau1 mutant on methionine free medium. Strains: Y2816, Y2831, Y2043, Y2840, Y4252 and Y4925. 

d) The ade16 ade17 bas1 triple mutant is not methionine auxotroph. Strains: Y1162, Y2839, Y2845, 

Y2946 and Y2954. e) The Bas1 transcription factor is required for methionine auxotrophy of an ade16 

ade17 fau1 mutant. Strains: Y4276, Y5613 and Y7210. (a-e) Yeast strains were serial diluted and 

grown for 48 h at 37°C on SD +HLUA medium supplemented (+ Met) or not (- Met) with methionine.  

 

Fig. 3 Overexpression of MET6 gene, S-adenosyl methionine supplementation and SHM2 gene 

deletion restore methionine prototrophy of fau1 mutants accumulating AICAR. a) Growth in the 

absence of methionine of the ade3 fau1 mutant is restored by overexpressing the methionine synthase 

gene MET6. Cells were serial diluted and grown on SD +AHU medium for 48 h at 37°C before 

imaging. b-c) Growth of the ade3 fau1 mutant on methionine-free medium is restored by AdoMet (c) 

but not by Folic acid supplementation (b). d) Methionine auxotrophy of the ade16 ade17 fau1 mutant 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 17 

is fully suppressed by deletion of the serine hydroxymethyl transferase gene SHM2. Yeast strains were 

serial diluted and grown on SD +AHLU medium containing (+ Met) or not (- Met) methionine and 

supplemented with S-adenosyl methionine (AdoMet), Homocystein (HomoCys) or folic acid (Folic 

Ac.) as indicated. Plates were imaged after incubation for 48 h at 37°C.  

 

Fig. 4 The methionine auxotrophy of ade3 bas1 is suppressed by overexpression of the SHM2 gene or 

S-Adenosyl methionine supplementation. a) Complementation of the ade3 bas1 methionine 

auxotrophy by either BAS1 or ADE3 wild-type gene expressed from a centromeric plasmid. The 

Y2844 strain was transformed with a plasmid allowing expression of either BAS1 or ADE3 or by the 

cognate empty vector (YCp50). Transformants were spotted on a SD +AHL medium containing (+ 

Met) or not (- Met) methionine at 30°C. b) Overexpression of the SHM2 gene restores growth of an 

ade3 bas1 mutant on medium lacking methionine. The Y2043 strain was transformed with either a 

plasmid allowing expression of SHM2 under the control of a tetracycline repressible promoter (Tet-

SHM2; p3487) or the cognate empty vector (pCM189). Transformants were spotted on a SD +AHL 

medium containing (+ Met) or not (- Met) methionine at 30°C. c) S-adenosyl methionine 

supplementation is sufficient to restore growth of an ade3 bas1 mutant (Y2043) on methionine free 

medium. d) Methionine auxotrophy of the ade3 bas1 (Y2844) mutant is not rescued by folic acid 

supplementation. c-d) Cells were serial diluted and spotted on SD +AHLU medium containing (+ 

Met) or not (- Met) methionine and supplemented with S-adenosyl methionine (AdoMet), 

Homocystein (HomoCys) or folic acid (Folic Ac.) when indicated. Plates were imaged after incubation 

for 48 h at 30°C.  

 

Fig. 5 The serine hydroxymethyl transferase Shm2 is central for connecting purine, methionine and 

folate metabolism. a) Transcriptional expression of the SHM2 gene monitored by northern blotting. 

Total RNAs were extracted from cells grown in SD +AHLU medium containing Methionine. 

SHM2/ACT1 ratios were determined using a phosphorimager and were set at 1 for the wild-type cells. 

b) Glycine and serine supplementation allows growth on methionine-free medium of ade3 fau1 and 

ade3 bas1 mutants, respectively. Yeast strains were serial diluted and grown on SD +AHLU medium 
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containing (+ Met) or not (- Met) methionine and supplemented or not with glycine (+ Gly) or serine 

(+ Ser). Plates were imaged after incubation for 48 h at 30°C.  
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