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Abstract Germs of plane curve singularities can be classified accordingly to their
equisingularity type. For singularities over C, this important data coincides with the
topological class. In this paper, we characterise a family of singularities, containing
irreducible ones, whose equisingularity type can be computed in an expected quasi-
linear time with respect to the discriminant valuation of a Weierstrass equation.
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1 Introduction

Equisingularity is the main notion of equivalence for germs of plane curves. It was
developed in the 60’s by Zariski over algebraically closed fields of characteristic zero
in [29–31] and generalised in arbitrary characteristic by Campillo [2]. This concept is
of particular importance as for complex curves, it agrees with the topological equiv-
alence class [29]. As illustrated by an extensive literature (see e.g. the book [9] and
the references therein), equisingularity plays nowadays an important role in various
active fields of singularity theory (resolution, equinormalisable deformation, mod-
uli problems, analytic classification, etc). It is thus an important issue of computer
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Cedex, France
Present address : GAATI, EA 3893, Université de Polynésie Française, BP 6570, 98702 Faa’a, Polynésie
Française
E-mail: martin.weimann@upf.pf



2 Adrien Poteaux, Martin Weimann

algebra to design efficient algorithms for computing the equisingularity type of a sin-
gularity. This paper is dedicated to characterise a family of reduced germs of plane
curves, containing irreducible ones, for which this task can be achieved in quasi-linear
time with respect to the discriminant valuation of a Weierstrass equation.

Main result. We say that two germs of reduced plane curves are equisingular if there
is a one-to-one correspondence between their branches which preserves the charac-
teristic exponents and the pairwise intersection multiplicities (see e.g. [2, 3, 27] for
other equivalent definitions). This equivalence relation leads to the notion of equi-
singularity type of a singularity. In this paper, we consider a square-free Weierstrass
polynomial F ∈ K[[x]][y] of degree d, with K a perfect field of characteristic zero or
greater than d1. Under such an assumption, the Puiseux series of F are well defined
and allow to determine the equisingularity type of the germ (F,0) (the case of small
characteristic requires Hamburger-Noether expansions [2]). In particular, it follows
from [22] that we can compute the equisingularity type in an expected O˜(d δ)2 op-
erations over K, where δ stands for the valuation of the discriminant of F . If F is
irreducible, it is shown in [23] that we can reach the lower complexity O˜(δ) thanks
to the theory of approximate roots. A natural question arises : can we reach this quasi-
optimal complexity O˜(δ) for a larger class of reducible polynomials ?

We say that F is pseudo-irreducible3 or balanced4 if all its absolutely irreducible
factors have the same set of characteristic exponents and the same set of pairwise
intersection multiplicities, see Section 2. Irreducibility over any algebraic field ex-
tension of K implies pseudo-irreducibility by a Galois argument, but the converse
does not hold. As a basic example, the Weierstrass polynomial F = (y−x)(y−x2) is
pseudo-irreducible, but is obviously reducible (see Example 1 for more). We prove:

Theorem 1. There exists an algorithm which tests if F is pseudo-irreducible with an
expected O˜(δ)5 operations over K. If F is pseudo-irreducible, the algorithm com-
putes also δ and the number of absolutely irreducible factors of F together with their
sets of characteristic exponents and sets of pairwise intersection multiplicities. In
particular, it computes the equisingularity type of the germ (F,0).

Remark 1. The algorithm contains a Las Vegas subroutine for computing primitive
elements in residue rings; however it should become deterministic thanks to [13].

Our algorithm does not perform univariate irreducible factorisation, but uses only
square-free factorisation instead. However, for a given field extension L of K, we can
also compute the degrees, residual degrees and ramification indices of the irreducible
factors of F in L[[x]][y] by performing an extra univariate factorisation of degree at
most d over L. Our long term objective being fast factorisation in K[[x]][y], we extend
in Section 5.3 the definition of pseudo-irreducibility to non Weierstrass polynomials,

1 Our results still hold under the weaker assumption that the characteristic of K does not divide d.
2 As usual, the notation O˜() hides logarithmic factors
3 The terminology pseudo-irreducible is also used in [14] to design polynomials which cannot be fac-

tored into comaximal polynomials. These two notions are not related to each other.
4 In the sequel, we rather use the terminology balanced and give an alternative definition of pseudo-

irreducibility based on a Newton-Puiseux type algorithm. Both notions agree from Theorem 2.
5 Note that F being Weierstrass, we have d ≤ δ and δ log(d) ∈O˜(δ).
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taking into account all germs of curves defined by F along the line x = 0. In this more
general setting, we get a complexity O˜(δ +d)6.

Main tools. We generalise the irreducibility test obtained in [23], which is itself a
generalisation of Abhyankhar’s absolute irreducibility criterion [1], based on the the-
ory of approximate roots. The main idea is to compute recursively some suitable ap-
proximate roots ψ0, . . . ,ψg of F of strictly increasing degrees such that F is pseudo-
irreducible if and only if we reach ψg = F . At step k, we compute the (ψ0, . . . ,ψk)-
adic expansion of F from which we can construct a generalised Newton polygon. If
the corresponding boundary polynomial of F is not pseudo-degenerate (Definition
4), then F is not pseudo-irreducible. Otherwise, we deduce the degree of the next
approximate root ψk+1 that has to be computed.

Our algorithm is optimised in the sense that it computes only the minimal amount
of information required for testing pseudo-irreducibility and computing the equisin-
gular type (roughly speaking, it computes only the initial terms of the Puiseux series
yi− y j where yi,y j run over the roots of F , see Remark 6).

Differences and additional interest with the irreducibility test of [23]. The key differ-
ence when compared to the irreducibility test developed in [23] is that we may allow
the successive generalised Newton polygons to have several edges, although no split-
tings and no Hensel liftings are required. Except this slight modification, most of
the algorithmic considerations have already been studied in [23] and the main inter-
est of this paper is more of a theoretical nature, focused on two main points: proving
that pseudo-degeneracy is the right condition for characterising pseudo-irreducibility,
and giving formulas for the intersection multiplicities and characteristic exponents in
terms of the underlying edge data sequence. This is our main Theorem 2.

Additionnaly to the statements of our main theorems, their proofs enlighten the
important following fact : a polynomial F is pseudo-irreducible if and only if its
equisingularity type can be read on a suitable sequence of approximate roots of F . As
a consequence, the underlying algorithm relies only on a few “black box” functions.
In particular, the dynamic evaluation inherent to arithmetic operations in the towers
of residue rings is in such a case reduced to univariate computations (the remaining
tasks being simply Newton iterations and multiplications in K[[x]][y]), which makes
this algorithm easy to implement. If F is not pseudo-irreducible, then we need at
some point to compute a factorisation F = GH (up to some suitable precision) in
order to apply the approximate roots strategy on each discovered factor G, H. In
[22], it is shown that these factorisation steps cost O˜(dδ ), assuming a divide and
conquer strategy. The underlying algorithm is much more tricky to implement as it
uses dynamic evaluation for bivariate computations (for instance, the extension of
the half-gcd [16, Algorithm 1] in the context of dynamic evaluation, a key point
of the divide and conquer strategy, is not available in any classical library for the
moment). These considerations show that, up to our knowledge, pseudo-irreducible
polynomials consitute the largest class of polynomials whose equisingularity type
can be efficiently computed with quasi-linear complexity O˜(δ ) in the current state

6 When F is Weierstrass, we have d ≤ δ. Otherwise, we might have d /∈O˜(δ).
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of the art. As such, they deserve to be considered as elementary bricks for a fast and
easy-to-implement algorithm which computes the equisingularity type of a general
germ of curve. This larger program is an ongoing work.

Related results. Computing the equisingularity type of a plane curve singularity is
a classical topic for which both symbolic and numerical methods exist. A classical
approach is derived from the Newton-Puiseux algorithm, as a combination of blow-
ups (monomial transforms and shifts) and Hensel liftings. This approach allows to
compute the roots of F - represented as fractional Puiseux series - up to an arbitrary
precision, from which the equisingularity type of the germ (F,0) can be deduced (see
e.g. Theorem 2 for precise formulas). The Newton-Puiseux algorithm has been stud-
ied by many authors (see e.g. [4, 5, 19–23, 26, 28] and the references therein). Up to
our knowledge, the best current arithmetic complexity was obtained in [22], comput-
ing the singular parts of all Puiseux series above x= 0 - hence the equisingularity type
of all germs of curves defined by F along this line - in an expectedO˜(d δ) operations
over K. Here, we get rid of the d factor for pseudo-irreducible polynomials, gener-
alising the irreducible case considered in [23]. For complex curves, the equisingular-
ity type agrees with the topological class and there exists other numerical-symbolic
methods of a more topological nature (see e.g. [10–12, 17, 25] and the references
therein). The main results of this paper and the irreducibility test in [23] are grouped
together in a long preprint [24]. The length of this preprint finally led us to publish it
into two separate parts.

Organisation. We define balanced polynomials in Section 2. Section 3 introduces
the notion of pseudo-degeneracy. This leads to an alternative definition of a pseudo-
irreducible polynomial, based on a Newton-Puiseux type algorithm. In Section 4,
we prove that being balanced is equivalent to being pseudo-irreducible and we give
explicit formulas for characteristic exponents and intersection multiplicities in terms
of edge data (Theorem 2). In the last Section 5, we design a pseudo-irreducibility test
based on approximate roots with quasi-linear complexity, thus proving Theorem 1.
We finally illustrate our method on various examples.

2 Balanced polynomials

Let us fix F ∈ K[[x]][y] a Weierstrass polynomial defined over a perfect field K of
characteristic zero or greater than d = deg(F). We denote by (F,0) the germ of the
plane curve defined by F at the origin of the affine plane K2

. We say that F is abso-
lutely irreducible if it is irreducible in K[[x]][y]. The germs of curves defined by the
absolutely irreducible factors of F are called the branches of the germ (F,0).

2.1 Characteristic exponents

We assume here that F is absolutely irreducible. As the characteristic of K does not
divide d, there exists a unique series S(T ) = ∑ciT i ∈K[[T ]] such that F(T d ,S(T )) =



Computing the equisingularity type of a pseudo-irreducible polynomial 5

0. The pair (T d ,S(T )) is the classical Puiseux parametrisation of the branch (F,0).
The characteristic exponents of F are defined as

β0 = d, βk = min(i s.t. ci 6= 0, gcd(β0, . . . ,βk−1) 6 |i) , k = 1, . . . ,g,

where g is the least integer for which gcd(β0, . . . ,βg) = 1 (characteristic exponents
are sometimes referred to the rational numbers βi/d in the literature). These are the
exponents i for which a non trivial factor of the ramification index is discovered. It is
well known that the data

C(F) = (β0;β1, . . . ,βg)

determines the equisingularity type of the germ (F,0), see e.g. [29]. Conversely, the
Weierstrass equations of two equisingular germs of curves which are not tangent
to the x-axis have same characteristic exponents [3, Corollary 5.5.4]. If tangency
occurs, we rather need to consider the characteristic exponents of the local equation
obtained after a generic change of local coordinates, which form a complete set of
equisingular (hence topological if K = C) invariants. The set C(F) and the set of
generic characteristic exponents determine each others assuming that we are given
the contact order β0 with x-axis ([18, Proposition 4.3] or [3, Corollary 5.6.2]). It
is well known that a data equivalent to C(F) is given by the semi-group of F , and
that this semi-group admits the intersection multiplicities of F with its characteristic
approximate roots ψ−1,ψ0, . . . ,ψg as a minimal system of generators (see Section 5.1
and [3, Corollaries 5.8.5 and 5.9.11]).

2.2 Intersection sets

If we want to determine the equisingularity type of a reducible germ (F,0), we need
to consider also the pairwise intersection multiplicities between the absolutely irre-
ducible factors of F . The intersection multiplicity between two coprime Weierstrass
polynomials G,H ∈K[[x]][y] is defined as

(G,H)0 := vx(Resy(G,H)) = dimK
K[[x]][y]
(G,H)

, (1)

where Resy stands for the resultant with respect to y and vx is the usual x-valuation.
The right hand equality follows from classical properties of the resultant. Suppose
that F has (distinct) absolutely irreducible factors F1, . . . ,Ff . We introduce the inter-
section sets of F , defined for i = 1, . . . , f as

Γi(F) := ((Fi,Fj)0, 1≤ j ≤ f , j 6= i) .

By convention, we take into account repetitions, Γi(F) being considered as an un-
ordered list with cardinality f − 1. If F is Weierstrass, the equisingular type (hence
the topological class if K=C) of the germ (F,0) is uniquely determined by the char-
acteristic exponents and the intersections sets of the branches of F [32]. Note that the
set C(Fi) only depends on Fi while Γi(F) depends on F .



6 Adrien Poteaux, Martin Weimann

2.3 Balanced polynomials

Definition 1. We say that a square-free Weierstrass7 polynomial F ∈K[[x]][y] is bal-
anced if C(Fi) =C(Fj) and Γi(F) =Γj(F) for all i, j. In such a case, we denote simply
these sets by C(F) and Γ (F).

Thus, if F is balanced, its branches are equisingular and have the same set of
pairwise intersection multiplicities. The converse holds if no branch is tangent to the
x-axis or all branches are tangent to the x-axis.

Example 1. Let us illustrate this definition with some basic examples. Note that the
second and third examples show in particular that no condition implies the other in
Definition 1.

1. If F ∈ K[[x]][y] is irreducible, a Galois argument shows that it is balanced (fol-
lows from Theorem 2 below). The converse doesn’t hold: F = (y− x)(y+ x2) is
reducible, but it is balanced. This example also shows that being balanced does
not imply the Newton polygon to be straight.

2. F =(y2−x3)(y2+x3)(y2+x3+x4) is not balanced. It has 3 absolutely irreducible
factors with same sets of characteristic exponents C(Fi) = (2;3) for all i, but
Γ1(F) = (6,6) while Γ2(F) = Γ3(F) = (6,8).

3. F =(y−x−x2)(y−x+x2)(y2−x3) is not balanced. It has 3 absolutely irreducible
factors with same sets of pairwise intersection multiplicities Γi(F) = (2,2), but
C(F1) = C(F2) = (1) while C(F3) = (2;3).

4. F = (y2− x2)2−2x4y2−2x6 + x8 has four absolutely irreducible factors, namely
F1 = y+ x+ x2, F2 = y+ x− x2, F3 = y− x+ x2 and F4 = y− x− x2. We have
C(Fi) = (1) and Γi(F) = (1,1,2) for all i so F is balanced. Note that this example
shows that being balanced does not imply that all factors intersect each others
with the same multiplicity.

5. F =(y2−x3)(y3−x2) is not balanced. However, it defines two equisingular germs
of plane curves (but one is tangent to the x-axis while the other is not).

Noether-Merle’s Formula. If F,G∈K[[x]][y] are two irreducible Weierstrass polyno-
mials of respective degrees dF and dG, their intersection multiplicity (F,G)0 is closely
related to the characteristic exponents (β0, . . . ,βg) of F . Let us denote by

Cont(F,G) := dF max
(
vx(y− y′) | F(y) = 0, G(y′) = 0

)
(2)

the contact order of the branches F and G and let κ = max{k |Cont(F,G) ≥ βk}.
Then Noether-Merle’s formula [15, Proposition 2.4] states

(F,G)0 =
dG

dF

(
∑
k≤κ

(Ek−1−Ek)βk +Eκ Cont(F,G)

)
, (3)

where Ek := gcd(β0, . . . ,βk). A proof can be found in [18, Proposition 6.5] (and refer-
ences therein), where a formula is given in terms of the semi-group generators, which
turns out to be equivalent to (3) thanks to [18, Proposition 4.2]. Note that the original
proof in [15] assumes that the germs F and G are transverse to the x-axis.

7 We can extend this definition to non-Weierstrass polynomials, see Section 5.3.
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3 Pseudo-irreducible polynomials

3.1 Pseudo-degenerate polynomials.

We first recall classical definitions that play a central role for our purpose, namely
the Newton polygon and the residual polynomial. We will have to work over vari-
ous residue rings isomorphic to some direct product of field extensions of the base
field K. Let A = L0 ⊕ ·· · ⊕ Lr be such a ring. If S = ∑cixi ∈ A[[x]], we define
vx(S) =min(i , ci 6= 0) with convention vx(0) =+∞. Note that in contrast to usual val-
uations, we have vx(S1 S2) ≥ vx(S1)+ vx(S2) and strict inequality might occur since
A is allowed to contain zero divisors. We let A× stands for the group of units of A.

In the following definitions, we assume that F ∈ A[[x]][y] is a Weierstrass poly-
nomial and we let F = ∑

d
i=0 ai(x)yi = ∑i, j ai jx jyi. The support Supp(F) ⊂ N2 is the

set of exponents (i, j) for which ai j 6= 0.

Definition 2. The Newton polygon of F is the lower convex hullN (F) of its support.
The unique edge with vertice (d,0) is called the lower edge, denoted by N0(F).

The lower edge has equation mi+q j = l for some uniquely determined coprime
positive integers q,m and l ∈ N. We say for short that N0(F) has slope (q,m), with
convention (q,m) = (1,0) if the Newton polygon of F is reduced to a point.

Definition 3. We call F̄ := ∑(i, j)∈N0(F) ai jx jyi the lower boundary polynomial of F .

We say that a polynomial P ∈ A[Z] is square-free if its images under the natural
morphisms A→ Li are square-free (in the usual sense over a field).

Definition 4. We say that F ∈ A[[x]][y] is pseudo-degenerate if there exists N ∈ N
and P ∈ A[Z] monic and square-free such that

F̄ =

(
P
(

yq

xm

)
xmdeg(P)

)N

, (4)

with moreover P(0) ∈A× if q > 1. We call P the residual polynomial of F . The tuple
(q,m,P,N) is the edge data of F .

Remark 2. In practice, we check pseudo-degeneracy as follows. If q does not divide
d, then F is not pseudo-degenerate. If q divides d, then q | i for all (i, j) ∈ N0(F)
as (d,0) ∈N0(F) by assumption. Hence we may consider Q = ∑(i, j)∈N0(F) ai jZi/q ∈
A[Z] and F is pseudo-degenerate if and only if Q = PN for some square-free polyno-
mial P such that P(0) ∈ A× if q > 1.
Remark 3. If q > 1, the extra condition P(0) ∈ A× implies that N (F) is straight
(i.e. it has a unique edge). If q = 1, we allow P(0) to be a zero-divisor (in contrast
to Definition 4 of quasi-degeneracy in [23]), in which case N (F) may have several
edges. Note that if F is pseudo-degenerate, F̄ is the power of a square-free quasi-
homogeneous polynomial, but the converse doesn’t hold (case 4 below).

Example 2. a

1. Let F = (y2− x2)2(y− x2)(y− x3). Then N (F) has three edges, the lower one
of slope (q,m) = (1,1). We get F̄ = (y3− x2y)2 and Q = (Z3−Z)2. Hence, F is
pseudo-degenerate, with P = Z3−Z and N = 2.
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2. Let F = (y2− x2)2(y− x2). Then N (F) has two edges, the lower one of slope
(q,m) = (1,1). We get F̄ = y(y2− x2)2 and Q = Z(Z2− 1)2 is not a power of a
square-free polynomial. Hence, F is not pseudo-degenerate.

3. Let F = (y2− x3)2(y− x4). Then N (F) has two edges, the lower one of slope
(q,m) = (2,3). As q does not divide d = 5, F is not pseudo-degenerate.

4. Let F = (y2− x3)2(y− x4)2. Then N (F) is straight of slope (q,m) = (2,3). Here
q divides d = 6. We get F̄ = y2(y2− x3)2 which is a power of a square-free poly-
nomial. However, Q = Z(Z−1)2 is not. Hence, F is not pseudo-degenerate.

5. Let F = (y2− x3)2(y2− x4)2. Then N (F) has two edges, the lower one of slope
(q,m) = (2,3). Here q divides d = 8. We get F̄ = (y4− y2x3)2 and Q = (Z2−
Z)2 is the power of the square-free polynomial P = Z2−Z. However, q > 1 and
P(0) = 0 so F is not pseudo-degenerate.

Note that we could also treat cases 3, 4 and 5 simply by using Remark 3: q > 1
and N (F) not straight imply that F is not pseudo-degenerate.

The next lemma allows to associate to a pseudo-degenerate polynomial F a new
Weierstrass polynomial of smaller degree, generalising the usual case (e.g. [5, Section
4] or [21, Proposition 3]) to the case of product of fields.

Lemma 1. Suppose that F is pseudo-degenerate with edge data (q,m,P,N) and de-
note (s, t) the unique positive integers such that sq− t m = 1, 0≤ t < q. Let z be the
residue class of Z in the ring AP := A[Z]/(P(Z)) and ` := deg(P). Then

F(ztxq,xm(y+ zs)) = xqm`NUG, (5)

where U,G ∈ AP[[x]][y], U(0,0) ∈ A×P and G is a Weierstrass polynomial of degree
N dividing d. Moreover, if F 6= yd and F has no terms of degree d−1, then N < d.

Proof. As F is pseudo-degenerate, its lower edge N0(F) has equation mi + q j =
qm`N and we may write F = F̄ +Q, with F̄ as in (4) and where Supp(Q) lies strictly
above N0(F). In particular, vx (Q(ztxq,xm(y+ zs)))> qm`N. Combined with (4), we
get that F̃(x,y) := x−qm`N F(ztxq,xm(y+ zs)) satisfies F̃ ∈ AP[[x]][y] and F̃(0,y) =
R(y)N where R(y) = P((y+ zs)q/ztm). In particular, we have R(0) = P(z) = 0 and
R′(0) = qz1−sP′(0). As P is square-free and the characteristic of A does not divide
deg(P) by assumption, we have P′(0) ∈A×. As qz1−s ∈A×P (if q > 1, the assumption
P(0) ∈ A× implies P and Z coprime, that is z ∈ A×P ; if q = 1, then s = 1), it follows
that R′(0) ∈ A×P . We deduce that F̃(0,y) = yNS(y) where yN and S(y) are coprime in
AP[y]. We conclude thanks to the Weierstrass preparation theorem that F factorises as
in (5). Note that N|d by (4). If N = d, then (4) forces F̄ = (y+αxm)d for some α ∈A.
If α = 0, then N (F) is reduced to a point and we must have F = yd . If α 6= 0, the
coefficient of yd−1 in F is dαxmd +h.o.t, hence is non zero since the characteristic of
A does not divide d.

Remark 4. As P ∈A[Z] is square-free, the ring AP =A[Z]/(P(Z)) is still isomorphic
to a direct product of perfect fields thanks to the Chinese Reminder Theorem. Note
also that zt is invertible: if z is a zero divisor, we must have q = 1 so that t = 0 and
zt = 1.
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3.2 Pseudo-irreducible polynomials

The definition of a pseudo-irreducible polynomial is based on a variation of the clas-
sical Newton-Puiseux algorithm. Thanks to Lemma 1, we associate to F a sequence
of Weierstrass polynomials H0, . . . ,Hg of strictly decreasing degrees N0, . . . ,Ng such
that Hk is pseudo-degenerate if k < g and such that either Hg is not pseudo-degenerate
or Ng = 1. We proceed recursively as follows:

Rank k = 0. Let N0 = d, K0 =K, c0(x) :=−Coef(F,yN0−1)/N0 and

H0(x,y) := F(x,y+ c0(x)) ∈K0[[x]][y]. (6)

Then H0 is a new Weierstrass polynomial of degree N0 with no terms of degree N0−1.
If N0 = 1 or H0 is not pseudo-degenerate, we let g = 0.

Rank k > 0. Suppose given Kk−1 a direct product of fields extension of K and Hk−1 ∈
Kk−1[[x]][y] a pseudo-degenerate Weierstrass polynomial of degree Nk−1 > 1, with no
terms of degree Nk−1−1. Denote by (qk,mk,Pk,Nk) its edge data and `k := deg(Pk).
As Pk is square-free, the ring Kk := Kk−1[Zk]/(Pk(Zk)) is again (isomorphic to) a
direct product of fields. We let zk ∈ Kk be the residue class of Zk and (sk, tk) the
unique positive integers such that sk qk− tk mk = 1, 0 ≤ tk < qk. As Hk−1 is pseudo-
degenerate, we deduce from Lemma 1 that

Hk−1(z
tk
k xqk ,xmk(y+ zsk

k )) = xqkmk`kNkUkGk, (7)

where Uk(0,0) ∈ K×k and Gk ∈ Kk[[x]][y] is a Weierstrass polynomial of degree Nk.
Letting ck :=−Coef(Gk,yNk−1)/Nk, we define

Hk(x,y) = Gk(x,y+ ck(x)) ∈Kk[[x]][y]. (8)

It is a degree Nk Weierstrass polynomial with no terms of degree Nk−1.

The Nk-sequence stops. We have the relations Nk = qk`kNk−1. As Hk−1 is pseudo-
degenerate with no terms of degree Nk−1−1, we have Nk <Nk−1 by Lemma 1. Hence
the sequence of integers N0, . . . ,Nk is strictly decreasing and there exists a smallest
index g such that either Ng = 1 (and Hg = y), either Ng > 1 and Hg is not pseudo-
degenerate. We collect the edge data of the polynomials H0, . . . ,Hg−1 in a list

Data(F) := ((q1,m1,P1,N1), . . . ,(qg,mg,Pg,Ng)) .

Note that mk > 0 for all 1 ≤ k ≤ g. We include the Nk’s in the list for convenience
(they could be deduced from the remaining data via the relations Nk = Nk−1/qk`k).

Definition 5. We say that F is pseudo-irreducible if Ng = 1.

4 Pseudo-irreducible is equivalent to balanced.

We prove here our main result, Theorem 2: a square-free Weierstrass polynomial
F ∈ K[[x]][y] is pseudo-irreducible if and only if it is balanced, in which case we
compute characteristic exponents and intersection sets of the irreducible factors.
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4.1 Notation and main results.

We use the notations of Section 3; in particular (q1,m1,P1,N1), . . . ,(qg,mg,Pg,Ng)
denote the edge data of F . We define ek := q1 · · ·qk (current index of ramification),
e := eg, êk := e/ek and in an analogous way fk := `1 · · ·`k (current residual degree),
f := fg and f̂k := f/ fk. For all k = 1, . . . ,g, we define

Bk = m1ê1 + · · ·+mkêk and Mk = m1ê0ê1 + · · ·+mkêk−1êk (9)

and we let B0 = e. These are positive integers related by the formula

Mk =
k

∑
i=1

(êi−1− êi)Bi + êkBk. (10)

Note that 0 < B1 ≤ ·· · ≤ Bg
8 and B0 ≤ Bg. We have B0 ≤ B1 if and only if q1 ≤ m1,

if and only if F = 0 is not tangent to the x-axis at the origin. We check easily that
êk = gcd(B0, . . . ,Bk). In particular, gcd(B0, . . . ,Bg) = 1.

Theorem 2. A Weierstrass polynomial F ∈ K[[x]][y] is balanced if and only if it is
pseudo-irreducible. In such a case, F has f irreducible factors in K[[x]][y], all with
degree e, and

1. C(F) = (B0;Bk |qk > 1) - so C(F) = (1) if qk = 1 for all k.
2. Γ (F) = (Mk |`k > 1), where Mk appears f̂k−1− f̂k times.

Taking into account repetitions, the intersection set has cardinality ∑
g
k=1( f̂k−1−

f̂k) = f −1, as required. It is empty if and only if F is absolutely irreducible.

Corollary 1. Let F ∈K[[x]][y] be a balanced Weierstrass polynomial. Then, the dis-
criminant of F has valuation

δ = f

(
∑
`k>1

( f̂k−1− f̂k)Mk + ∑
qk>1

(êk−1− êk)Bk

)
and the discriminants of the absolutely irreducible factors of F all have the same
valuation ∑qk>1(êk−1− êk)Bk.

Proof. (of Corollary 1) When F is balanced, it has f irreducible factors F1, . . . ,Ff of
same degree e, with discriminant valuations say δ1, . . . ,δ f . The multiplicative prop-
erty of the discriminant gives the well-known formula

δ = ∑
1≤i≤ f

δi + ∑
1≤i 6= j≤ f

(Fi,Fj)0. (11)

Let y1, . . . ,ye be the roots of Fi. Thanks to [27, Proposition 4.1.3 (ii)] combined with
point 1 of Theorem 2, we deduce that for each fixed a = 1, . . . ,e, the list (vx(ya−
yb),b 6= a) consists of the values Bk/e repeated êk−1− êk times for k = 1, . . . ,g. Since
δi = ∑1≤a6=b≤e vx(ya− yb), we deduce that δ1 = · · ·= δ f = ∑qk>1(êk−1− êk)Bk. The
formula for δ follows directly from (11) combined with point 2 of Theorem 2.

8 We may allow m1 = B1 = 0 when considering non Weierstrass polynomials, see Section 5.3.
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The remaining part of this section is dedicated to the proof of Theorem 2. It is
quite technical, but has the advantage to be self-contained. We first establish the re-
lations between the (pseudo)-rational Puiseux expansions and the classical Puiseux
series of F (Section 4.2). This allows us to deduce the characteristic exponents and the
intersection sets of a pseudo-irreducible polynomial (thanks to Noether-Merle’s for-
mula), proving in particular that pseudo-irreducible implies balanced (Section 4.3).
We prove the more delicate reverse implication in Section 4.4.

4.2 Pseudo-rational Puiseux expansion.

Keeping the notations of Section 3, let π0(x,y) = (x,y+ c0(x)) and πk = πk−1 ◦σk
where

σk(x,y) := (ztk
k xqk ,xmk(y+ zsk

k + ck(x))) (12)

for k ≥ 1. It follows from equalities (6), (7) and (8) that

π
∗
k F = xvx(π

∗
k F)VkHk ∈Kk[[x,y]] (13)

for some Vk such that Vk(0,0) ∈K×k . We deduce from (12) that

πk(x,y) = (µkxek ,αkxrk y+Sk(x)), (14)

where µk,αk ∈K×k , rk ∈ N and Sk ∈Kk[[x]] satisfies vx(Sk)≤ rk. Following [22], we
call the parametrisation

(µkT ek ,Sk(T )) := πk(T,0)

a pseudo-rational Puiseux expansion (pseudo-RPE for short). Its ring of definition
equals the current residue ring Kk, which is a reduced zero-dimensional K-algebra of
degree fk over K. When F is irreducible, the Kk’s are fields and the parametrisation
πk(T,0) allows to compute the Puiseux series of F truncated up to precision rk

ek
, which

increases with k [22, Section 3.2]. We show here that the same conclusion holds when
F is pseudo-irreducible, taking care of possible zero-divisors in Kk. To this aim, we
prove by induction an explicit formula for πk(T,0). We need further notations.

Exponents data. For all 0 ≤ i ≤ k ≤ g, we define Qk,i = qi+1 · · ·qk with convention
Qk,k = 1 and let

Bk,i = m1Qk,1 + · · ·+miQk,i

with convention Bk,0 = 0. Note that Qi,0 = ei, Qg,i = êi and Bg,i = Bi for all i≤ g. We
have the relations Qk+1,i = qk+1Qk,i and Bk+1,i = qk+1Bk,i for all i≤ k and Bk+1,k+1 =
qk+1Bk,k +mk+1.
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Coefficients data. For all 0 ≤ i ≤ k ≤ g, we define µk,i := zti+1Qi,i
i+1 · · ·ztkQk−1,i

k with
convention µk,k = 1 and let

αk,i := µ
m1
k,1 · · ·µ

mi
k,i ,

with convention αk,0 = 1. We have µk+1,i = µk,iz
tk+1Qk,i
k+1 and αk+1,i = αk,iz

tk+1Bk,i
k+1 for

all 1≤ i≤ k, and αk+1,k+1 = αk+1,k.

Lemma 2. Let z0 = 0 and s0 = 1. For all k = 0, . . . ,g, we have the formula

πk(x,y) =

(
µk,0xek ,

k

∑
i=0

αk,ixBk,i
(
zsi

i + ci
(
µk,ixQk,i

))
+αk,kxBk,k y

)
.

Proof. This is correct for k = 0: the formula becomes π0(x,y) = (x,y+ c0(x)). For
k > 0, we conclude by induction, using the recursive relations for Bk,i, µk,i and αk,i

above with the definition πk(x,y) = πk−1(z
tk
k xqk ,xmk(zsk

k + ck(x)+ y)).

Given α an element of a ring L, we denote by α1/e the residue class of Z in
L[Z]/(Ze−α). For all k = 0, . . . ,g, we define the ring extension

Lk :=Kk
[
z

1
e

1 , . . . ,z
1
e

k

]
.

Note that L0 = K. Moreover, since z1/e
k has degree e`k > 1 over Lk−1, the natural

inclusion Lk−1 ⊂ Lk is strict.

Remark 5. Note that θk := µ
−1/ek
k,0 is a well defined invertible element of Lk (use

Remark 4), which by Lemma 2 plays an important role in the connections between
pseudo-RPE and Puiseux series (proof of Proposition 1 below). In fact, we could
replace Lk by the subring Kk[θk] of sharp degree ek fk over K, see [24]. We use Lk

for convenience, especially since z1/qk
k might not lie in Kk[θk]. The key points are:

θk ∈ Lk and the inclusion Lk−1 ⊂ Lk is strict.

Proposition 1. Let F ∈K[[x]][y] be Weierstrass and consider S̃ := S(µ−1/eT ), where
(µ T e,S(T )) := πg(T,0). We have

S̃(T ) = ∑
B>0

aBT B ∈ Lg[[T ]],

where gcd(B0, . . . ,Bk)|B and aB ∈Lk for all B< Bk+1 (with convention Bg+1 :=+∞).
Moreover, we have for all 1≤ k ≤ g

aBk =

εkz
1

qk
k if qk > 1

εkzk +ρk if qk = 1
(15)

for some εk ∈ L×k−1 and ρk ∈ Lk−1. In particular aBk ∈ Lk \Lk−1.
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Proof. Note first that µ = µg,0 by Lemma 2, so that θg := µ−1/e is a well defined
invertible element of Lg (Remark 5). In particular, S̃ ∈ Lg[[T ]] as required. Lemma 2
applied at rank k = g gives

S(T ) =
g

∑
k=0

αg,kT Bk
(
zsk

k + ck
(
µg,kT êk

))
. (16)

Denote by θk := µ
−1/ek
k,0 ∈ L×k (Remark 5). Using the definitions of µg,k and αg,k, a

straightforward computation gives

µg,k θ
êk

g = θk ∈ Lk and αg,k θ
Bk

g =
k

∏
j=1

(
µg, jθ

ê j
g

)m j
=

k

∏
j=1

θ j ∈ Lk. (17)

Combining (16) and (17), we deduce that S̃(T ) = S(θgT ) may be written as

S̃(T ) =
g

∑
k=0

Ck(θkT êk)T Bk , Ck(T ) :=
(
zsk

k + ck(T )
) k

∏
j=1

θ j ∈ Lk[[T ]]. (18)

As êk = gcd(B0, . . . ,Bk) divides both êi and Bi for all i≤ k, this forces gcd(B0, . . . ,Bk)
to divide B for all B < Bk+1. In the same way, as Li ⊂ Lk for all i≤ k, we get aB ∈ Lk
for all B < Bk+1. There remains to show (15). As ck(0) = 0, we deduce that

Ck(0) = zsk
k

k

∏
j=1

θ
m j
j = εkz1/qk

k with εk :=
k−1

∏
j=1

θ j z
−t j mk
q j ···qk
j ∈ Lk−1, (19)

the second equality using the Bézout relation skqk− tkmk = 1. Note that εk ∈ L×k−1
(Remarks 4 and 5). Let ρk be the sum of the contributions of the terms T BiCi(θiT êi),
i 6= k to the coefficient T Bk of S̃. So aBk = Ck(0)+ρk. As B1 ≤ ·· · ≤ Bg and k ≥ 1,
we deduce that if Ci(θiT êi)T Bi contributes to T Bk , then i < k so that Ci(θiT êi)T Bi ∈
Lk−1[[T êk−1 ]]. We deduce that ρk ∈ Lk−1. Moreover, ρk 6= 0 forces êk−1|Bk. Since mk
is coprime to qk, we deduce from (9) that qk = 1.

Remark 6. In contrast to the Newton-Puiseux type algorithms of [22] which compute
∑B aBT B (up to some truncation bound), algorithm Pseudo-Irreducible of Section
5.2 only allows to compute (aBk−ρk)T Bk , k= 0, . . . ,g in terms of the edge data thanks
to (15) and (19). As shown in this section, this is precisely the minimal information
required to test pseudo-irreducibility and compute the equisingularity type. For in-
stance, the Puiseux series of F = (y− x− x2)2− 2x4 are S1 = T +T 2(1−

√
2) and

S2 = T +T 2(1+
√

2) and we only compute here the “separating” terms −
√

2T 2 and√
2T 2. Computing all terms of the singular part of the Puiseux series of a (pseudo)-

irreducible polynomial in quasi-linear time remains an open challenge.
Let us denote by W ⊂Kg

the zero locus of the polynomial system defined by the
canonical liftings of P1, . . . ,Pg in K[Z1, . . . ,Zg]. Note that Card(W ) = f . Given ζ =

(ζ1, . . . ,ζg) ∈W , the choice of some eth-roots ζ
1/e
1 , . . . ,ζ

1/e
g in K induces a natural

evaluation map

evζ : Lg 'K
[
z

1
e

1 , . . . ,z
1
e

g
]
−→K
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and we denote for short a(ζ ) ∈ K the evaluation of a ∈ Lg at ζ . There is no loss to
assume that when ζ ,ζ ′ ∈W satisfy ζk = ζ ′k, we choose ζ

1/e
k = ζ

′1/e
k . We thus have

(ζ1, . . . ,ζk) = (ζ ′1, . . . ,ζ
′
k) =⇒ a(ζ ) = a(ζ ′) ∀ a ∈ Lk. (20)

The following lemma is crucial for our purpose.

Lemma 3. Let us fix ω such that ωe = 1 and let ζ ,ζ ′ ∈W. For all k = 0, . . . ,g, the
following assertions are equivalent:

1. aB(ζ ) = aB(ζ
′)ωB for all B≤ Bk.

2. aB(ζ ) = aB(ζ
′)ωB for all B < Bk+1.

3. (ζ1, . . . ,ζk) = (ζ ′1, . . . ,ζ
′
k) and ω êk = 1.

Proof. By Proposition 1, we have aB ∈ Lk and êk|B for all B < Bk+1 from which
we deduce 3)⇒ 2) thanks to hypothesis (20). As 2)⇒ 1) is obvious, we need to
show 1)⇒ 3). We show it by induction on k. If k = 0, the claim follows immediately
since ê0 = e. Suppose 1)⇒ 3) holds true at rank k− 1 for some k ≥ 1. If aB(ζ ) =
aB(ζ

′)ωB for all B ≤ Bk, then this holds true for all B ≤ Bk−1. As εk ∈ L×k−1 and
ρk ∈ Lk−1, the induction hypothesis combined with (20) gives εk(ζ ) = εk(ζ

′) 6= 0
and ρk(ζ ) = ρk(ζ

′). We use now the assumption aBk(ζ ) = aBk(ζ
′)ωBk . Two cases

occur:

– If qk > 1, we deduce from (15) that ζ
1/qk
k = ζ

′1/qk
k ωBk , so that ζk = ζ ′kωqkBk . As

êk−1 divides qkBk and ω êk−1 = 1 by induction hypothesis, we deduce ζk = ζ ′k, as
required. Moreover, we get aBk(ζk) = aBk(ζ

′
k) thanks to (20), so that ωBk = 1.

– If qk = 1, we deduce from (15) that ζk + ρk(ζ ) = ωBk(ζ ′k + ρk(ζ
′)). As qk = 1

implies êk−1 = êk|Bk, we deduce again ωBk = 1 and ζk = ζ ′k.

As Bk = ∑s≤k msês, induction hypothesis gives (ω êk)mk = 1. Since mk is coprime to
qk and (ω êk)qk = ω êk−1 = 1, this forces ω êk = 1.

Finally, we can recover all the Puiseux series of a pseudo-irreducible polynomial
from the parametrisation πg(T,0), as required. More precisely :

Corollary 2. Suppose that F is pseudo-irreducible and Weierstrass. Then F admits
exactly f distinct monic irreducible factors Fζ ∈ K[[x]][y] indexed by ζ ∈W. Each
factor Fζ has degree e and defines a branch with classical Puiseux parametrisations
(T e, S̃ζ (T )) where

S̃ζ (T ) = ∑
B

aB(ζ )T B. (21)

The e Puiseux series of Fζ are given by S̃ζ (ωx
1
e ) where ω runs over the eth-roots

of unity and this set of Puiseux series does not depend of the choice of the eth-roots
ζ

1/e
1 , . . . ,ζ 1/e.

Proof. As F is pseudo-irreducible, Hg = y (see Section 3.2) and π∗g F(x,0) = 0 by
(13). We deduce F(T e, S̃ζ (T )) = 0 for all ζ ∈W . By (15), we have aBk(ζ ) 6= 0 for
all k such that qk > 1. Since gcd(B0 = e,Bk |qk > 1)) = gcd(B0, . . . ,Bg) = êg = 1, the
parametrisation (T e, S̃ζ (T )) is primitive, that is the greatest common divisor of the
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exponents of the series T e and S̃ζ (T ) equals one. Hence, this parametrisation defines
a branch Fζ = 0, where Fζ ∈K[[x]][y] is an irreducible monic factor of F of degree e.
Thanks to Lemma 3, these f branches are distinct when ζ runs over W . As deg(F) =
e f , we obtain all the irreducible factors of F in such a way. Considering other choices
of the eth roots of the ζk’s would lead to the same conclusion by construction, and the
last claim follows straightforwardly.

4.3 Pseudo-irreducible implies balanced

Proposition 2. Let F ∈ K[[x]][y] be pseudo-irreducible. Then each branch Fζ of F
has characteristic exponents (B0;Bk |qk > 1), k = 1, . . . ,g).

Proof. Thanks to Corollary 2, all polynomials Fζ have same first characteristic expo-
nent B0 = e. We also showed in the proof of Corollary 2 that aBk(ζ ) 6= 0 for all k≥ 1
such that qk > 1. We conclude by Proposition 1.

Proposition 3. Let F ∈ K[[x]][y] be pseudo-irreducible with at least two branches
Fζ ,Fζ ′ . We have

(Fζ ,Fζ ′)0 = Mκ , κ := min
{

k = 1, . . . ,g |ζk 6= ζ
′
k
}
.

and this value is reached exactly f̂κ−1− f̂κ times when ζ ′ runs over the set W \{ζ}.

Proof. Noether-Merle’s formula (3) combined with Proposition 2 gives

(Fζ ,Fζ ′)0 = ∑
k≤K

(êk−1− êk)Bk + êKCont(Fζ ,Fζ ′) (22)

with K = max{k |Cont(Fζ ,Fζ ′)≥ Bk}. Note that the Bk’s which are not characteristic
exponents do not appear in the first summand of formula (22) (qk = 1 implies êk−1−
êk = 0). It is a classical fact that we can fix any root y of F for computing the contact
order in formula (2) (see e.g. [6, Lemma 1.2.3]). Combined with Corollary 2, we
obtain the formula

Cont(Fζ ,Fζ ′) = max
ωe=1

(
vT
(
S̃ζ (T )− S̃ζ ′(ωT )

))
. (23)

We deduce from Lemma 3 that

vT
(
S̃ζ (T )− S̃ζ ′(ωT )

)
= Bκ̄ , κ̄ := min

{
k = 1, . . . ,g | ζk 6= ζ

′
k or ω

êk 6= 1
}
.

As ω = 1 satisfies ω êk = 1 for all k, we deduce from the last equality that the maximal
value in (23) is reached for ω = 1 (it might be reached for other values of ω). It
follows that Cont(Fζ ,Fζ ′) = Bκ with κ = min

{
k |ζk 6= ζ ′k

}
. We thus have K = κ and

(22) gives (Fζ ,Fζ ′)0 = ∑
κ
k=1(êk−1− êk)Bk+ êκ Bκ = Mκ , the last equality by (10). Let

us fix ζ . As said above, we may choose ω = 1 in (23). We have vT (S̃ζ (T )− S̃ζ ′(T )) =
Bκ if and only if ζ ′k = ζk for k < κ and ζκ 6= ζ ′κ . This concludes, as the number of
possible such values of ζ ′ is precisely f̂κ−1− f̂κ .

If F is pseudo-irreducible, then it is balanced and satisfies both items of Theorem
2 thanks to Propositions 2 and 3. There remains to show the converse.
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4.4 Balanced implies pseudo-irreducible

We need to show that Ng = 1 if F is balanced. We denote more simply H := Hg ∈
Kg[[x]][y], and πg(T,0) = (µT e,S(T )). We denote Hζ ,Sζ ,µζ the images of H,S,µ
after applying (coefficient wise) the evaluation map evζ : Kg→ K. In what follows,
irreducible means absolutely irreducible.

Lemma 4. Suppose that F is balanced. Then all irreducible factors of all Hζ , ζ ∈W
have same degree.

Proof. Let ζ ∈W and let yζ be a root of Hζ . As Hζ divides (π∗g F)ζ by (13), we
deduce from Lemma 2 (remember Bgg = Bg) that

F(µζ xe,Sζ (x)+ xBgyζ (x)) = 0.

Hence, y0(x) := S̃ζ (x
1
e )+µ

− Bg
e

ζ
x

Bg
e yζ (µ

− 1
e

ζ
x

1
e ) is a root of F and we have moreover

the equality
degK((x))(y0) = edegK((x))(yζ ), (24)

where we consider here the degrees of y0 and yζ seen as algebraic elements over the
field K((x)). As F is balanced, all its irreducible factors - hence all its roots - have
same degree. Combined with (24), this implies that all roots - hence all irreducible
factors - of all Hζ , ζ ∈W have same degree.

Corollary 3. Suppose F balanced and Ng > 1. Then there exists some coprime pos-
itive integers (q,m) and Q ∈ Kg[Z] monic with non zero constant term such that H
has lower boundary polynomial

H̄(x,y) = Q(yq/xm)xmdeg(Q).

Proof. As Ng > 1, the Weierstrass polynomial H = Hg is not pseudo-degenerate and
admits a lower slope (q,m) (we can not have Hg = yNg as F would not be square-free).
Hence, its lower boundary polynomial may be written in a unique way

H̄(x,y) = yrQ̃(yq/xm)xmdeg(Q̃) (25)

for some non constant monic polynomial Q̃ ∈Kg[Z] with non zero constant term and
some integer r ≥ 0. If r = 0, we are done, taking Q = Q̃. Suppose r > 0. Let ζ ∈W
such that Q̃ζ (0) 6= 0. Applying evζ to (25), we deduce thatN (Hζ ) has a vertex of type
(r, i), 0 < r < d from which follows the well-known fact that Hζ = AB ∈ K[[x]][y],
with deg(A) = r and deg(B) = qdeg(Q̃). By Lemma 4, this forces q to divide r. Hence
r = nq for some n ∈ N and the claim follows by taking Q(Z) = ZnQ̃(Z).

Lemma 5. Suppose F balanced and Ng > 1. We keep the notations of Corollary 3.
Let G be an irreducible factor of F in K[[x]][y]. Then eq divides n := deg(G) and there
exists a unique ζ ∈W and a unique root α of Qζ such that G admits a parametrisation
(T n,SG(T )), where

SG(T )≡ S̃ζ (T
n
e )+α

1
q µ
− Bg

e
ζ

T a mod T a+1, (26)
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with a = n
e Bg+

nm
eq ∈N, α1/q an arbitrary qth-root of α . Conversely, given ζ ∈W and

α a root of Qζ , there exists at least one irreducible factor G for which (26) holds.

Proof. Let y(i)
ζ

, i = 1, . . . ,Ng be the roots of Hζ . Following the proof of Lemma 4, we

know that each root y(i)
ζ

gives rise to a family of e roots of F

y(i)
ζ ,ω

:= S̃ζ (ωx
1
e )+ω

Bg µ
− Bg

e
ζ

x
Bg
e y(i)

ζ
(ωµ

− 1
e

ζ
x

1
e ), ω

e = 1. (27)

As Hζ has distinct roots and S̃ζ (ωx1/e) 6= S̃ζ ′(ω
′x1/e) for (ζ ,ω) 6= (ζ ′,ω ′) (Lemma

3), we deduce that the e f Ng = deg(F) Puiseux series y(i)
ζ ,ω

are distinct, getting all roots

of F . Let G be an irreducible factor of F vanishing say at y0 = y(i)
ζ ,ω

. The roots of G are

y0(ω
′x), ω ′n = 1, where n := deg(G) = degK((x))(y

(i)
ζ ,ω

). As e divides n (use (24)), it

follows from (27) that G vanishes at y(i)
ζ ,1, hence admits a parametrisation (T n,SG(T )),

where SG(T ) := y(i)
ζ ,1(T

n). Corollary 3 ensures that y(i)
ζ
(x) = α1/qxm/q + h.o.t. for

some uniquely determined root α of Qζ . Combined with (27), we get the claimed

formula for SG. Conversely, if ζ ∈W and Qζ (α) = 0, there exists at least one root y(i)
ζ

of Hζ such that y(i)
ζ
(x) = α1/qxm/q +h.o.t and by the same arguments as above, there

exists at least one irreducible factor G such that (26) holds. Finally, since SG ∈K[[T ]]
and since there exists at least one root α 6= 0 of Qζ , we must have nm/eq ∈N. As e|n
and q and m are coprime, we get eq|n, as required.

For a given irreducible factor G of F , we denote by (ζ (G),α(G)) ∈W ×K the
unique pair (ζ ,α) such that (26) holds. Given ζ ∈W , Corollary 3 and Lemma 5
imply that

H̄ζ = ∏
i|ζ (Gi)=ζ

(yq−α(Gi)xm)N(Gi), (28)

where G1, . . . ,Gρ are the irreducible factors of F and where N(Gi) := deg(Gi)/eq.
Note that by Lemma 4, deg(Gi) and N(Gi) are constant for all i = 1, . . . ,ρ .

Corollary 4. Suppose F balanced and Ng > 1. Keeping the above notations, the
lists of the characteristic exponents of the Gi’s all begin as {n}∪{ n

e Bk,qk > 1,k =
1, . . . ,g}. The next characteristic exponent is greater or equal than n

e Bg +
nm
eq ∈ N,

with equality if and only if q > 1 and α(Gi) 6= 0.

Proof. This follows straightforwardly from Lemma 5 combined with Proposition 1
(similar argument that for Proposition 2).

Corollary 5. Suppose F balanced with Ng > 1. Then

(Gi,G j)0 >
n2

e2

(
Mg +

m
q

)
⇐⇒ (ζ (Gi),α(Gi)) = (ζ (G j),α(G j)).
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Proof. Using similar arguments to Proposition 3, we get Cont(Gi,G j) = vT (SGi −
SG j) and we deduce from (26) and Lemma 3 that Cont(Gi,G j) >

n
e Bg +

nm
eq if and

only if ζ (Gi) = ζ (G j) and α(Gi) = α(G j). The claim then follows from Noether-
Merle’s formula (3) combined with Corollary 4.

Proposition 4. If F is balanced, then it is pseudo-irreducible.

Proof. We need to show that Ng = 1. Suppose on the contrary that Ng > 1. We deduce
from (28) that the polynomial Q of Corollary 3 satisfies

Qζ (Z) = ∏
i|ζ (Gi)=ζ

(Z−α(Gi))
n/eq (29)

for all ζ ∈W . Let α be a root of Qζ and Iζ ,α := {i |(ζ (Gi),α(Gi)) = (ζ ,α)}. Hence,
(29) implies that α has multiplicity n

eq Card( Iζ ,α). As F is balanced, all factors have
same intersection sets and Corollary 5 implies that all sets Iζ ,α have same cardinality.
Thus all roots α of all specialisations Qζ , ζ ∈W have same multiplicity. In other
words, Q is the power of some square-free polynomial P ∈ Kg[Z]. If q = 1, this
implies that H = Hg is pseudo-degenerate (Definition 4), contradicting Ng > 1. If q >
1, we need to show moreover that P has invertible constant term. Since there exists
at least one non zero root α of some Qζ (Corollary 3), we deduce from Corollary
4 that at least one factor Gi has next characteristic exponent n

e Bg +
nm
eq (use q > 1).

As F is balanced, it follows that all Gi’s have next characteristic exponent n
e Bg +

nm
eq ,

which by Corollary 4 forces all α(Gi) - thus all roots α of all Qζ by last statement of
Lemma 5 - to be non zero. Thus P has invertible constant term and H = Hg is pseudo-
degenerate, contradicting Ng > 1. Hence Ng = 1 and F is pseudo-irreducible.

The proof of Theorem 2 is complete. �

5 A quasi-optimal pseudo-irreducibility test

Finally, we explain here the main steps of an algorithm which tests the pseudo-
irreducibility of a Weierstrass polynomial and computes its equisingularity type in
quasi-linear time with respect to δ, and we illustrate it on some examples. Details can
be found in [23, 24].

5.1 Computing the lower boundary polynomial

We still consider F ∈K[[x]][y] a degree d square-free Weierstrass polynomial. In the
following, we fix an integer 0 ≤ k ≤ g and assume that Nk > 1. For readability, we
will omit the index k for the objects Ψ ,V,Λ ,B introduced below.

Given the edge data (q1,m1,P1,N1), . . . ,(qk,mk,Pk,Nk), we want to compute H̄k
in quasi-linear time with respect to δ.
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The (V,Λ) sequence. We define recursively two lists

V = (vk,−1, . . . ,vk,k) ∈ Nk+2 and Λ = (λk,−1, . . . ,λk,k) ∈Kk+2
k .

If k = 0, we let V = (1,0) and Λ = (1,1). Assume k ≥ 1. Given the lists V and Λ at
rank k−1 and given the k-th edge data (qk,mk,Pk,Nk), we update both lists at rank k
thanks to the formulæ:

vk,i = qkvk−1,i −1≤ i < k−1
vk,k−1 = qkvk−1,k−1 +mk

vk,k = qk`kvk,k−1


λk,i = λk−1,iz

tkvk−1,i
k −1≤ i < k−1

λk,k−1 = λk−1,k−1z
tkvk−1,k−1+sk
k

λk,k = qkz1−sk−`k
k P′k(zk)λ

qk`k
k,k−1

(30)
where qksk−mktk = 1, 0≤ tk < qk and zk = Zk mod Pk.

Approximate roots and Ψ -adic expansion. Given an integer N dividing d, there ex-
ists a unique polynomial ψ ∈K[[x]][y] monic of degree d/N such that deg(F−ψN)<
d−d/N (see e.g. [18, Proposition 3.1]). We call it the Nth approximate root of F . Ap-
proximate roots are used in an irreducibility criterion in C[[x,y]] due to Abhyankhar
[1].

We denote by ψk the Nth
k -approximate root of F and we let ψ−1 := x. We denote

Ψ = (ψ−1,ψ0, . . . ,ψk) and introduce the set

B := {(b−1, . . . ,bk) ∈ Nk+2 , bi−1 < qi `i , i = 1, . . . ,k}. (31)

Thanks to the relations deg(ψi) = deg(ψi−1)qi`i for all 1≤ i≤ k, an induction argu-
ment shows that F admits a unique expansion

F = ∑
B∈B

fBΨ
B, fB ∈K,

where Ψ B := ∏
k
i=−1 ψ

bi
i . We call it the Ψ -adic expansion of F . We have necessarily

bk ≤ Nk while we do not impose any a priori condition to the powers of ψ−1 = x in
this expansion.

A formula for the lower boundary polynomial. We let B0 := (0, . . . ,0,Nk) ∈ B and
for i ∈ N, we define the integer

wi := min{〈B,V 〉, bk = i, fB 6= 0}−〈B0,V 〉, (32)

where 〈 , 〉 stands for the usual scalar product and with convention wi := ∞ if the
minimum is taken over the empty set. We introduce the set

B(i,w) := {B ∈ B(i) | 〈B,V 〉= w}

for any i∈N and any w∈N∪{∞}, with convention B(i,∞) = /0. We get the following
key result:
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Theorem 3. The lower edgeN0(Hk) coincides with the lower edge of the convex hull
of (i,wi)0≤i≤Nk . The lower boundary polynomial of Hk equals

H̄k = ∑
(i,wi)∈N0(Hk)

(
∑

B∈B(i,wi)

fB+B0Λ
B

)
xwiyi. (33)

Proof. This is a variant of Theorems 2, 3 and 4 in [23], where degeneracy conditions
are now replaced by pseudo-degeneracy conditions. The delicate point is that zk might
here be a zero divisor when qk = 1. However, we can show that we always have λkk ∈
K×k . In particular, (33) is well-defined and a careful reading shows that the proofs
of Theorem 2, 3 and 4 in [23] remain valid under the weaker hypothesis of pseudo-
degeneracy. We refer to Proposition 6 in the longer preprint [24] for details.

Example 3. If F = ∑
d
i=0 aiyi, then ψ0 = y− c0(x) where c0 =− ad−1

d . It follows that
at rank k = 0, the coefficients of the Ψ -adic expansion of F coincide with the coef-
ficients of the (x,y)-adic expansion of H0 as defined in (6). This illustrates that (33)
holds at rank k = 0.

5.2 The algorithm

We obtain the following sketch of algorithm. Subroutines AppRoot, Expand and
EdgeData respectively compute the approximate root, the Ψ -adic expansion and the
edge data.

Algorithm: Pseudo-Irreducible(F)

Input: F ∈K[[x]][y] Weierstrass with Char(K) not dividing deg(F).
Output: True if F is pseudo-irreducible, and False otherwise.

1 N← deg(F), V ← (1,0), Λ ← (1,1), Ψ ← (x);
2 while N > 1 do
3 Ψ ←Ψ ∪AppRoot(F,N);
4 ∑B fBΨ B← Expand(F,Ψ);
5 Compute H̄ using (33);
6 if H̄ is not pseudo-degenerate then return False ;
7 (q,m,P,N)← EdgeData(H̄);
8 Update V,Λ using (30)

9 return True

Theorem 4. Algorithm Pseudo-Irreducible returns the correct answer.

Proof. Follows from Definition 5, Theorem 2 and Theorem 3.

Proof of Theorem 1. Algorithm Pseudo-Irreducible may run with an expected
O˜(δ) operations over K thanks to [23, Proposition 12]9. To this aim, we use:

9 In [23, Prop.12], the condition Pk(0) ∈ K×k is imposed even if qk = 1, but this has no impact from a
complexity point of view.
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– Suitable truncation bounds for the powers of x, updated at each step.
– Primitive representation of the various residue rings Kk (Las-Vegas subroutines)
– Suitable implementation of subroutines AppRoot, Expand, EdgeData and of the

pseudo-degeneracy tests (square-free univariate factorisation over direct product
of fields, see Remark 2).

If F is pseudo-irreducible, we can deduce from the edge data of F the characteristic
exponents and the intersection sets of F (Theorem 2), together with the discriminant
valuation δ (Corollary 1). Theorem 1 follows. �

Remark 7. Note that if we rather use computations (7) and (8) up to suitable precision
to check if F is pseudo-irreducible (hence balanced), the underlying algorithm has
complexity O˜(dδ) when using similar cautious algorithmic tricks as above (see [22,
Section 3]). This bound is sharp (see e.g. [23, Example 1]) and is too high for our
purpose. One of the main reason is that computing the intermediate polynomials Gk
in (7) via Hensel lifting up to sufficient precision might cost Ω(dδ). This shows the
importance of using approximate roots.

5.3 Non-Weierstrass polynomials.

From a computational aspect with a view towards factorisation in K[[x]][y], it seems
interesting to extend Theorems 1 and 2 to the case of non Weierstrass polynomials.

Non-Weierstrass balanced polynomials. If F is absolutely irreducible but not neces-
sarily Weierstrass, it defines a unique germ of irreducible curve on the line x = 0,
with center (0,c), c ∈ K∪{∞}. It seems to be a natural option to require that the
equisingularity type of a germ of plane curve along the line x = 0 does not depend on
its center. This point of view leads us to define the characteristic exponents of F as
those of the shifted polynomial F(x,y+ c) if c ∈ K or of the reciprocal polynomial
F̃ = ydF(x,y−1) if c = ∞ (note that these change of coordinates have no impact on
the tangency with the x-axis). The formula (1) of the intersection multiplicity also
extends by linearity to arbitrary coprime polynomials G,H ∈ K[[x]][y], taking into
account the sum of intersection multiplicities between all germs of curves defined
by G and H along the line x = 0. The intersection multiplicity might now be zero if
(and only if) G and H do not have branches with the same center. We can thus ex-
tend the definition of intersection sets to non-Weierstrass polynomials, allowing now
0∈Γ (Fi). Finally, we may extend Definition 1 to an arbitrary square-free polynomial
F ∈K[[x]][y].

Pseudo-Irreducibility of non-Weierstrass polynomials. We distinguish two cases: the
monic one, for which approximate roots are defined, and the non monic one.

If F is monic, the construction of Section 3 remains valid, a slight difference be-
ing that the first polynomial H0 is monic but might now be non-Weierstrass (and
m1 = 0 is allowed). However the remaining polynomials Hk are still Weierstrass
for k ≥ 1. Hence the definition of a pseudo-irreducible polynomial extends to the
monic case and we can check that Theorem 2 still holds for monic polynomials.
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Moreover, the approximate roots of a monic polynomial F are still defined, and it
is shown in [23] that Theorem 3 holds too in this case. Hence, we can run algo-
rithm Pseudo-Irreducible as in the Weierstrass case. However to keep a small
complexity, we do not compute primitive elements of Kk over the field K but only
over the next residue ring K1 =KP1 . The overall complexity of this slightly modified
algorithm becomes O˜(δ +d). We refer the reader to [23] for details.

If F is not monic, we can use a projective change of the y coordinates in order
to reduce to the monic case. Since K has at least d + 1 elements by assumption, we
can compute z ∈ K such that F(0,z) 6= 0 with at most d + 1 evaluation of F(0,y) at
z = 0,1, . . . ,d. This costs at mostO˜(d) using fast multipoint evaluation [7, Corollary
10.8]. One such a z is found, we can apply the previous strategy to the polynomial
F̃ := ydF

(
zy+1

y

)
∈ K[[x]][y] which has by construction an invertible coefficient that

we simply invert up to suitable precision. We have deg(F)= deg(F̃) and δ(F)= δ(F̃)
(assuming that δ is then defined as the valuation of the resultant between F and Fy
instead of the valuation of the discriminant which may vary under projective change
of coordinates). So the complexity remains the same. Moreover, F and F̃ have same
number of absolutely irreducible factors, same sets of characteristic exponents (by the
very definition) and same intersection sets (use that the x-valuation of the resultant
is invariant under projective change of the y coordinate (see e.g. [8, Chapter 12]). In
particular, F is balanced if and only if F̃ is. This shows that we can test if an arbitrary
square-free polynomial F is balanced - and if so, compute the equisingular types of
all germs of curves it defines along the line x = 0 - within O˜(δ +d) operations over
K. We refer the reader to [23] for details.

Remark 8. If F is not monic, we could also have followed the following option. We
can extend the construction of Section 3 by allowing positive slopes at the first call
(so m1 < 0 is allowed) and extend Theorem 2 by considering approximate roots in
the larger ring K((x))[y]. However, it turns out that this option is not compatible with
our PGL2(K)-invariant point of view when F defines a germ centered at (0,∞), and
Theorem 2 would require some slight modifications to hold in this larger context.

Bivariate polynomials. If the input F is given as a bivariate polynomial F ∈ K[x,y]
with partial degrees n := degx(F) and d = degy(F), the well known upper bound
δ ≤ 2nd leads to a complexity estimate O˜(nd) which is quasi-linear with respect to
the arithmetic size of the input. Moreover, up to a slight modification of the algorithm,
there is no need to assume F square-free in this “algebraic” case (see again [23] for
details).

5.4 Some examples

Example 4 (balanced). Let F = y6−3x3y4−2x2y4+3x6y2 +x4y2−x9 +2x8−x7 ∈
Q[x,y]. This example is constructed in such a way that F has 3 irreducible factors
(y− x)2− x3, (y+ x)2− x3, y2− x3 and we can check that F is balanced, with e = 2,
f = 3 and C(Fi) = (2;3) and Γi(F) = (4,4) for all i = 1,2,3. Let us recover this with
algorithm Pseudo-Irreducible.
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Initialise. We have N0 = d = 6, and we let ψ−1 = x, V = (1,0) and Λ = (1,1).
Step 0. The 6th-approximate root of F is ψ0 = y and we deduce that H̄0 = y6 −
2x2y4 + x4y2 = (y(y2 − x2))2. Thus, H0 is pseudo-degenerate and it has edge data
(q1,m1,P1,N1) = (1,1,Z3

1 −Z1,2). Accordingly to (30), we update V = (1,1,1) and
Λ = (1,z1,3z2

1− 1). Note that N (F) is not straight. In particular, F is reducible in
Q[[x]][y].
Step 1. The 2nd-approximate root of F is ψ1 = y3− 3

2 x3y− x2y and F has Ψ -adic ex-
pansion F =ψ2

1−3ψ2
0 ψ5
−1+

3
4 ψ2

0 ψ6
−1−ψ7

−1+2ψ8
−1−ψ9

−1. The monomials reaching
the minimal values (32) are ψ2

1 (for j = 2) and −3ψ2
0 ψ5
−1 and ψ7

−1 (for j = 0). We
deduce from (33) that H̄1 = y2−αx, where α = (3z2

1 + 1)/(3z2
1− 1)2 is easily seen

to be invertible in Q1 (in practice, we compute P ∈ Q[Z1] such that α = P mod P1
and we check gcd(P1,P) = 1). We deduce that H1 is pseudo-degenerate with edge
data (q2,m2,P2,N2) = (2,1,Z2−α,1). As N2 = 1, we deduce that F is balanced with
g = 2.
Conclusion. We deduce from Theorem 2 that F has f = `1`2 = 3 irreducible factors
over K[[x]][y] of same degrees e = q1q2 = 2. Thanks to (9), we compute B0 = e = 2,
B1 = 2, B2 = 3 and M1 = 4, M2 = 6. We deduce that all factors of F have same
characteristic exponents C(Fi) = (B0;B2) = (2;3) and same intersection sets Γi(F) =
(M1,M1) = (4,4) (i.e. M1 which appears f̂0− f̂1 = 3−1 times), as required.

Example 5 (non balanced). Let F = y6− x6y4− 2x4y4− 2x2y4 + 2x10y2 + 3x8y2−
2x6y2+x4y2−x14+2x12−x10 ∈Q[x,y]. This second small example is constructed in
such a way that F has 6 irreducible factors y+x−x2, y+x−x2, y−x−x2, y−x+x2,
y− x3 and y+ x3 and we check that F is not balanced, as Γi(F) = (1,1,1,1,2) for
i = 1, . . . ,4 while with Γi(F) = (1,1,1,1,3) for i = 5,6. Let us recover this with
algorithm Pseudo-Irreducible.
Initialise. We have N0 = d = 6, and we let ψ−1 = x, V = (1,0) and Λ = (1,1).
Step 0. The 6th-approximate root of F is ψ0 = y and we deduce that H̄0 = y6−2x2y4+
x4y2 = (y(y2−x2))2. Thus, as in Example 4, H0 is pseudo-degenerate with edge data
(q1,m1,P1,N1) = (1,1,Z3

1 −Z1,2). Accordingly to (30), we update V = (1,1,1) and
Λ = (1,z1,3z2

1−1).
Step 1. The 2nd-approximate root of F is ψ1 = y3−yx2−yx4− 1

2 yx6 and F has Ψ -adic
expansion F = ψ2

1 −ψ10
−1 + 2ψ12

−1−ψ14
−1− 4ψ6

−1ψ2
0 +ψ8

−1ψ2
0 +ψ10

−1ψ2
0 −

1
4 ψ12
−1ψ2

0 .
The monomials reaching the minimal values (32) are ψ2

1 (for j = 2) and −4ψ6
−1ψ2

0
(for j = 0). We deduce from (33) that H̄1 = y2−αx2, where α = 4z2

1/(3z2
1− 1)2.

As z1 is a zero divisor in Q1 = Q[Z1]/(Z3
1 −Z1) and (3z2

1−1) = P′1(z1) is invertible
in Q1, we deduce that α is a zero divisor. It follows that H̄1 is not the power of a
square-free polynomial. Hence H1 is not pseudo-degenerate and F is not balanced
(with g = 1), as required. In order to factor F , we would need to split the algorithm at
this stage according to the discovered factorisation P1 = Z1(Z2

1−1) before continuing
the process, as described in [22].

Example 6 (non-Weierstrass). Let F = (y+1)6−3x3(y+1)4−2(y+1)4+3x6(y+
1)2 +(y+ 1)2− x9 + 2x6− x3. We have F = ((y+ 2)2− x3)((y+ 1)2− x3)(y2− x3)
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from which we deduce that F is balanced with three irreducible factors with charac-
teristic exponents C(Fi) = (2,3) and intersection sets Γi(F) = (0,0). Let us recover
this with algorithm Pseudo-Irreducible.
Initialise. We have N0 = d = 6, and we let ψ−1 = x, V = (1,0) and Λ = (1,1).
Step 0. The 6th-approximate root of F is ψ0 = y+ 1. We have F = ψ6

0 − 3ψ3
−1ψ4

0 −
2ψ4

0 + 3ψ6
−1ψ2

0 +ψ2
0 −ψ9

−1 + 2ψ6
0 −ψ3

−1. By (32), the monomials involved in the
lower edge of H0 are ψ6

0 ,−2ψ4
0 ,ψ

2
0 . We deduce from (33) that H̄0 = (y3−y)2 so that

H0 is pseudo-degenerate with edge data (q1,m1,P1,N1) = (1,0,Z3
1−Z1,2). Note that

m1 = 0. This is the only step of the algorithm where this may occur. Using (30), we
update V = (1,0,0) and Λ = (1,z1,3z2

1−1).
Step 1. The N1 = 2nd approximate root of F is ψ1 = (y+1)3−3/2x3(y+1)− (y+1)
and F has Ψ -adic expansion F = ψ2

1 −ψ3
−1−3ψ3

−1ψ2
0 +2ψ6

−1−ψ9
−1 +3/4ψ6

−1ψ2
0 .

We deduce that the monomials reaching the minimal values (32) are ψ2
1 (for j = 2)

and −ψ3
−1, −3ψ3

−1ψ2
0 (for j = 0). We deduce from (33) that H̄1 = y2−αx3, where

α = (λ 3
1,−1 + 3λ 3

1,−1λ 2
1,0)λ

−2
1,1 = (3z2

1 + 1)/(3z2
1− 1)2 is easily seen to be invertible

in Q1. We deduce that H1 is pseudo-degenerate with edge data (q2,m2,P2,N2) =
(2,3,Z2−α,1). As N2 = 1, we deduce that F is balanced with g = 2. By Theorem
2 (assuming only F monic), we get that F has f = `1`2 = 3 irreducible factors over
K[[x]][y] of same degrees e = q1q2 = 2. Thanks to (9), we compute B0 = e = 2,
B1 = 0, B2 = 3 and M1 = 0, M2 = 6. By Theorem 2, we deduce that all factors of F
have same characteristic exponents C(Fi) = (B0;B2) = (2;3) and same intersection
sets Γi(F) = (M1,M1) = (0,0) as required.

Acknowledgements. We thank the anonymous reviewers for their careful reading and
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