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A quasi-linear irreducibility test in K[[x]][y]

Adrien POTEAUX1 and Martin WEIMANN2

1University of Lille, France
2University of French Polynesia, France

We provide an irreducibility test in the ring K[[x]][y] whose complexity is
quasi-linear with respect to the discriminant valuation, assuming the input
polynomial F square-free and K a perfect field of characteristic zero or greater
than deg(F ). The algorithm uses the theory of approximate roots and may
be seen as a generalisation of Abhyankhar’s irreducibility criterion to the
case of non algebraically closed residue fields.

1 Introduction

Factorisation of polynomials defined over a ring of formal power series is an important is-
sue of symbolic computation, with a view towards singularities of algebraic plane curves.
In this paper, we develop a fast irreducibility test. In all of the sequel, we assume that
F ∈ K[[x]][y] is a square-free Weierstrass polynomial defined over a perfect field K of
characteristic 0 or greater than d = deg(F ). We let δ stand for the x-valuation of the
discriminant of F . We prove:

Theorem 1. We can test if F is irreducible in K[[x]][y] with an expected Õ (δ) operations
over K and one univariate irreducibility test over K of degree at most d.

If F is irreducible, the algorithm computes also its discriminant valuation δ, its index of
ramification e and its residual degree f . As usual, the notation Õ () hides logarithmic
factors ; see Section 5.1 for details. Up to our knowledge, this improves the best current
complexity Õ (d δ) [21, Section 3].

Our algorithm is Las Vegas, due to the computation of primitive elements1 in the residue
field extensions. In particular, if we test the irreducibility of F in K[[x]][y], it becomes
deterministic without univariate irreducibility test. The algorithm extends to non Weier-
strass polynomials, but with complexity Õ (δ+d) and at most two univariate irreducibil-
ity tests. If F ∈ K[x, y] is given as a square-free bivariate polynomial of bidegree (n, d),

1One should get a deterministic complexity O(δ1+o(1) log1+o(1)(d)) thanks to the recent preprint [11].
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we have δ < 2nd, hence our algorithm is quasi-linear with respect to the arithmetic size
nd of the input F . Moreover, we can avoid the square-free hypothesis in this case. These
extended results are discussed in Subsection 5.5.

Main ideas. We recursively compute some well chosen approximate roots ψ0, . . . , ψg
of F , starting with ψ0 the dth approximate roots of F . At step k + 1, we build the
(ψ0, . . . , ψk)-adic expansion of F . We compute an induced generalised Newton polygon
of F and check if it is straigth. If not, then F is reducible and the algorithm stops.
Otherwise, we construct a related boundary polynomial (quasi-homogeneous and defined
over some field extenion of K) and test if it is the power of some irreducible polynomial.
If not, then F is reducible and the algorithm stops. Otherwise, we deduce the degree of
the next approximate root ψk+1. The degrees of the ψk’s are strictly increasing and F
is irreducible if and only if we reach ψg = F . In order to perform a unique univariate
irreducibility test over K, we rely on dynamic evaluation and rather check if the boundary
polynomials are powers of a square-free polynomial.

Related results. Factorisation of polynomials defined over a ring of formal power series
is an important issue in the algorithmic of algebraic curves, both for local aspects (clas-
sification of plane curves singularities) and for global aspects (integral basis of function
fields [26], geometric genus of plane curves [21], bivariate factorisation [28], etc.) Prob-
ably the most classical approach for factoring polynomials in K[[x]][y] is derived from
the Newton-Puiseux algorithm, as a combination of blow-ups (monomial transforms and
shifts) and Hensel liftings. This approach allows moreover to compute the roots of F
- represented as fractional Puiseux series - up to an arbitrary precision. The Newton-
Puiseux algorithm has been studied by many authors (see e.g. [4, 5, 17–21, 24, 27] and
the references therein). Up to our knowledge, the best current arithmetic complexity was
obtained in [21], using a divide and conquer strategy leading to a fast Newton-Puiseux
algorithm (hence an irreducibility test) which computes the singular parts of all Puiseux
series above x = 0 in an expected Õ (d δ) operations over K. There exists also other
methods for factorisation, as the Montes algorithm which allow to factor polynomials
over general local fields [9, 15] with no assumptions on the characteristic of the residue
field. Similarly to the algorithms we present in this paper, Montes et al. compute
higher order Newton polygons and boundary polynomials from the Φ-adic expansion of
F , where Φ is a sequence of some well chosen polynomials which is updated at each step
of the algorithm. With our notations, this leads to an irreducibility test in Õ (d2 + δ2)
[2, Corollary 5.10 p.163] when K is a “small enough” finite field2. In particular, their
work provide a complete description of augmented valuations, apparently rediscovering
the one of MacLane [13, 14, 23]. The closest related result to this topic is the work of
Abhyanhar [1], which provides a new irreducibility test in C[[x]][y] based on approximate
roots, generalised to algebraically closed residue fields of arbitrary characteristic in [3].

2This restriction on the field K is due to the univariate factorisation complexity. It could probably be
avoided by using dynamic evaluation.
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No complexity estimates have been made up to our knowledge, but we will prove that
Abhyanhar’s irreducibility criterion is Õ (δ) when F is Weierstrass. In this paper, we
extend this result to non algebraically closed residue field K[[x]][y] of characteristic zero
or big enough. In some sense, our approach establishes a bridge between the Newton-
Puiseux algorithm, the Montes algorithm and Abhyankar’s irreducibility criterion. Let
us mention also [6, 7] where an other irreducibility criterion in K[[x]][y] is given in terms
of the Newton polygon of the discriminant curve of F , without complexity estimates.

Organisation. In Section 2, we recall results of [20, 21], namely an improved version of
the rational Newton-Puiseux algorithm of Duval [5]. From this algorithm we fix several
notations and define a collection Φ of minimal polynomials of some truncated Puiseux
series of F . We then show in Section 3 how to recover the edge data of F from its
Φ-adic expansion. In Section 4, we show that Φ can be replaced by a collection Ψ of
well chosen approximate roots of F , which can be computed in the aimed complexity
bound. Section 5 is dedicated to complexity issues and to the proof of Theorem 1 ; in
particular, we delay discussions on truncations of powers of x to this section. Finally,
we give in Section 6 a new proof of Abhyankhar’s absolute irreducibility criterion.

2 A Newton-Puiseux type algorithm

2.1 Classical definitions

Let F =
∑d

i=0 ai(x) yi =
∑

i,j aijx
jyi ∈ K[[x]][y] be a Weierstrass polynomial, that is

ad = 1 and ai(0) = 0 for i < d (the general case will be considered in Section 5.5). We
let vx stand for the usual x-valuation of K[[x]].

Definition 1. The Newton polygon of F is the lower convex hull N (F ) of the set of
points (i, vx(ai)) for i = 0, . . . , d.

It is well known that if F is irreducible, then N (F ) is straight (a single point being
straight by convention). However, this condition is not sufficient.

Definition 2. We call F̄ :=
∑

(i,j)∈N (F ) aijx
jyi the boundary polynomial of F .

Definition 3. We say that F is degenerated over K if its boundary polynomial F̄ is the
power of an irreducible quasi-homogeneous polynomial.

In other words, F is degenerated if and only if N (F ) is straight of slope −m/q with q,m
coprime, q > 0, and if

F̄ = c

(
P

(
yq

xm

)
xm deg(P )

)N
(1)

with c ∈ K×, N ∈ N and P ∈ K[Z] monic and irreducible. We call P the residual poly-
nomial of F . We call the tuple (q,m, P,N) the edge data of the degenerated polynomial
F and denote EdgeData an algorithm computing this tuple.
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2.2 A Newton-Puiseux type irreducibility test

We can associate to F a sequence of Weierstrass polynomials H0, . . . ,Hg of strictly
decreasing degrees N0, . . . , Ng such that either Ng = 1 and F is irreducible, either Hg is
not degenerated and F is reducible.

• Rank k = 0. Let N0 = d and K0 = K. We define c0(x) := −coeff(F, yN0−1)/N0 and
let

H0(x, y) := F (x, y + c0(x)) ∈ K0[[x]][y].

Then H0 is a new Weierstrass polynomial of degree N0 with no terms of degree N0 − 1.
If N0 = 1 or H0 is not degenerated, we let g = 0.

• Rank k > 0. Suppose given Kk−1 a field extension of K and Hk−1 ∈ Kk−1[[x]][y] a
degenerated Weierstrass polynomial of degree Nk−1, with no terms of degree Nk−1 − 1.
Denote (qk,mk, Pk, Nk) its edge data and `k = deg(Pk). We let zk stands for the residue
class of Zk in the field Kk := Kk−1[Zk]/(Pk(Zk)). We define (sk, tk) to be the unique
positive integers such that qksk − tkmk = 1, 0 ≤ tk < qk. As Hk−1 is degenerated, we
deduce from (1) that

Hk−1(ztkk x
qk , xmk(y + zskk )) = xqkmk`kNk Gk Vk, (2)

where Vk ∈ Kk[[x, y]] is a unit and Gk ∈ Kk[[x]][y] is a Weierstrass polynomial of degree
Nk which can be computed up to an arbitrary precision via Hensel lifting. We let
ck := −coeff(Gk, y

Nk−1)/Nk and define

Hk(x, y) = Gk(x, y + ck(x)) ∈ Kk[[x]][y]. (3)

It is a degree Nk Weierstrass polynomial with no terms of degree Nk − 1.

• The Nk-sequence stops. We have the relations Nk = qk`kNk−1. As Hk−1 is degen-
erated with no terms of degree Nk−1− 1, we must have qk`k > 1. Hence the sequence of
integers N0, . . . , Nk is strictly decreasing and there exists a smallest index g such that
either Ng = 1 and Hg = y or Ng > 1 and Hg is not degenerated. We collect the edge
data of the polynomials H0, . . . ,Hg−1 in a list

Data(F ) :=
(
(q1,m1, P1, N1), . . . , (qg,mg, Pg, Ng)

)
.

Note that mk > 0 for all 1 ≤ k ≤ g.

Proposition 1. The polynomial F is irreducible if and only if Ng = 1.

Proof. Follows from the rational Puiseux algorithm of Duval [5] (which is based on the
transform (2)) combined with the “Abhyankhar’s trick” (3) introduced in [20].

Following [21], we denote by ARNP the underlying algorithm. By considering suitable
sharp truncation bounds, it is shown in [21, Section 3] that this algorithm performs
an expected Õ (d δ) arithmetic operations (this requires algorithmic tricks, especially
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dynamic evaluation and primitive representation of residue fields). Unfortunately, the
worst case complexity of this algorithm is Ω(d δ), which is too high for our purpose. The
main reason is that computing the intermediate polynomials Gk in (2) via Hensel lifting
up to sufficient precision requires to compute Hk−1(ztkk x

qk , xmk(y + zskk )), that might
have a size Ω(d δ), as shows the following example.

Example 1. Consider F = (yα−x2)2 +xα ∈ C[[x]][y] with α > 4 odd. We have d = 2α,
δ = 2α2 − 4α + 4, H0 = F and q1,m1, z1 are respectively α, 2 and 1. Applying results
of [21, Section 3], one can show that an optimal truncation bound to compute G1 is
α2 − 4α+ 1. But the size of H0(xα, x2 (y + 1))/x4α mod xα

2−4α+1 is Θ(α3) = Θ(d δ).

To solve this problem we will rather compute the boundary polynomial H̄k using the
(ψ0, . . . , ψk)-adic expansions of F , where the ψk’s are well chosen approximate roots. As
a first step towards the proof of this result, we begin by using a sequence (φ0, . . . , φk) of
minimal polynomials of F that we now define.

2.3 Minimal polynomials of truncated rational Puiseux expansions

Rational Puiseux Expansions. We keep notations of Section 2.2. We denote π0(x, y) =
(x, y + c0(x)) and define inductively πk = πk−1 ◦ σk where

σk(x, y) := (ztkk x
qk , xmk(y + zskk + ck(x))) (4)

for k ≥ 1. It follows from (2) and (3) that there exists vk(F ) ∈ N such that

π∗kF = xvk(F )Hk Uk ∈ Kk[[x]][y], (5)

with Uk(0, 0) ∈ K×k . This key point will be used several time in the sequel.

We deduce from (4) that

πk(x, y) = (µkx
ek , αkx

rky + Sk(x)), (6)

where ek := q1 · · · qk (the ramification index discovered so far), µk, αk ∈ K×k , rk ∈ N and
Sk ∈ Kk[[x]] satisfies vx(Sk) ≤ rk. Following [21], we call the pair

πk(x, 0) = (µkx
ek , Sk(x))

a (truncated) rational Puiseux parametrisation. This provides the roots of F (namely
Puiseux series) truncated up to precision rk

ek
, that increases with k [21, Section 3.2].

Minimal polynomials. It can be shown that the exponent ek is coprime with the gcd of
the support of Sk, and that the coefficients of the parametrisation (µkx

ek , Sk) generate
the current residue field extension Kk over K (see e.g. [5, Theorems 3 and 4]). It follows
that there exists a unic monic irreducible polynomial φk ∈ K[[x]][y] such that

φk(µkx
ek , Sk(x)) = 0 and dk := deg(φk) = ekfk, (7)

5



where fk := [Kk : K] = `1 · · · `k. We call φk the kth minimal polynomial of F . Note that
φ0 = y − c0(x) and that we have the relations d = Nk dk for k = 0, . . . , g.

By construction, a function call ARNP(φk) generates the same transformations πi for
i ≤ k. In particular, we have

Data(φk) =
(
(q1,m1, P1, N

′
1), . . . , (qk,mk, Pk, N

′
k = 1)

)
with N ′i := Ni/Nk.

3 Edge data from the Φ-adic expansion

Let us fix an integer 0 ≤ k ≤ g and assume that Nk > 1. We keep using notations of
Section 2. Assuming that we know the edge data (q1,m1, P1, N1), . . . , (qk,mk, Pk, Nk)
of the Weierstrass polynomials H0, . . . ,Hk−1, together with the minimal polynomials
φ0, . . . , φk, we want to compute the boundary polynomial of the next Weierstrass poly-
nomial Hk. In the following, we will omit for readibility the index k for the sets Φ, B,
V and Λ defined below.

3.1 Main results

Φ-adic expansion. We denote φ−1 := x and let Φ = (φ−1, φ0, . . . , φk). Let

B := {(b−1, . . . , bk) ∈ Nk+2 , bi−1 < qi `i , i = 1, . . . , k} (8)

and denote ΦB :=
∏k
i=−1 φ

bi
i . Thanks to the relations deg(φi) = deg(φi−1)qi`i for all

1 ≤ i ≤ k, an induction argument shows that F admits a unique expansion

F =
∑
B∈B

fBΦB, fB ∈ K.

We call it the Φ-adic expansion of F . We have bk ≤ Nk while we do not impose any a
priori condition to the powers of φ−1 = x in this expansion. The aim of this section is
to show that one can compute H̄k from the Φ-adic expansion of F .

Newton polygon. Consider the semi-group homomorphism

vk : (K[[x]][y],×) → (N ∪ {∞},+)
H 7→ vk(H) := vx(π∗kH),

From (6), we deduce that the pull-back morphism π∗k is injective, so that vk defines a
discrete valuation. This is a valuation of transcendence degree one, thus an augmented
valuation [23, Section 4.2], in the flavour of MacLane valuations [13, 14, 23] or Montes
valuations [9, 15]. Note that v0(H) = vx(H). We associate to Φ the vector

V := (vk(φ−1), . . . , vk(φk)),
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so that vk(Φ
B) = 〈B, V 〉, where 〈 , 〉 stands for the usual scalar product. For all i ∈ N,

we define the integer

wi := min {〈B, V 〉, bk = i, fB 6= 0} − vk(F ) (9)

with convention wi :=∞ if the minimum is taken over the empty set.

Theorem 2. The Newton polygon of Hk is the lower convex hull of (i, wi)0≤i≤Nk
.

This result leads us to introduce the sets

B(i) := {B ∈ B; bk = i} and B(i, w) := {B ∈ B(i) | 〈B, V 〉 = w}

for all i ∈ N and all w ∈ N ∪ {∞}, with convention B(i,∞) = ∅.

Boundary polynomial. Consider the semi-group homomorphism

λk : (K[[x]][y],×) → (Kk,×)

H 7→ λk(H) := tcy

((
π∗k(H)

xvk(H)

)
|x=0

)
with convention λk(0) = 0, and where tcy stands for the trailing coefficient with respect
to y. We associate to Φ the vector

Λ := (λk(φ−1), . . . , λk(φk))

and denote ΛB :=
∏k
i=−1 λk(φi)

bi = λk(Φ
B). Note that ΛB ∈ Kk is non zero for all B.

We obtain the following result:

Theorem 3. Let B0 := (0, . . . , 0, Nk). The boundary polynomial H̄k of Hk equals

H̄k =
∑

(i,wi)∈N (Hk)

 ∑
B∈B(i,wi+vk(F ))

fBΛB−B0

xwiyi. (10)

Combined with the formulas (14) of Section 3.4 for the vectors V and Λ, Theorems 2
and 3 give an efficient way to decide if the Weierstrass polynomial Hk is degenerated,
and if so, to compute its edge data.

Example 2. If k = 0, we have by definition V = (1, 0) and Λ = (1, 1) while v0(F ) =
vx(H0) = 0. Assuming H0 =

∑d
j=0 ai(x)yi, we find wi = vx(ai) and Theorem 2 stands

from Definition 1. Moreover, B(i, wi) is then reduced to the point (i, wi) and Theorem
3 stands from Definition 2.
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3.2 Proof of Theorems 2 and 3

Let us first establish some basic properties of the minimal polynomials φi of F . Given a
ring A, we denote by A× the subgroup of units. Note that U ∈ A[[x, y]]× if and only if
U(0, 0) ∈ A×. For −1 ≤ i ≤ k, we introduce the notations

vk,i := vk(φi) = vx(π∗k(φi)) and λk,i := λk(φi) = tcy

((
π∗k(φi)

xvk,i

)
|x=0

)
.

Lemma 1. Let −1 ≤ i ≤ k. There exists Uk,i ∈ Kk[[x, y]]× with Uk,i(0, 0) = λk,i s.t.:

1. π∗k(φi) = xvk,i Uk,i if i < k,

2. π∗k(φk) = xvk,k y Uk,k.

Proof. As ARNP(φk) generates the same transform πk, we deduce from (5):

π∗k(φk) = xvk(φk) (y + β(x))U(x, y)

with U ∈ Kk[[x, y]]× and β ∈ Kk[[x]]. From (6) and (7), we get xvk,kU(x, 0)β(x) =
φk(µkx

ek , Sk) = 0, i.e. β = 0. Second equality follows, since U(0, 0) = λk,k by definition
of λk. First equality is then obtained by applying the pull-backs σ∗j , j = i+ 1, . . . , k to
π∗i (φi) = xvi,i y Ui,i.

Corollary 1. With the standard notations for intersection multiplicities and resultants,
we have for any G ∈ K[[x]][y] Weierstrass:

vk(G) =
(G,φk)0

fk
=
vx(Resy(G,φk))

fk
.

Proof. As vx(Sk) ≤ rk, we get from (6) vk(G) = vx(π∗k(G)) = vx(G(µkx
ek , Sk(x))).

But this last integer coincides with the intersection multiplicity of φi with any one of
the fk conjugate plane branches (i.e. irreducible factor in K[[x]][y]) of φk. The first
equality follows. The second is well known (the intersection multiplicity at (0, 0) of two
Weierstrass polynomials coincides with the x-valuation of their resultant).

Lemma 2. We have initial conditions v0,−1 = 1, v0,0 = 0, λ0,−1 = 1 and λ0,0 = 1. Let
k ≥ 1. The following relations hold (we recall qksk −mktk = 1 with 0 ≤ tk < qk) :

1. vk,k−1 = qkvk−1,k−1 +mk

2. vk,i = qkvk−1,i for all −1 ≤ i < k − 1.

3. λk,k−1 = λk−1,k−1z
tkvk−1,k−1+sk
k .

4. λk,i = λk−1,iz
tkvk−1,i

k for all −1 ≤ i < k − 1.

Proof. Initial conditions follow straightforwardly from the definitions. Using point 2 of
Lemma 1 at rank k − 1 and equality π∗k(φk−1) = σ∗k ◦ π∗k−1(φk−1), we get

π∗k(φk−1) = z
tkvk−1,k−1

k xqkvk−1,k−1+mk(y + zskk + ck)Uk−1,k−1(ztkk x
qk , xmk(y + zskk + ck)).
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As ck(0) = 0, mk > 0 and zk 6= 0, it follows that

π∗k(φk−1) = z
tkvk−1,k−1+sk
k xqk vk−1,k−1+mk Ũ(x, y)

with Ũ(0, 0) = Uk−1,k−1(0, 0), that is λk−1,k−1 by point 2 of Lemma 1. Items 1 and 3
follow. Similarly, using point 1 of Lemma 1 at rank k − 1, we get for i < k − 1

π∗k(φi) = σ∗k ◦ π∗k−1(φi) = z
tkvk−1,i

k xqkvk−1,iUk−1,i(z
tk
k x

qk , xmk(y + zskk + ck(x))).

As Uk−1,i(0, 0) = λk−1,i 6= 0 once again by point 1 of Lemma 1, items 2 and 4 follow.

The proof of both theorems is based on the following key result:

Proposition 2. For all i, w ∈ N, the family
(
ΛB, B ∈ B(i, w)

)
is free over K. In

particular, Card B(i, w) ≤ fk.

Proof. We show this property by induction on k. If k = 0, the result is obvious since
B(i, w) = {(i, w)} and Λ = (1, 1). Suppose k > 0. As λk,k is invertible and bk = i is
fixed, we are reduced to show that the family

(
ΛB, B ∈ B(0, w)

)
is free for all w ∈ N.

Suppose given a K-linear relation∑
B∈B(0,w)

cBΛB =
∑

B∈B(0,w)

cBλ
b−1

k,−1 · · ·λ
bk−1

k,k−1 = 0. (11)

Using bk = 0, points 3 and 4 in Lemma 2 give ΛB = µBz
NB
k where

µB =
k−1∏
j=−1

λ
bj
k−1,j ∈ Kk−1 and NB = bk−1sk + tk

k−1∑
j=−1

bjvk−1,j .

Points 1 (qk vk−1,k−1 = vk,k−1 −mk) and 2 (qk vk−1,j = vk,j) in Lemma 2 give

qkNB = bk−1(qksk −mktk) + tk

k−1∑
j=−1

bjvk,j = bk−1 + tkw, (12)

the second equality using 〈B, V 〉 = w and bk = 0. Since 0 ≤ bk−1 < qk`k and NB is
an integer, it follows from (12) that NB = n + α where n = dtkw/qke and 0 ≤ α < `k.
Dividing (11) by znk and using ΛB = µBz

NB
k , we get

`k−1∑
α=0

aαz
α
k = 0, where aα =

∑
B∈B(0,w),NB=α+n

cBµB.

Since aα ∈ Kk−1 and zk ∈ Kk has minimal polynomial Pk of degree `k over Kk−1, this
implies aα = 0 for all 0 ≤ α < `k, i.e., using (12):∑

B∈B(0,w)
bk−1=qk (α+n)−tk w

cBλ
b−1

k−1,−1 · · ·λ
bk−1

k−1,k−1 = 0.

By induction, we get cB = 0 for all B ∈ B(0, w), as required. The first claim is proved.
The second claim follows immediately since ΛB ∈ Kk is non zero for all B.
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Corollary 2. Consider G =
∑

B∈B(i) gBΦB non zero. Then π∗k(G) = xw yi Ũ with

Ũ ∈ Kk[[x, y]]×, w = mingB 6=0〈B, V 〉 and Ũ(0, 0) =
∑

B∈B(i,w) gBΛB 6= 0. In particular,

vk(G) = w and λk(G) = Ũ(0, 0).

Proof. By linearity of π∗k, denoting U = (Uk,−1, . . . , Uk,k) with Uk,i defined in Lemma 1,
we have

π∗k(G) =

 ∑
B∈B(i)

gB x
<B,V > UB

 yi with U(0, 0) = Λ.

Letting w = mingB 6=0〈B, V 〉, we deduce

π∗k(G) =

 ∑
B∈B(i,w)

gBΛB +R

xwyi where R ∈ Kk[[x, y]] satisfies R(0, 0) = 0.

As
∑

B∈B(i,w) gBΛB 6= 0 by Proposition 2, the first two equalities follows. The last two
equalities follow from the definitions of vk(G) and λk(G).

Proof of Theorems 2 and 3. We prove both theorems simultaneously. We may write
F =

∑Nk
i=0

∑
B∈B(i) fBΦB. Hence, Corollary 2 combined with the definition of wi and

the linearity of π∗k implies

Fk :=
π∗k(F )

xvk(F )
=

Nk∑
i=0

xwi yi Ũi

where Ũi ∈ Kk[[x, y]] is 0 if wi = ∞, and Ũi(0, 0) =
∑

B∈B(i,wi+vk(F )) fBΛB 6= 0 oth-
erwise. As Hk is Weierstrass of degree Nk, it follows from this formula combined with
(5), that N (Hk) coincides with the lower convex hull of the points (i, wi), i = 0, . . . , Nk,
proving Theorem 2. More precisely, we deduce that there exists µ ∈ K×k such that

µH̄k =
∑

(i,wi)∈N (Hk)

 ∑
B∈B(i,wi+vk(F ))

fBΛB

xwiyi.

As H̄k is Weierstrass of degree Nk, then wNk
= 0 and wi > 0 for i < Nk. The previous

equation forces

µ =
∑

B∈B(Nk,vk(F ))

fBΛB.

But F and φk being monic of respective degrees d and dk, the vector B0 = (0, . . . 0, Nk) ∈
B is the unique exponent in the Φ-adic expansion of F with last coordinate bk = Nk =
d/dk and we have moreover fB0 = 1. This forces B(Nk, vk(F )) = {B0} and we get
µ = ΛB0 , thus proving Theorem 3. �
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3.3 Formulas for λk(φk) and vk(φk)

In order to use Theorems 2 and 3 for computing the edge data of Hk, we need to compute
vk,k = vk(φk), λk,k = λk(φk), vk(F ) and λk(F ) in terms of the previously computed edge
data (q1,m1, P1, N1), . . . , (qk,mk, Pk, Nk) of F . We begin with the following lemma:

Lemma 3. Let 0 ≤ k ≤ g. We have vk(F ) = Nkvk,k and λk(F ) = λNk
k,k.

Proof. We have shown during the proof of Theorems 2 and 3 that B(Nk, vk(F )) = {B0}
with B0 = (0, . . . , 0, Nk). By definition of B(Nk, vk(F )), we get the first point. From
the definition of λk, we have λk(F ) = tcy (Fk(0, y)) = tcy

(
F̄k(0, y)

)
and we have shown

that F̄k(0, y) = ΛB0H̄k(0, y). Since H̄k is monic, we deduce tcy
(
F̄k(0, y)

)
= ΛB0 .

Proposition 3. For any 1 ≤ k ≤ g, we have the equalities

vk,k = qk`kvk,k−1 and λk,k = qkz
1−sk−`k
k P ′k(zk)λ

qk`k
k,k−1.

Proof. To simplify the notations of this proof, let us denote w = vk−1(φk), γ = λk−1(φk)
and (m, q, s, t, `, z) = (mk, qk, sk, tk, `k, zk). Remember from Section 2 that by definition
of φk, both φk and F generate the same transformations σi and τi for i ≤ k. As in (5),
there exists Ũk−1 ∈ K[[x, y]]× satisfying Ũk−1(0, 0) = γ and H̃k−1 ∈ K[[x]][y] Weierstrass
of degree q ` such that π∗k−1(φk) = xwH̃k−1Ũk−1, where

H̃k−1(x, y) = Pk(x
−m yq)xm` +

∑
mi+qj>mq`

hij x
j yi.

We deduce that there exists R0, R1, R2 ∈ Kk[[x, y]] such that

π∗k(φk) := (π∗k−1(φk))(z
txq, xm(y + zs + ck(x)))

= ztwxqw
(
ztm` xmq`(Gk + xR0)

)
(γ + xR1 + y R2)

where we let Gk(x, y) := Pk(z
−tm(y + zs + ck(x))q) ∈ Kk[[x]][y]. It follows that there

exists R ∈ Kk[[x, y]] such that

π∗k(φk) = zt(w+m`) xq (w+m`) ((γ + y R2)Gk + xR) . (13)

As Gk(0, y) is not identically zero, we deduce from (13) that vk(φk) = q (w+m`). Using
Lemma 3 for F = φk and the valuation vk−1, together with Point 1 of Lemma 2, we have
w + m` = `vk,k−1, which implies vk,k = q ` vk,k−1 as expected. Using ck(0) = 0 and the
relation sq − tm = 1, we get Gk(0, 0) = Pk(zk) = 0 and ∂yGk(0, 0) = qz1−sP ′k(z) 6= 0.
Combined with (13), this gives

λk,k = γzt ` vk,k−1
(
qz1−sP ′k(z)

)
= γ zq ` t vk−1,k−1+` tm+1−s q P ′k(z),

the second equality using Point 1 of Lemma 2 once again. Now, using Lemma 3 for
F = φk and the morphism λk−1, we get γ = λ`qk−1,k−1 i.e. λk,k = qP ′k(z)λ

q`
k,k−1z

1−s−`.
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3.4 Simple formulas for V and Λ

For convenience to the reader, let us summarize the formulas which allow to compute in
a simple recursive way both lists V = (vk,−1, . . . , vk,k) and Λ = (λk,−1, . . . , λk,k).

If k = 0, we let V = (1, 0) and Λ = (1, 1). Assume k ≥ 1. Given the lists V and Λ at
rank k− 1 and given the k-th edge data (qk,mk, Pk, Nk), we update both lists at rank k
thanks to the formulas:

vk,i = qkvk−1,i −1 ≤ i < k − 1

vk,k−1 = qkvk−1,k−1 +mk

vk,k = qk`kvk,k−1


λk,i = λk−1,iz

tkvk−1,i

k −1 ≤ i < k − 1

λk,k−1 = λk−1,k−1z
tkvk−1,k−1+sk
k

λk,k = qkz
1−sk−`k
k P ′k(zk)λ

qk`k
k,k−1

(14)

where qksk −mktk = 1, 0 ≤ tk < qk and zk = Zk mod Pk.

4 From minimal polynomials to approximate roots

Given Φ = (φ−1, . . . , φk) and F =
∑
fBΦB the Φ-adic expansion of F , the updated

lists V and Λ allow to compute in an efficient way the boundary polynomial H̄k using
formulas (9) and (10). Unfortunately, we do not know a way to compute the minimal
polynomials φk in our aimed complexity bound: the computation of the yNk−1 coefficient
of Gk up to some suitable precision might cost Ω(d δ) as explained in Section 2.

We now show that the main conclusions of all previous results remain true if we replace φk
by the N th

k -approximate root ψk of F , with the great advantage that these approximate
roots can be computed in the aimed complexity (see Section 5). Up to our knowledge,
such a strategy was introduced by Abhyankar who developped in [1] an irreducibility
criterion in K[[x, y]] avoiding any Newton-Puiseux type transforms.

4.1 Approximate roots and main result

Approximate roots. The approximate roots of a monic polynomial F are defined thanks
to the following proposition:

Proposition 4. (see e.g. [16, Proposition 3.1]). Let F ∈ A[y] be monic of degree d,
with A a ring whose characteristic does not divide d. Let N ∈ N dividing d. There exists
a unique polynomial ψ ∈ A[y] monic of degree d/N such that deg(F − ψN ) < d− d/N .
We call it the N th approximate roots of F .

A simple degree argument implies that ψ is the N th-approximate root of F if and only if
the ψ-adic expansion

∑N
i=0 aiψ

i of F satisfies aN−1 = 0. For instance, if F =
∑d

i=0 aiy
i,

the dth approximate root coincides with the Tschirnhausen transform of y

τF (y) = y +
ad−1

d
.

12



More generally, the N th approximate root can be constructed as follows. Given φ ∈ A[y]
monic of degree d/N and given F =

∑N
i=0 aiφ

i the φ-adic expansion of F , we consider
the new polynomial

τF (φ) := φ+
aN−1

N

which is again monic of degree d/N . It can be shown that the resulting τF (φ)-adic ex-
pansion F =

∑
a′iτF (φ)i satisfies deg(a′N−1) < deg(aN−1) < d/N (see e.g. [16, Proof of

Proposition 6.3]). Hence, after applying at most d/N times the operator τF , the coeffi-
cient a′N−1 vanishes and the polynomial τF ◦ · · · ◦ τF (φ) coincides with the approximate
root ψ of F . Although this is not the best strategy from a complexity point of view (see
Section 5), this construction will be used to prove Theorem 4 below.

Main result. We still consider F ∈ K[[x]][y] Weierstrass of degree d and keep notations
from Section 2. We denote ψ−1 := x and, for all k = 0, . . . , g, we denote ψk the N th

k -
approximate root of F . Fixing 0 ≤ k ≤ g, we denote Ψ = (ψ−1, ψ0, . . . , ψk), omitting
once again the index k for readibility.

Since deg Ψ = deg Φ by definition, the exponents of the Ψ-adic expansion

F =
∑
B∈B

f ′BΨB, f ′B ∈ K

take their values in the same set B introduced in (8). In the following, we denote by
w′i ∈ N the new integer defined by (9) when replacing fB by f ′B and we denote H̄ ′k the
new polynomial obtained when replacing wi by w′i and fB by f ′B in (10).

Theorem 4. We have H̄k = H̄ ′k for 0 ≤ k < g and the boundary polynomials H̄g and
H̄ ′g have same restriction to their Newton polygon’s lowest edge.

In other words, Theorems 2 and 3 hold when replacing minimal polynomials by approx-
imate roots, up to a minor difference when k = g that has no impact for degeneracy
tests.

Intermediate results. The proof of Theorem 4 requires several steps. We denote by
−mg+1/qg+1 the slope of the lowest edge of Hg.

Lemma 4. We have vk(ψk − φk) > vk(φk) +mk+1/qk+1 for all k = 0, . . . , g.

Proof. Let (q,m) = (qk+1,mk+1). The lemma is true if ψk = φk and ψk is obtained after
successive applications of the operator τF to φk. It is thus sufficient to prove

vk(φ− φk) > vk(φk) +m/q =⇒ vk(τF (φ)− φk) > vk(φk) +m/q

for any φ ∈ K[[x]][y] monic of degree dk. Suppose given such a φ and consider the φ-adic
expansion F =

∑Nk
j=0 ajφ

j . Then this implication holds if and only if

vk(aNk−1) > vk(φk) +m/q. (15)

13



• Case φ = φk. As φ0 = ψ0 = y + c0, we do not need to consider the case k = 0. Let
k ≥ 1. Theorem 2 and Lemma 3 give vk(aNk−1) ≥ vk(F ) + m/q = Nk vk(φk) + m/q.
Note that vk(φk) > 0 when k ≥ 1 by construction. We are thus done when Nk > 1. But
Nk = 1 means k = g and Hg = y, so that vg(a0) =∞. The claim follows.

• Case φ 6= φk. First note that vk(φ − φk) > vk(φk) implies vk(φ) = vk(φk). As
deg(φ − φk) < dk, we deduce from Corollary 2 (applied to G = φ − φk and i = 0) and
Lemma 1 that

π∗k(φ) = π∗k(φ− φk) + π∗k(φk) = xvk(φ) (y + xαŨ)Uk,k

where α := vk(φ− φk)− vk(φk) > m/q (hypothesis) and for some unit U ∈ Kk[[x, y]]×.
As ai has also degree < dk, we deduce again from Corollary 2 that when ai 6= 0,

π∗k(aiφ
i) = xαi (y + xαU)i Ui, (16)

where αi := vk(aiφ
i) and Ui ∈ K[[x, y]]×. As α > m/q, this means that the lowest

line with slope −q/m which intersects the support of π∗k(aiφ
i) intersects it at the unique

point (i, αi). Since π∗k(F ) =
∑Nk

i=0 π
∗
k(aiφ

i), we deduce that the edge of slope −q/m of the
Newton polygon of π∗k(F ) coincides with the edge of slope −q/m of the lower convex hull
of ((i, αi) ; ai 6= 0, 0 ≤ i ≤ Nk). Thanks to (5) combined with vk(F ) = Nkvk(φk) (Lemma
3) and vk(φk) = vk(φ) (hypothesis), we deduce that the lowest edge ∆ of Hk (with slope
−q/m) coincides with the edge of slope −q/m of the lower convex hull of the points
((i, vk(ai) + (i−Nk) vk(φ)) ; ai 6= 0, 0 ≤ i ≤ Nk). Since Hk is monic of degree Nk with
no terms of degree Nk−1, we deduce that (Nk, 0) ∈ ∆ while (Nk−1, vk(aNk−1)−vk(φ))
must lie above ∆. It follows that mNk < m(Nk − 1) + q(vk(aNk−1)− vk(φ)), leading to
the required inequality vk(aNk−1) > vk(φ) +m/q. The lemma is proved.

Proposition 5. We have vk(Ψ) = vk(Φ) and λk(Ψ) = λk(Φ) for all k = 0, . . . , g.

Proof. We show this result by induction. If k = 0, we are done since ψ0 = τF (y) = φ0.
Let us fix 1 ≤ k ≤ g and assume that Proposition 5 holds for all k′ < k. We need to show
that vk(ψi) = vk(φi) and λk(ψi) = λk(φi) for all i ≤ k. Case i = k is a direct consequence
of Lemma 4. For i = k − 1, there is nothing to prove if φk−1 = ψk−1. Otherwise, using
the linearity of π∗k−1, Corollary 2 (applied at rank k−1 with G = φk−1−ψk−1 and i = 0)

and Lemma 4 give π∗k−1(ψk−1) = π∗k−1(φk−1) + xαŨ with α > vk−1(φk−1) + mk/qk and

Ũ ∈ Kk−1[[x, y]]×. We deduce π∗k(ψk−1) = π∗k(φk−1) + xqkαUα with Uα ∈ Kk[[x, y]]× and
qk α > vk(φk−1) using Lemma 2 (qk vk−1,k−1 + mk = vk,k−1). This forces vk(ψk−1) =
vk(φk−1) and λk(ψk−1) = λk(φk−1). Finally, for i < k − 1, as deg(ψi) < dk−1, Corollary
2 (applied at rank k − 1 with G = ψi and i = 0) gives

π∗k−1(ψi) = xvk−1(ψi)λk−1(ψi)Ui = xvk−1(φi)λk−1(φi)Ui,

where Ui(0, 0) = 1 (second equality by induction). Applying σ∗k and using Lemma 2, we
conclude in the same way vk(ψi) = vk(φi) and λk(ψi) = λk(φi).
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Corollary 3. Let G of degree less than dk and
∑
g′BΨB its Ψ-adic expansion. Then

vk(G) = min(〈B, V 〉, g′B 6= 0) and λk(G) =
∑

B∈B(0,vk(G))

g′BΛB.

In particular, if G has Φ-adic expansion
∑
gBΦB, then gB = g′B when 〈B, V 〉 = vk(G).

Proof. As already shown in the proof of Proposition 5, from Corollary 2, if i < k, we
have π∗k(ψi) = xvk,iλk,i Ui with Ui(0, 0) = 1. As deg(G) < dk, we deduce

π∗k(G) =
∑

g′BΛBx〈B,V 〉UB

with UB(0, 0) = 1. This shows the result, using Proposition 2.

Proof of Theorem 4. Write F =
∑

i aiψ
i
k the ψk-adic expansion of F . Similarly to

(16), when ai 6= 0, Corollary 2 and Lemma 4 imply:

π∗k(aiψ
i
k) = xvk(aiψ

i
k) (y + xα Ũ)i U, (17)

with α > mk+1/qk+1, U, Ũ ∈ Kk[[x, y]]× and U(0, 0) = λk(ai ψ
i
k). Applying the same

argument than in the proof of Lemma 4, we get that each point (i, wi = Nk−imk+1/qk+1)
of the lowest edge ∆ of the Newton polygon of Hk (hence the whole polygon if k < g) is
actually (i, vk(ai ψ

i
k) − vk(F )), that is (i, w′i) from Corollary 3 (applied to G = ai) and

Proposition 5. This shows that we may replace wi by w′i in (9). More precisely, it follows
from (17) that the restriction H̄k|∆ of H̄k to ∆ is uniquely determined by the equality

λk(F )xvk(F )H̄k|∆ =
∑

(i,w′i)∈∆

λk(aiψ
i
k)x

vk(aiψ
i
k)yi.

Using again Corollary 3 and Proposition 5, we get

H̄k|∆ =
∑

(i,w′i)∈∆

 ∑
B∈B(i,w′i+vk(F ))

f ′BΛB−B0

xw
′
iyi,

as required. �

Remark 1. Theorem 4 would still hold when replacing ψk by any monic polynomial φ
of same degree for which π∗k(φ) = xvk,k (y + β(x))U with vx(β) > mk+1/qk+1.

4.2 An Abhyankar type irreducibility test

Theorem 4 leads to the following sketch of algorithm. Subroutines AppRoot, Expand and
BoundaryPol respectively compute the approximate roots, the Ψ-adic expansion and the
current lowest boundary polynomial (using (9) and (10)). They are detailed in Section
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5. Also, considerations about truncation bounds is postponed to Section 5.2. Given a
ring L and P ∈ L[Z], we denote by LP = L[Z]/(P (Z).

Algorithm: Irreducible(F,L)

Input: F ∈ K[[x]][y] Weierstrass with d = deg(F ) not divisible by the
characteristic of K ; L a field extension of K.

Output: True if F is irreducible in L[[x]][y], and False otherwise.
1 N ← d, V ← (1, 0), Λ← (1, 1), Ψ← (x);
2 while N > 1 do
3 Ψ← Ψ ∪ AppRoot(F,N);
4

∑
B fBΨB ← Expand(F,Ψ);

5 H̄ ← BoundaryPol(F,Ψ, V,Λ);
6 if H̄ is not degenerated over L then return False ;
7 (q,m, P,N)← EdgeData(H̄);
8 Update the lists V,Λ using (14);
9 L← LP

10 return True

Theorem 5. Algorithm Irreducible returns the correct answer.

Proof. This follows from Theorem 2, 3 and 4, together with Proposition 1.

Let us illustrate this algorithm on two simple examples.

Example 3. Let F (x, y) = (y2 − x3)2 − x7. This example was suggested by Kuo who
asked if we could show that F is reducible in Q[[x]][y] without performing Newton-
Puiseux type tranforms. Abhyankhar solved this challenge in [1] thanks to approximate
roots. Let us show that we can prove further that F is reducible in Q[[x]][y] without
performing Newton-Puiseux type tranforms.

Initialisation. Start from ψ−1 = x, N0 = d = 4, V = (1, 0) and Λ = (1, 1).

Step k=0. The 4th approximate root of F is ψ0 = y. So H0 = F and we deduce from
(10) (see Exemple 2) that H̄0 = (y2 − x3)2. Hence, F is degenerated with edge data
(q1,m1, P1, N1) = (2, 3, Z1 − 1, 2) and we update V = (2, 3, 6) and Λ = (1, 1, 2) thanks
to (14), using here z1 = 1 mod P1.

Step k=1. The 2nd approximate root of F is ψ1 = y2 − x3 and F has Ψ-adic expansion
F = ψ2

1 − ψ7
−1. We have v1(ψ2

1) = 2v1,1 = 12, λ1(ψ2
1) = λ2

1,1 = 4 while v1(ψ7
−1) =

7v−1,1 = 14 and λ1(ψ7
−1) = λ7

−1,1 = 1. We deduce from (10) that H̄1 = y2 − 1
4x

2. As

the polynomial Z2
2 − 1

4 is reducible in QP1 [Z2] = Q[Z2], we deduce that F is reducible in
Q[[x]][y].

Example 4. Consider F = ((y2 − x3)2 + 4x8)2 + x14(y2 − x3) (we assume that we only
know its expanded form at first).

Initialisation. We start with ψ−1 = x, N0 = d = 8, V = (1, 0) and Λ = (1, 1).
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Step k=0. The 8th approximate root of F is ψ0 = y. The monomials reaching the
minimal values (9) in the Ψ = (ψ−1, ψ0)-adic expansion of F are ψ8

0, −4ψ3
−1ψ

6
0, 6ψ6

−1ψ
4
0,

−4ψ9
−1ψ

2
0, ψ12

−1 and we deduce from (10) that H̄0 = (y2−x3)4. Hence, (q1,m1, P1, N1) =
(2, 3, Z1 − 1, 4) and we update V = (2, 3, 6) and Λ = (1, 1, 2) thanks to (14), using here
z1 = 1 mod P1.

Step k=1. The 4th approximate root of F is ψ1 = y2−x3 and we get the current Ψ-adic
expansion F = ψ4

1 + 8ψ8
−1ψ

2
1 + ψ14

−1ψ1 + 16ψ16
−1. The monomials reaching the minimal

values (9) are ψ4
1, 8ψ8

−1ψ
2
1, 16ψ16

−1 and we deduce from (10) that H̄1 = (y2 +x4)2. Hence
(q2,m2, P2, N2) = (1, 2, Z2

2 + 1, 2) and we update V = (2, 3, 8, 16) and Λ = (1, 1, 2z2, 8z2)
thanks to (14), where z2 = Z2 mod P2 and using the Bézout relation q2s2 −m2t2 = 1
with (s2, t2) = (1, 0). Note that we know at this point that F is reducible in Q[[x]][y]
since P2 has two distinct roots in Q.

Step k=2. The 2nd approximate roots of F is ψ2 = (y2−x3)2+4x8 and we get the current
Ψ-adic expansion F = ψ2

2 +ψ14
−1ψ1. The monomials reaching the minimal values (9) are

ψ2
2, ψ14

−1ψ1 and we deduce from (10) that H̄2 = y2+(32z2)−1x (note that z2 is invertible in
QP2). Hence H̄2 is degenerated with edge data (q3,m3, P3, N3) = (2, 1, Z3 + (32z2)−1, 1).
As N3 = 1, we deduce that F is irreducible in Q[[x]][y] (g = 3 here).

Remark 2. Note that for k ≥ 2, we really need to consider the Ψ-adic expansion: the
(x, y, ψk)-adic expansion is not enough to compute the next data. At step k = 2 in the
previous example, the ψ2-adic expansion of F is F = ψ2

2 + a where a = x14y2 − x17.
We need to compute v2(a). Using the Ψ-adic expansion a = ψ14

−1ψ1, we find v2(a) =
14× 2 + 8 = 36. Considering the (x, y)-adic expansion of a would have led to the wrong
value v2(x14y2) = v2(x17) = 34 < 36.

4.3 Quasi-irreducibility

In order to perform a unique irreducibility test, we will rather relax the degeneracy
condition by allowing square-freeness of the involved residual polynomial P1, . . . , Pg,
and eventually check if Kg is a field. This leads to what we call a quasi-irreducibility
test. The fields Kk’s become ring extensions of K isomorphic to a direct product of fields
and we have to take care of zero divisors.

Let A = L0⊕ · · · ⊕Lr be a direct product of perfect fields. We say that a polynomial H
defined over A is square-free if its projections under the natural morphisms A→ Li are
square-free (in the usual sense over a field). If the polynomial is univariate and monic,
this exactly means that its discriminant is not a zero divisor in A.

Definition 4. We say that a Weierstrass polynomial F ∈ A[[x]][y] is quasi-degenerated
if its boundary polynomial has shape

F̄ =

(
P

(
yq

xm

)
xm deg(P )

)N
with q,m coprime and P ∈ A[Z] monic, square-free and satisfying P (0) ∈ A×.
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We abusively still call P the residual polynomial of F and (q,m, P,N) the edge data of
F , with convention (q,m) = (1, 0) if the Newton polygon is reduced to a point.

Definition 5. We call Quasi-Irreducible the new algorithm obtained when replacing
degenerated tests by quasi-degenerated tests in algorithm Irreducible. F ∈ K[[x]][y]
Weierstrass is said quasi-irreducible over L if Quasi-Irreducible(F,L) outputs True.

As Pk(0) ∈ K×k−1 by assumption, zk is not a zero divisor in Kk. It follows straight-
forwardly that all results of Section 3 and Subsection 4.1 still hold when considering
quasi-degeneracy. In particular, algorithm Quasi-Irreducible is well-defined and Def-
inition 5 makes sense.

Lemma 5. A square-free monic polynomial F ∈ K[[x]][y] is irreducible over K if and
only if it is quasi-irreducible and Kg is a field.

Proof. This follows immediately from Definitions 4 and 5 with Theorem 5.

5 Complexity. Proof of Theorem 1

5.1 Complexity model

We use the algebraic RAM model of Kaltofen [10, Section 2], counting only the number of
arithmetic operations in our base field K. Most subroutines are deterministic; for them,
we consider the worst case. However, computation of primitive elements in residue
fields uses a probabilistic algorithm of Las Vegas type, and we consider then the average
running time. We denote by M(d) the number of arithmetic operations for multiplying
two polynomials of degree d. We use fast multiplication, so that M(d) ∈ Õ (d) and
d′M(d) ≤ M(d′d), see [8, Section 8.3]. We use the classical notations O() and Õ () that
respectively hide constant and logarithmic factors [8, Chapter 25, Section 7].

F being Weierstrass, we have the following result. As δ > 0, that ensures in particular
that e.g. δ log(d) ∈ Õ (δ) (this will be used several times in the following).

Lemma 6. We have d − 1 ≤ δ. If F is quasi-irreducible with residual degree f , then
(d− 1) f ≤ δ.

Proof. As F is Weierstrass, all its Puiseux series have valuation at least 1/d. Seeing δ as
the sum of the valuations of the difference of the Puiseux series of F concludes the first
point. In the second case, the minimum valuation for the Puiseux series of F becomes
f/d (just use the classical equality d = e f).

Primitive representation of residue rings. The K-algebra Kk is given inductively as a
tower extension of K defined by the radical triangular ideal (P1(Z1), . . . , Pk(Z1, . . . , Zk)).
It turns out that such a representation does not allow to reduce a basic operation in Kk
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to Õ (fk) operations over K (see [21] for details). To solve this problem, we compute a
primitive representation of Kk, introducing the notation KQ := K[T ]/(Q(T )).

Proposition 6. Let Q ∈ K[T ] and P ∈ KQ[Z] square-free, and assume that K has
at least (degT (Q) degZ(P ))2 elements. There exists a Las Vegas algorithm Primitive

that returns (Q1, τ) with Q1 ∈ K[W ] square-free and τ : K[T,Z]/(Q,P ) → K[W ]/(Q1)
an isomorphism. It takes an expected O((degT (Q) degZ(P ))(ω+1)/2) operations over K.
Given α ∈ K[T,Z]/(Q,P ), one can compute τ(α) in less than Õ (degT (Q)2 degZ(P )).

Proof. Use [21, Proposition 15] with I = (Z1, Q(Z2)) (see notations therein).

In the following, we use that an operation in Kk costs Õ (fk) operations in K.

Remark 3. Another way to deal with tower extensions would be the recent preprint [11].
This would make all algorithms deterministic, with a cost O(δ1+o(1)) instead of Õ (δ).
Note also [12] for dynamic evaluation.

5.2 Truncation bounds

In order to estimate the complexity in terms of arithmetic operations in K, we will
compute approximate roots and Ψ-adic expansions modulo a suitable truncation bound
for the powers of ψ−1 = x. We show here that the required sharp precision is the
same than the one obtained in [21, Section 3] for the Newton-Puiseux type algorithm.
Note also [2, Theorem 2.3, page 144] that provides similar results in the context of
irreducibility test. In the following, when we say that we truncate a polynomial with
precision τ ∈ Q, we mean that we keep only powers of X less or equal than τ .

The successive polynomials generated by the function call Quasi-Irreducible(F ) are
still denoted H0, . . . ,Hg, and we let (qg+1,mg+1) stand for the slope of the lowest edge of
Hg, with convention (qg+1,mg+1) = (1, 0) if Ng = 1. As deg(Hk) = Nk and N (Hk) has
a lowest edge of slope −mk+1/qk+1, the computation of the lowest boundary polynomial
H̄k only depends on Hk truncated with precision Nkmk+1/qk+1. Combined with (5), and
using vx(π∗k(x)) = ek, we deduce that the kth-edge data only depends on F truncated
with precision

ηk :=
vk(F )

ek
+Nk

mk+1

ek+1
.

Denoting η(F ) := max
0≤k≤g

(ηk), we deduce that running Quasi-Irreducible modulo

xη(F )+1 returns the correct answer, this bound being sharp by construction.

Lemma 7. Denoting η−1 = 0, we have ηk = ηk−1 +
Nkmk+1

ek+1
for any 0 ≤ k ≤ g. In

particular, η(F ) = ηg =
∑g+1

k=1
Nk−1mk

ek
.

Proof. As vk(F ) = Nk vk,k from Lemma 3, we get for any 0 ≤ k ≤ g

ηk =
Nkvk,k
ek

+
Nkmk+1

ek+1
.
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As v0,0 = 0, case k = 0 is proved. Let k ≥ 1. Previous formula used at rank k − 1 gives

ηk−1 =
Nk−1vk,k−1

ek
=
Nkvk,k
ek

,

first equality using Point 1 of Lemma 2 (vk,k−1 = qkvk−1,k−1 +mk) and second equality
using Nk−1 = qk`kNk and equality vk,k = qk`kvk,k−1 of Proposition 3. This gives ηk =

ηk−1 +
Nkmk+1

ek+1
as required. The formula for η(F ) follows straightforwardly.

Remark 4. We have the formula ηk =
vx(π∗kF (x,0))

ek+1
= (F, φk)0

dk
for k < g, from respectively

(5) and Corollary 1. We deduce in particular that the sequence (N0, d0η0, . . . , dg−1ηg−1)
is a minimal set of generators of the semi-group of F when F is irreducible in K[[x]][y] ;
see e.g. [16, Proposition 4.2 and Theorem 5.1].

Proposition 7. Let F ∈ K[[x]][y] be monic and separable of degree d, with discriminant
valuation δ. Then η(F ) ≤ 2δ

d . If moreover F is quasi-irreducible, then η(F ) ≥ δ/d.

Proof. It follows from Lemma 7 that η(F ) is smaller or equal than the quantity “Ni”
defined in [21, Subsection 3.3] (take care of notations, these Ni are not the same as
those defined here), with equality if F is quasi-irreducible. From [21, Corollary 4], we
deduce η(F ) ≤ 2vi for i = 1, . . . , d, where vi := vx(∂yF (yi)), yi denoting the roots of
F . As δ =

∑
vi, we have min vi ≤ δ/d and the upper bound for η(F ) follows. If F is

quasi-irreducible, then we have also vi ≤ η(F ) = Ni by [21, Corollary 4]. As all vi’s are
equal in that case, the lower bound follows too.

Remark 5 (Dealing with the precision). As δ is not given, we do not have an a piori
bound for the precision η(F ). To deal with this problem, one can either use relaxed
computations [25] or just restart the whole computation when we realise that we are
missing precision. With both solutions, we need to increase the precision each time
the computed lowest edge of the Newton polygon is not “guaranted” in the sense of [21,
Definition 8 and Figure 1.b]. In algorithm Quasi-Irreducible below, we use the second
option; this is done at lines 6 and 7, thanks to Lemma 7. In terms of complexity, both
solutions only multiply the complexity bound by a logarithmic factor.

5.3 Main subroutines

Computing approximate roots and Ψ-adic expansion.

Proposition 8. There exists an algorithm AppRoot which given F ∈ A[y] a degree d
monic polynomial defined over a ring of characteristic not dividing d and given N which
divides d, returns the N th approximate root ψ of F with M(d) operations over A.

Proof. Let G = ydF (1/y) be the reciprocal polynomial of F . So G(0) = 1 and there
exists a unique series S ∈ A[[y]] such that S(0) = 1 and G = SN . Then ψ is the reciprocal

polynomial of the truncated series dSe
d
N (see e.g. [16, Proposition 3.4]). The serie S is
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solution of the equation ZN − G = 0 in A[[y]][Z] and can be computed up to precision
d/N within M(d) operations by quadratic Newton iteration [8, Theorem 9.25].

Proposition 9. There exists an algorihm Expand which, given F ∈ A[y] of degree d
and Ψ = (ψ0, . . . , ψk) a collection of monic polynomials ψi ∈ A[y] of strictly increasing
degrees d0 < · · · < dk ≤ d returns the reduced Ψ-adic expansion of F in less than
O((k + 1)M(d) log(d)) arithmetic operations over A.

Proof. The ψk-adic expansion of F =
∑
aiψ

i
k requires O(M(d) log(d)) operations by

[8, Theorem 9.15]. If k > 0, we recursively compute the (ψ0, . . . , φk−1)-adic expansion
of ai in O(kM(deg ai) log(deg ai)) operations. Since deg(ai) < dk, summing over all
i = 0, . . . , bd/dkc gives O(kM(d) log(d)) operations.

Computing boundary polynomials.

Proposition 10. Given F and Ψ = (ψ−1, . . . , ψk) modulo xη(F )+1, V = (vk,−1, . . . , vk,k)
and Λ = (λk,−1, . . . , λk,k), there exists an algorithm BoundaryPol that computes the
lowest boundary polynomial H̄k ∈ Kk[x, y] within Õ (δ + f2

k ) operations over K.

Proof. First compute the Ψ-adic expansion F =
∑
fBΨB modulo xη+1, with η := η(F ).

As η ≤ 2δ/d, this is Õ (δ) by Proposition 9 applied with A = K[x]/(xη+1), using
k ≤ log(d) and Lemma 6. We compute the lowest edge of N (Hk) via Theorem 2; this
takes no arithmetic operations3. It remains to compute the coefficient of each monomial
xwiyi of H̄k, which is

ck,i :=
∑

B∈B(i,wi+vk(F ))

fBΛB−B0

by Theorem 3. The computation of ΛB0 = λNk
k,k takes O(log(d)) operations over Kk

via fast exponentiation. Also, there are at most fk monomials ΛB to compute from
Proposition 2. Each of them can be computed in O(k log(δ)) operations in Kk via
fast exponentiation on each λk,i (we have wi ≤ vx(Hk(x, 0)) = Nkmk+1/qk+1, thus
wi + vk(F ) ≤ ekηk ≤ 2δ by definition of ηk and Proposition 7). This concludes.

Testing quasi-degeneracy and computing edge data.

Proposition 11. Given Q ∈ K[Z] square-free and H̄ ∈ KQ[x, y] monic in y and quasi-
homogeneous, there exists an algorithm Quasi-Degenerated that returns False if H̄ is
not quasi-degenerated, and the edge data (q,m, P,N) of H̄ otherwise. It takes at most
Õ (degZ(Q) degy(H̄)/q) operations over K.

Proof. As H̄ is quasi-homogeneous, we have H̄ = P0(yq/xm)xmdeg(P0) for some coprime
integers q,m ∈ N and some P0 ∈ KQ[T ] of degree degy(H̄)/q. We need to check if

P0 = PN for some N ∈ N and P ∈ KQ[T ] square-free (i.e (Q,P ) radical ideal in K[Z, T ]),

3for the interested reader, it can easily be shown that this takes Õ (δ) bit operations
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and that P (0) /∈ K×Q. The first task is a special case of [21, Proposition 14] and fits in
the aimed bound. Second one is just a gcd computation, bounded by Õ (degZ(Q)).

5.4 The main algorithm. Proof of Theorem 1

Algorithm: Quasi-Irreducible(F, η = 1)

Input: F ∈ K[[x]][y] Weierstrass of degree d not divisible by Char(K).
Output: False if F is not quasi-irreducible, and (Data, Q) otherwise, with

Data the edge data of F and Kg = KQ.
1 F ← F mod xη ; // All computations modulo xη

2 N ← d, V ← [1, 0], Λ← [1, 1], Ψ← [x], Q← Z, (e, η′)← (1, 0), Data← [ ];
3 while N > 1 do
4 Ψ← Ψ ∪ AppRoot(F,N);
5 H̄ ← BoundaryPol(F,Ψ, V,Λ) ; // H̄ ∈ KQ[x, y]

6 e← q e ; η′ ← η′ + N m
e ; // (q,m) the lowest edge of H̄

7 if η ≤ η′ then return Quasi-Irreducible(F, 2η);
8 (Bool, (q,m, P,N))← Quasi-Degenerated(H̄,Q) ;
9 if Bool = False then return False ;

10 Data← Data ∪ (q,m, P,N);
11 Update the lists V,Λ using (14);
12 (Q, τ)← Primitive(Q,P );
13 Λ← τ(Λ);

14 return (Data, Q);

Proposition 12. Running Quasi-Irreducible(F ) returns the correct output in an
expected Õ (δ) operations over K.

Proof. The polynomial H̄ at line 8 is the correct lowest boundary polynomial thanks to
Lemma 7 (see also Remark 5). Then correctness follows from Theorem 5 and Definition
5. As qk`k ≥ 2, we have g ≤ log2(d), while recursive calls of line 7 multiply the complex-
ity by at most a logarithm too. Considering one iteration, and using η < 2 η(F ) ≤ 4 δ/d
(second inequality by Proposition 7), lines 4, 5, 8, 12 and 13 cost respectively Õ (δ),

Õ (δ + f2
k ), Õ (fkNk/qk) ⊂ Õ (d), Õ (f

(ω+1)/2
k ) and Õ (f2

k ) from respectively Proposi-
tions 8, 10, 11, 6 and 6 once again. Summing up, we conclude from Lemma 6 (note that
if F is not quasi-irreducible, as long as the algorithm does not output False, F “looks”
quasi-irreducible, so that we still have (d− 1) fg ≤ δ).

Proof of Theorem 1. Thanks to Lemma 5, F is irreducible if and only if it is quasi-
irreducible and the residue ring Kg = K[Z]/(Q(Z)) is a field. This can be checked with
a univariate irreducibility test in K[Z] of degree deg(Q) = f ≤ d. �

Note that there are well known formulas for the valuation of the discriminant δ in terms
of the edge data, see e.g. [22, Corollary 5].
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Example 5. Let us illustrate algorithm Quasi-Irreducible on a simple example, con-
sidering F = (y4 − x2)4 + y6x11 − y4x12 − y2x13 + x14 + x16 with K = Q.

Initialisation. We start with N0 = d = 16, ψ−1 = x, V = (1, 0) and λ = (1, 1).

Step 0. The 16th-approximate roots of F is ψ0 = y and we find H̄0 = (y4 − x2)4. So H0

is quasi-degenerated with edge data (q1,m1, P1, N1) = (2, 1, Z2
1 − 1, 4). Using (14), we

update V = (2, 1, 4) and λ = (z1, z1, 4z1), with z1 = Z1 mod P1 (i.e. z2
1 = 1).

Step 1. We compute the 4th-approximate root ψ1 = y4−x2 of F , then its Ψ-adic expan-
sion F = ψ4

1 +ψ11
−1ψ

2
0ψ1−ψ12

−1ψ1 +ψ16
−1. All involved monomials reach the minimal values

(9), and we deduce from (10) and equality z2
1 = 1 that H̄1 = y4+ (1−z1)

43
x12y+ 1

44
x16, which

is quasi-homogeneous with slope (q2,m2) = (1, 4). We find that P0 = Z4
2 + (1−z1)

43
Z2 + 1

44

is square-free over Q1. Hence, H̄1 is quasi-degenerated with edge data (q2,m2, P2, N2) =
(1, 4, P0, 1). As N2 = 1, we deduce that F is quasi-irreducible. However, the last residue
field Q2 = Q[Z1, Z2]/(P1, P2) is not a field so F is not irreducible (in practice, the al-
gorithm would have computed Q ∈ Q[Z] of degree 8 such that Q2 = Q[Z]/(Q(Z)), and
eventually check the irreducibility of Q).

Remark 6. The polynomial Q might factor during the square-free test made at Line 8.
In such a case, F is reducible and we should of course immediately return False at this
stage. For instance testing square-freeness of P0 in Example 5 requires to compute the
gcd between P0 and its derivative P ′0. The first euclidean division gives P0 = Z2

4 P ′0 +R
with R = 3

44
(1− z1)Z2 + 1

44
. Before proceeding to the next division of P ′0 by R, we need

to check first that the leading coefficient of R is a unit in Q1. To this aim, we compute
the gcd between 3

44
(1− Z1) and P1, discovering here that Z1 − 1 divides P1 so that P1

is reducible. Hence F is reducible and we could have returned False at this point. We
did not take into account this obvious improvement in our algorithm for readibility.

5.5 Further comments

Factorisation of quasi-irreducible polynomials. Not returning False when discovering
a factor of Q also makes sense if we want further informations about the factorisation of
F . Namely, if F is quasi-irreducible, then we can deduce from the field decomposition of
Kg the number of irreducible factors of F in K[[x]][y] together with their residual degrees
and index of ramification. In Example 5 above, we find the field decomposition:

Q2 '
Q[Z1, Z2]

(Z1 − 1, Z4
2 + 1)

⊕ Q[Z1, Z2]

(Z1 + 1, Z2 − 1)
⊕ Q[Z1, Z2]

(Z1 + 1, Z3
2 + Z2

2 + Z2 − 1)
.

It follows that F has three irreducible factors in Q[[x]][y] of respective residual degrees
4, 1, 3 (which are given together with their residue fields) and ramification index q1q2 = 2.
In particular, they have respective degrees 8, 2, 6.

In fact, quasi-irreducible polynomials behave like irreducible polynomials, in the sense
that they are “balanced”: all their absolutely irreducible factors in K[[x]][y] have same
sets of characteristic exponents and same sets of pairwise intersection multiplicities.
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These important data can be deduced from the edge data, see [22, Section 8]; they
characterise the equisingular type of the germ of curve (F, 0), which coincides with the
topological equivalent class in the case K = C. Unfortunately, F might be balanced
without being quasi-irreducible. In order to characterise balanced polynomials, we need
to modify slightly Definition 4, allowing several edges when q = 1. These aspects are
considered in the longer preprint [22] and will be published in a forthcoming paper.

The case of non Weierstrass polynomials. Up to minor changes, we can use algorithm
Quasi-Irreducible to test the irreducibility of any square-free polynomial F ∈ K[[x]][y],
without assuming F Weierstrass. If N (F ) is not straight, then F is reducible. If N (F )
is straight with positive slope, we replace F by its reciprocal polynomial. The leading
coefficient is now invertible and we are reduced to consider the case F monic. Then,
algorithm Quasi-Irreducible works exactly as in the Weierstrass case. However, the
bound (d − 1) f ≤ δ of Lemma 6 does not hold anymore. To get a similar complexity,
we need to modify slightly the algorithm: we do not compute primitive elements of Kk

over the field K but only over the next residue ring K1 = KP1 . It can be shown that
the complexity becomes Õ (δ + d). Moreover, we eventually get a bivariate representa-
tion Kg = K[Z1, Z](P1(Z1), Q(Z1, Z)) and checking that Kg is a field requires now two
univariate irreducibility tests of degree at most d. See [22, Section 7.4] for details.

Bivariate polynomials. If the input F is given as a bivariate polynomial F ∈ K[x, y]
with partial degrees n := degx(F ) and d = degy(F ), we get a complexity estimate Õ (nd)
which is quasi-linear with respect to the arithmetic size of the input. Moreover, we need
not to assume F square-free. Namely, we first reduce to the monic case as explained in
the previous paragraph. Then, we run algorithm Quasi-Irreducible with parameters
F and 4n, except that we return False whenever test of line 7 fails. If F is square-free,
we have the well known inequality δ ≤ 2nd so that η(F ) ≤ 4n: the algorithm will return
the correct answer with at most Õ (nd) operations over K as required, and so without
reaching a value η′ > 4n at Line 7. If F is not square-free, then H̄k is never square-free.
Hence, we will never reach the case Nk = 1 and we end up with three possibilities:

• we reach a value η′ > 4n at Line 7, ensuring the non square-freeness (hence the
non quasi-irreducibility) of F ;

• the function call at Line 8 returns False and F is not quasi-irreducible;

• the function call at Line 8 computes an edge data which satisfies q = deg(P ) = 1
(this happens exactly when we compute an approximate root ψ such that F = ψN

modulo x4n+1 for some N > 1). As this can not happen when F is square-free,
we deduce that F is not square-free, hence not quasi-irreducible.

As we always truncate the powers of x with precision 4n, we will return False within
an expected Õ (nd) operations over K in all three cases. Note that in the second case,
we can not conclude if F is square-free or not.
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Absolute irreducibility. We say that F ∈ K[[x]][y] is absolutely irreducible if it is
irreducible in K[[x]][y], that is if F is quasi-irreducible and fg = 1. To check this we
can slightly modify algorithm Quasi-Irreducible: just return False whenever `k > 1.
We thus have Kk = K for all k, and do not need the Las-Vegas subroutine Primitive,
nor any univariate irreducibility test. We obtain a deterministic algorithm running with
Õ (δ + d) operations over K, which is Õ (δ) is F is Weierstrass. Also, we could have
used algorithm AbhyankarTest below with suitable precision for the same cost.

6 Abhyankhar’s absolute irreducibility test

Abhyankhar’s absolute irreducibility test avoids any Newton-Puiseux type transforms
or Hensel type liftings. In fact, it is even stronger as it does not require to compute the
boundary polynomials H̄k: knowing their Newton polygon is sufficient. Although we do
not need this improvement from a complexity point of view, we show how to recover this
result in our context for the sake of completness. We will use the following alternative
characterisations of valuations and polygons. For convenience, we will rather compute
the translated polygon Nk(F ) := N (Hk) + (0, vk(F )), which by (5) coincides with the
union of edges of strictly negative slopes of N (π∗k(F )).

Lemma 8. Suppose that H0, . . . ,Hk−1 are degenerated.

1. Write F =
∑
ciψ

i
k the ψk-adic expansion of F . Then vk(F ) = mini vk(ciψ

i
k) and

Nk(F ) = Conv
((
i, vk(ciψ

i
k)
)

+ (R+)2, ci 6= 0
)
. (18)

2. Let k ≥ 1 and G ∈ K[[x]][y] with ψk−1-adic expansion G =
∑

i aiψ
i
k−1. We have

vk(G) = min
i

(
qkvk−1(aiψ

i
k−1) + imk

)
. (19)

Proof. Equality (18) is a direct consequence of Corollary 3 with Theorems 2 and 4.
Also, from (17), π∗k(ciψ

i
k) has a term of lowest x-valuati on of shape uxvk(ai ψ

i
k) yi for

some u ∈ K×k and it follows that vk(F ) = mini vk(ciψ
i
k). This proves Point 1.

Applying (17) at rank k − 1, we get π∗k−1(aiψ
i
k−1) = xvk−1(aiψ

i
k−1) (y + xαŨi)

i Ui, where

α > mk/qk, and Ui, Ũi are units. As mk > 0, we deduce that Vi = Ui(z
sk
k x

qk , xmk(y +

ztkk +ck(x)) is a unit such that Vi(0, y) = Ui(0, 0) ∈ K×k is constant and a straightforward

computation shows π∗k(aiψ
i
k−1) = xqkvk−1(aiψ

i
k−1)+imkPi(y) + h.o.t, where Pi ∈ K[y] has

degree exactly i. Equality (19) follows.

Remark 7. Point 2 in Lemma 8 shows that our valuations coincide with the extended
valuations used in the Montes algorithm over general local fields; see for instance [9,
Point (3) of Proposition 2.7].

Hence, we may take (18) and (19) as alternative recursive definitions of valuations and
Newton polygons. This new point of view has the great advantage to be independent of
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the map πk, hence of the Newton-Puiseux algorithm. In particular, it can be generalised
at rank k + 1 without assuming that Hk is degenerated.

Definition 6. Suppose that H0, . . . ,Hk−1 are degenerated and let −mk+1/qk+1 be the
slope of the lowest edge of Hk. We still define the valuation vk+1 and the Newton polygon
Nk+1(F ) by formulas (19) and (18) applied at rank k + 1.

Remark 8. This definition of the map vk+1 is equivalent to

vk+1(G) = min
gB 6=0

(qk+1〈B, V 〉+mk+1bk)

where G has (ψ−1, . . . , ψk)-adic expansion G =
∑
gBΨB and V = (vk,−1, . . . , vk,k). This

is the approach we shall use in practice to update valuations.

We obtain the following absolute irreducibility test which only depends on the geometry
of the successive Newton polygons.

Algorithm: AbhyankarTest(F )

Input: F ∈ K[[x]][y] Weierstrass s.t. Char(K) does not divide d = deg(F ).
Output: True if F is irreducible in K[[x]][y], False otherwise.

1 N ← d, v0 ← vx, k ← 0;
2 while N > 1 do
3 ψ ← AppRoot(F,N);
4

∑
ciψ

i ← Expand(F,ψ);
5 Compute Nk(F ) using (18);
6 if (N, vk(F )) /∈ Nk(F ) or Nk(F ) is not straight or q = 1 then
7 return False

8 N ← N/q, k ← k + 1;
9 Compute vk from vk−1 via (19);

10 return True ;

Proposition 13. Algorithm AbhyankarTest works as specified.

Proof. We need to show that it returns the same output as Irreducible(F,K). Sup-
pose that F is not absolutely irreducible. Let us abusively still denote by g be the
first index k such that Hk is not degenerated over K or Nk = 1: so both algorithms
AbhyankarTest(F ) and Irreducible(F,K) compute the same data ψ0, . . . , ψg−1 and
(q1, N1), . . . , (qg, Ng). If Ng = 1, then F is absolutely irreducible, and both algo-
rithms return True as required. If Ng > 1, then Irreducible(F,K) returns False.
As Ng(F ) = N (Hg) + (0, vg(F )) (definition) and Hg is Weierstrass of degree Ng, we
have (Ng, vg(F )) ∈ Ng(F ) at this stage. If Ng(F ) is not straight or qg+1 = 1, then so
does N (Hg) and AbhyankarTest(F ) returns False as required. There remains to treat
the case where Ng(F ) is straight with qg+1 > 1 (still assuming Ng > 1 and Hg not degen-
erated over K). In such a case, AbhyankarTest(F ) computes the next N th

g+1 approximate
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roots ψg+1 of F where Ng+1 = Ng/qg+1. We will show that (Ng+1, vg+1(F )) /∈ Ng+1(F )
so that AbhyankarTest returns False at this step.

Let F =
∑Ng+1

i=0 ciψ
i
g+1 be the ψg+1-adic expansion of F . By hypothesis, we know that

π∗g(F ) = xvg(F )Hg U, with U(0, 0) 6= 0

where H̄g =
∏
Q(ζ)=0(yqg+1 − ζxmg+1), with Q ∈ K[Z] of degree Ng+1 := Ng/qg+1 having

at least two distinct roots. In particular, H̄g is not the Ng+1-power of a polynomial and

it follows that π∗g(ψ
Ng+1

g+1 ) and π∗g(F ) can not have the same boundary polynomials. We

deduce that there is at least one index i < Ng+1 such that Ng(ciψig+1) has a point on

or below Ng(F ). Consider the ψg-adic expansions ciψ
i
g+1 =

∑
j ajψ

j
g and F =

∑
j αjψ

j
g.

Thanks to (18), there exists at least one index j such that (j, vg(ajψ
j
g)) ∈ Ng(ciψig+1).

By (18), Ng(F ) is the lower convex hull of (j, vg(αjψ
j
g)), which is by assumption straight

of slope −qg+1/mg+1. It follows that

min
j

(qg+1vg(ajψ
j
g) +mg+1j) ≤ min

j
(qg+1vg(αjψ

j
g) +mg+1j).

Thanks to Definition 6, this implies vg+1(ciψ
i
g+1) ≤ vg+1(F ) which in turns forces

(Ng+1, vg+1(F )) /∈ Ng+1(F ).
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[7] E. R. Garciá Barroso and J. Gwoździewicz. A discriminant criterion of irreducibility.
Kodai Math. J., 35:403–414, 2012.

27



[8] J. v. z. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, 3rd edition, 2013.
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