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663, Kaiserslautern, Germany, and 2École Normale Supérieure, UMR 8538, PSL Research University, 75231, Paris, France

Received March 2019, revision accepted October 2019

ABSTRACT
Diffracted waves carry high-resolution information that can help interpreting fine
structural details at a scale smaller than the seismic wavelength. However, the diffrac-
tion energy tends to be weak compared to the reflected energy and is also sensitive
to inaccuracies in the migration velocity, making the identification of its signal chal-
lenging. In this work, we present an innovative workflow to automatically detect
scattering points in the migration dip angle domain using deep learning. By taking
advantage of the different kinematic properties of reflected and diffracted waves, we
separate the two types of signals by migrating the seismic amplitudes to dip angle
gathers using prestack depth imaging in the local angle domain. Convolutional neural
networks are a class of deep learning algorithms able to learn to extract spatial infor-
mation about the data in order to identify its characteristics. They have now become
the method of choice to solve supervised pattern recognition problems. In this work,
we use wave equation modelling to create a large and diversified dataset of synthetic
examples to train a network into identifying the probable position of scattering ob-
jects in the subsurface. After giving an intuitive introduction to diffraction imaging
and deep learning and discussing some of the pitfalls of the methods, we evaluate
the trained network on field data and demonstrate the validity and good general-
ization performance of our algorithm. We successfully identify with a high-accuracy
and high-resolution diffraction points, including those which have a low signal to
noise and reflection ratio. We also show how our method allows us to quickly scan
through high dimensional data consisting of several versions of a dataset migrated
with a range of velocities to overcome the strong effect of incorrect migration velocity
on the diffraction signal.
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INTRODUCTIO N

Most of the information obtained in exploration seismol-
ogy comes from specular energy associated with reflections
of acoustic and elastic waves at boundaries between geolog-
ical layers. The resolution of the images is limited by the

∗Email: valentin.tschannen@itwm.fraunhofer.de

bandwidth of the seismic wavelet and, in particular, objects
whose size is small compared to the dominant wavelength
cannot be well resolved. Many small-scale structural details
such as reflector discontinuities at fault planes, karst, pinch-
outs, channel edges, boulders or sand injectites may fall below
the resolution power of reflection images and undermine the
quality of the interpretation. Yet these objects will provoke
the scattering of waves in all directions, a phenomenon called
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diffraction. Due to their truncated Fresnel zone, diffracted
waves contain a higher resolution signal and are valuable for
an enhanced interpretation and inversion (Khaidukov, Landa
and Moser 2004; Moser and Howard 2008; Landa, Fomel
and Reshef 2008; Huang, Zhang and Schuster 2015). How-
ever, diffracted signal is not often available to the interpreter
because its amplitude can be far weaker than reflected signal
and is often lost during processing (Khaidukov et al. 2004).

It is possible to separate reflected signal from specular sig-
nal by taking advantage of the different kinematic properties
of the waves interactions (Landa, Shtivelman and Gelchinsky
1987; Kanasewich and Phadke 1988). When encountering a
locally planar surface, the energy will reflect in a focused direc-
tion depending on the angle of incidence. On the other hand,
a diffractor will scatter the energy in all directions. In par-
ticular, this distinction will strongly affect the appearance of
both signals in the migration-dip angle domain, as this angle
is associated with the illumination direction. Using ray-based
prestack depth migration in the local angle domain, we can
form common image gathers (CIGs) in dependence on the mi-
gration dip angle. When computing the diffraction response at
a migration point located exactly on a scattering object, given
that the correct velocity model is used, the migration operator
will align with the diffraction hyperbola and give rise to a
flat response in the dip angle CIG. In contrast, when migrat-
ing a point located on a reflector, the operator will respond
only at a dip corresponding to the structural inclination angle
(Audebert et al. 2005; Landa et al. 2008; Reshef and Landa
2009; Klokov, Baina and Landa 2010; Klokov and Fomel
2012).

Several authors have suggested algorithms to detect
scattering points from seismic data. Klokov and Fomel (2012)
use a hybrid Radon transform to detect diffracted waves from
time domain dip angle CIGs. Arora and Tsvankin (2017)
show that discrimination in the dip angle domain is also
possible in a transversely isotropic media. Shustak and Landa
(2017) and Dafni and Symes (2017) form dip angle CIGs
using reverse time migration, making their method applicable
in complex geological areas exhibiting strong local variations
in the velocities.

In order to detect the diffraction points, those approaches
usually rely on filtering out the dips around the estimated spec-
ular dip before stacking followed by a visual inspection of the
seismic image. This may be a time consuming and also chal-
lenging task due to the weak energy of the diffraction signal.
For the same reasons, it is challenging to design a detection
filter that will be reliable especially in areas of low signal to
noise ratio. However, it has now become common practice

to resort to supervised machine learning, a branch of artifi-
cial intelligence, to solve pattern recognition problems. Rather
than requiring a hand crafting of the detection function, this
class of algorithms is based on the use of a number of free
parameters that will learn from examples. In particular, most
of the attention is currently received by the field of deep learn-
ing carried by the so-called deep neural networks algorithms
that have become the state of the art in solving a variety of
recognition tasks (LeCun, Bengio and Hinton 2015). Several
authors already applied deep learning to automatically detect
structural features in seismic data. Waldeland and Solberg
(2017) and Guitton (2018) employed a convolutional neural
network (CNN) to, respectively, detect salt bodies and faults
from a stack. Pham, Fomel and Dunlap (2018) used a pixel-
wise CNN to locate channels networks. Regarding diffraction,
de Figueiredo et al. (2013) suggested to use a machine learn-
ing based k-nearest neighbours classifier to detect diffracted
signal from common offset gathers and applied their method
on ground penetration radar data. Serfaty et al. (2017) sug-
gested to distinguish diffracted events from other signals by
working with compressed gathers in the local angle domain.
After manually labelling a small number of seismic patches
according to the dominant object they contain (reflector,
fault, point diffractor, migration noise, random noise), they
used a network pre-trained on natural images and retrained
the last classification layer. The authors show that their
method was successful in identifying diffracted waves in their
dataset.

While deep neural networks are the best classifiers cur-
rently known, resorting to them comes with several difficul-
ties. Probably the most challenging part is to create a training
dataset. Not only do we need the seismic amplitudes but also
the labels indicating the correct interpretation of those data.
In practical applications on natural images, state-of-the-art
results usually require to train the networks on millions of
examples (LeCun et al. 2015). Creating such a dataset, es-
pecially in geoscience where expertise is required for the in-
terpretation and where uncertainty and subjectivity will lead
to non-unique answers, present a serious challenge. Addition-
ally, the networks are made of many, sometimes millions, of
parameters and a number of key hyper-parameters with com-
plex non-linear dependencies. Finding the correct settings is
both computationally and manually time consuming. To judge
the quality of the obtained solution, authors usually evaluate
performances with a blind test on a subset of the dataset that
was not used during training. However, in the case where this
data subset is statistically similar to the training data, a good
test accuracy will not necessarily mean good generalization

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
Engineers., Geophysical Prospecting, 1–15



Automatic detection of diffractors 3

performances (LeCun et al. 2015). In that case, the network
might fail to produce an acceptable answer on a new dataset
with a different geology or different processing.

In this work, we present an automated workflow that
does not require manual picking of the diffracted waves. We
use modelling to design a large synthetic dataset with low in-
terpretation uncertainties and train a CNN from full dip angle
gathers to perform high-resolution detection of scattering ob-
jects. In particular, we are aiming to identify diffracted signal
emitted by point scatterers, that is objects which have a com-
pact shape in all three spatial dimensions. Diffraction may also
occur at edges, yielding a different pattern (Trorey 1970), that
we do not treated in this work. After evaluation on synthetic
data, we show that our network is able to identify diffracted
events on a field-recorded dataset, yielding encouraging results
as for its generalization capabilities. The first part of our paper
gives the reader elements for an intuitive understanding of the
diffraction imaging process and the training of a deep neural
network. We then give practical details about the synthetic
data creation and the training process. Finally we perform a
case study on real data and discuss the current limitations of
the method as well as further research opportunities.

METHODS

Diffraction imaging

Prestack depth migration aims at mapping seismic events from
the acquisition domain to their true position in the subsur-
face. This method requires the knowledge of an accurate spa-
tially varying velocity field as well as a technique to simu-
late the propagation and back-propagation of waves. Under
the assumption that the dominant wavelength of the seismic
wavelet is much smaller than the scale of heterogeneities of
the velocity model, we can replace the direct integration of
the wave equation by a lighter ray tracing algorithm to com-
pute the propagation. The algorithm we used in our study
is working in the local angle domain, treating every node of
the imaging grid as a point scatterer (Audebert et al. 2005;
Moser and Howard 2008; Merten and Ettrich 2015). In the
following, we explain the procedure in more detail without
accounting for implementation performance specificities. In
a two-dimensional (2D) acquisition, we can sort the data as
common source gathers where seismic events are located by
the source and receiver positions along the sailing line x and
the two-way travel time t of the waves. We define our image
space with a discrete grid parameterized by x and the depth z

and build the migrated image iteratively at every node p(x, z)

Figure 1 Two-dimensional representation of the local angle domain
imaging geometry. A ray pair obtained by shooting from the migration
point p(x, z) and reaching a source/receiver pair is drawn. Vectors νd
and νu are the tangents to the slowness vectors of the down- and
up-going rays at p. The dip vector ν is defined as the sum of those
vectors, and migration dip ν is the angle between ν and the vertical.
The opening angle θ is the angle between νd and νu. n is the normal
to the locally planar geological reflector.

of the subsurface model. We treat p as a scattering point and
start by shooting a ray fan through the velocity model to form
ray pairs that, respectively, reach existing source–receiver cou-
ples. Figure 1 shows the parameterization of the ray pairs in
terms of the opening angle θ and the migration dip angle ν.
Then, we compute the travel times along every ray pairs con-
tributing to p (as well as an amplitude correction factor that
accounts in particular for the geometrical spreading of the
energy along the expanding wavefront) and fetch the corre-
sponding samples in the shot gather. At this stage, for a given
velocity field, the migrated data will be depending on four pa-
rameters: its position in space given by x and z and the local
imaging angles ν and θ .

As the dip angle is directly associated with the illumi-
nation direction, reflected and diffracted events will exhibit
distinct responses in the dip angle domain. By summing the
data along opening angles, dip angle common image gathers
(CIGs) are formed by constructive interferences (Landa et al.

2008; Klokov et al. 2010). Figure 2 illustrates the dip angle
response of both a horizontal reflector and a scattering point.
For the horizontal reflector, the zero-offset recorded wavefield
will show a seismic event at a constant time for every position
on the sailing line. Points p0, p1 and p2 represent three mi-
gration nodes on a vertical line located at x = xk. From their
corresponding migration operators, we observe that nodes

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Figure 2 Two-dimensional illustration of the dip angle response, drawn for the zero-offset case, of (a) a horizontal planar reflector at depth
z = zr separating two constant velocity half-spaces (b) a point scatterer in a constant velocity space located in (xs , zs ). The central row represents
the subsurface model. p0, p1 and p2 are migration points. Ray pairs are plotted for p0 as well as the corresponding minimum and maximum
dip-vectors (see Fig. 1). The upper row shows the recorded wave field. Colour-coded diffraction curves of the three migration points are
displayed on the seismograms. The bottom panel represents the migrated wavefield sorted as dip angle gathers. Coloured wiggles correspond to
the amplitudes picked by the migration operators.

beneath p0 will not contribute to the imaging of the reflec-
tor. The diffraction operator of the node p0, which is located
exactly on the reflector, will encounter the signal only at its
apex corresponding to the zero dip angle. Migration opera-
tors of the nodes above p0 will cross the wiggles at positions
progressively further away from their apex and contribute to
the imaging at progressively larger absolute dips, leading to
a parabola-like shape of the signal in the gather. One should
note that in the case of a tilted planar reflector, the apex of
this pseudo-parabola will be at the dip equal to the plane’s
normal direction (vector n in Fig. 1). For the point scatterer of
Figure 2, things are different as the waves will no longer reflect

in a focused direction but will be scattered in all directions.
The migration operator computed at p0, positioned on the
diffraction point, will match exactly the diffraction hyperbola
of the recorded wavefield. Seismic events will be fetched at ev-
ery dip angle, creating a flat horizontal response in the gather.
When migrating a vertical line on the left of the scattering
object, migration surfaces will cross the diffraction hyperbola
at dips progressively increasing as the depth of the nodes de-
creases (and inversely for a line on the right-hand side of the
diffractor), creating a flat tilted signature in the gathers. The
slope of the response will increase as the lateral position of the
line gets away from the diffractor. Similar observations hold

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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for non-zero offset data. Moreover, we see with this example
that even for a short offset range large range dip gathers can
be created.

The focusing quality of the method relies on having been
able to derive an accurate velocity model. Figure 3 illustrates
the sensitivity of the diffracted signal to errors in the velocity
field. It is possible to use this strong sensitivity to perform
high-resolution velocity analysis (Sava, Biondi and tgen 2005;
Fomel, Landa and Taner 2007).

The relatively weak amplitudes of the diffracted waves
combined with their strong sensitivity to accurate velocity
models and pre-processing steps make their interpretation del-
icate. The interpreter will need to look through a large amount
of prestack data, and potentially through several migrated
versions of the same dataset obtained with different velocity
models. Additionally, certain geological areas might be very
rich in scattering objects, making their identification a time
consuming and tedious task. For these reasons, it is prefer-
able to employ an automated method, robust to low signal
to noise ratio, and yielding a high-resolution detection. In the
next section, we introduce the use of deep learning to solve
such problem.

Semantic segmentation

Semantic segmentation deals with the problem of classifying
every singular pixel of the data among a set of classes. This
approach is a high-resolution extension of data classification,
which aims at associating a class label to a group of pixels. Su-
pervised deep learning has now become the method of choice
to tackle those problems as it has proven to bring best perfor-
mances on a broad range of applications (LeCun et al. 2015).
The main technology behind deep learning is the so-called
neural networks. These networks are built as a sequence of
layers forming a non-linear, piece-wise differentiable function
connecting the input to the output. Every layer is responsi-
ble for performing a simple affine transformation on its input
and applies an element-wise non-linearity. The power of those
networks resides in the way the parameters of the transforms
are set. Rather than being manually engineered, the param-
eters are initially chosen at random and given the freedom
to automatically adapt to the data by progressively learning
from examples. Stacking several layers is a key to the suc-
cess of those algorithms since this architectural design allows
them to learn a hierarchical representation of the data. The
deeper layers will benefit from the work of the previous lay-
ers and will be sensitive to progressively more abstract and
complex features expressed as a composition of the simpler

features learnt by the shallower layers (LeCun et al. 2015).
Such networks can in theory approximate any function (Cy-
benko 1989). When the data exhibits a spatial structure and
the surrounding information is relevant to understand the lo-
cal context, a suited choice for the linear transformations is
convolutions, and the family of algorithms based on them is
called convolutional neural networks (CNNs) (LeCun et al.

1998).
In this work, we want to identify and localize diffraction

points in the subsurface using seismic data. Learning to iden-
tify those elements consists in optimizing a neural network
in order to approximate the distribution D over the domain
S = H × P, where H is the space of seismic data and P is the
space of probabilities indicating the likelihood for the pres-
ence of diffraction points. Our training dataset consists of a
collection of patches d1, d2, . . . , dN ∈ S drawn from D. In the
2D case, for a given d ∈ S, d = {hα, p} is a tuple formed of
a prestack seismic amplitudes patch hα(x, z, ν) and its corre-
sponding mask of probable locations of the scattering points
p(x, z) (see Fig. 4 for an example). In deep learning, we refer
to the different prestack sections as channels and call a single
channel section a feature map. As an example, when work-
ing on natural images, the input data contains three channels,
forming a coloured image as a composition of the red, green
and blue feature maps. In our binary problem, either there is
a diffraction point in this pixel or there is not, the mask p
is defining at every spatial sample the probability mass func-
tion (p, 1 − p), where 0 ≤ p ≤ 1 is the probability of having
a scattering point.

Figure 4 is a schematic representation of the CNN ar-
chitecture we use in this work. The network accepts as input
prestack seismic data that it will progressively transform and
reshape in order to output a patch matching the shape of the
mask. It is composed of four types of layers in charge of per-
forming convolutions, down-sampling, up-sampling and soft-
max scaling. The trainable parameters are the kernels (and
biases) of the convolutional layers. We illustrate in Figure 5
how the first convolutional layer is working. A single input
data sample hα = (hα

1, . . . , hα
nα

) is represented as the concate-
nation in the channel dimension of nα feature maps. In our
work, nα is the number of migration dips ν. The output of this
layer hβ = (hβ

1 , . . . , hβ
nβ

) is represented as the concatenation in
the channel dimension of nβ feature maps. nβ is an architec-
ture hyper-parameter and corresponds to the chosen number
of convolution kernels of the first layer. Every single feature
map of hβ is obtained by convolving the input data with a
different kernel. Equation (1) expresses the exact operation
performed:

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Figure 3 Sensitivity of the diffraction signal to errors in the migration velocity. Every image is a dip angle gather extracted at the same x coordinate
located above a synthetic diffraction point. 100% corresponds to the true migration velocity, while remaining percentages correspond to relative
perturbations from 2% to 8%.

hβ

i = γ

( nα∑
k=1

hα
k ∗ wi

k + bi

)
, i = 1,.., nβ . (1)

In the 2D case, the ith weight wi = (wi
1, . . . , w

i
nα

) is a prestack
2D kernel containing the same number of channels as the in-
put layer. A 2D convolution ∗ is performed independently
for every channel, and the results are then summed across
channels. The ith bias term bi is added after summation to en-
able the linear transformation performed by the convolution
to be translated from the origin. An element-wise non-linear

operator γ (.), called the activation function, is applied to
break the linearity between the layers in order to increase
the approximation capabilities of the network. By repeating
equation (1) with nβ weights (wi )i=1,..,nβ

and concatenating
the resulting feature maps, we create the new input data for
the next layer.

In addition to convolutions, the network also performs
spatial down-sampling and up-sampling of the feature maps.
The down-sampling is achieved by sliding a small spa-
tial window that selects the largest value and drops the

Figure 4 Architecture of our convolutional neural network (designed after Ronneberger, Fischer and Brox 2015). The data flow direction for
the forward pass is represented by the black arrows. Input data hα(x, z, ν) is a 2D prestack data patch and input mask p(x, z) a 2D patch
matching the spatial dimension of the data. Boxes represent multi-channel feature maps colour coded by layer type. Output data q(x, z) has the
same dimension as the input mask.

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Automatic detection of diffractors 7

Figure 5 Principle of the first convolutional layer (in the 2D case, without bias adding and activation). The input data is a prestack 2D seismic
patch hα(x, z, ν) of shape 40�x × 40�z with nα channels corresponding to the number of dips. The kernels wi have the same rank as the input
data, and the 2D convolution is performed in the space (x, z) for every channel. An example of prestack kernel is overlay on the input seismic.
After the convolution, a 2D output feature map is obtained by summing across channels. Every feature map hβ

i is obtained after convolving
with a different kernel. The output data hβ is formed by the concatenation of the nβ feature maps.

remaining ones. While increasing the non-linearity of the net-
work and forcing translation invariance, this operation also
has the effect of expanding the receptive field of the convo-
lutional kernels. By using a small constant spatial shape (e.g.
3 × 3) through every layer, down-sampling enables the ker-
nels to progressively access a larger area of the data. This
characteristic is important in order to learn a multi-scale rep-
resentation, developing the abstraction power of the network.
The up-sampling is the reverse operation and is used to pro-
gressively bring back the feature maps to their original spa-
tial shape, which is a requirement since our network should
perform a pixel-wise classification. A common technique for
up-sampling is to learn the operation using strided transpose
convolutions (Long, Shelhamer and Darrell 2014). A final

architectural specificity is the use of skip connections (Fig. 4;
Ronneberger, Fischer and Brox 2015) to reuse data from shal-
low layers in the deepest ones. Shallow feature maps are con-
catenated along the channels with their deeper counterpart
of identical spatial size. This will allow the network to make
use of both feature maps coming from early layers that con-
tain information close to the original data and feature maps
from later layers that contained highly transformed informa-
tion. In order to map the output of the network to a pseudo-
probability distribution expressing the classes diffraction and
non-diffraction points, we design the output to be composed
of two feature maps and scale every prestack pixels using a
softmax layer (e.g. LeCun et al. 1998; Fig. 4). The output
q(x, z) is defining at every spatial samples a mass function

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
Engineers., Geophysical Prospecting, 1–15
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(q, 1 − q), where 0 ≤ q ≤ 1 indicates the confidence of the
network in having found a diffraction point.

We called D the unknown true distribution that expresses
the probability of having diffraction points in the seismic data,
and let D̂ be the distribution computed by our network. Train-
ing a neural network consists in optimizing the values of its
parameters w ∈ R

m, where m is the number of free dimensions,
in order to increase its prediction performances by bringing D̂
close to D. For a given data point d ∈ S, we evaluate the qual-
ity of the prediction by the error measure l(w; d) and define
the training procedure as the minimization of the loss function
over the finite dataset S:

L(w; S) = 1
N

N∑
i=1

l(w; d). (2)

Given a training sample d = {hα, p}, we are concerned with
minimizing the error of the network prediction q. A standard
pseudo-distance measure between two probability distribu-
tions is the cross-entropy (e.g. LeCun et al. 1998). It will
measure how close is the computed distribution in represent-
ing the true distribution. In its binary form, the cross-entropy
between p and q can be expressed as

l(w; d) = −p log(q) − (1 − p) log(1 − q). (3)

Equation (3) shows that cross-entropy is differentiable and
convex with respect to q (but not necessary convex with re-
spect to w), and its minimum is reached at q = p. So far,
the only computationally tractable way to minimize the loss
function of equation (2) is to use a steepest descent algo-
rithm (LeCun et al. 2015). Given a position in the optimiza-
tion landscape for a parameterization state wt, the method
consists of finding the local downhill direction expressed by
the negative gradient of the function computed at that point.
A move towards a new point of the landscape is done by
updating the parameters of the function in this direction,
wt+1 := wt − η∇L(wt, S), where the gradient ∇ is the first-
order vector derivative and η, called the learning rate, is the
hyper-parameter defining the step size of the descent. Since
the loss function directly depends only on the last layer of
the network, we need to use the derivative chain rule in or-
der to back-propagate the gradient to earlier layers (Werbos
1974). The procedure is repeated iteratively until convergence
to a local minimum is obtained. In practice, it is not feasi-
ble to compute the gradients for every points of our training
set at once, and we rather use a small random subset of the
data, called batch, at every iteration. When every example has
been seen once by the network, we say it was trained for one
epoch. In addition, it is common to keep a moving average of

past gradients and use it to influence the latest decent direc-
tion for better performances in the case of ill-conditioned loss
landscapes (Rumelhart et al. 1988). Put together, this mini-
mization procedure is called momentum stochastic gradient
descent.

Coming up with the architecture and set of hyper-
parameters that perform well on a given dataset can be a
tedious task. Most of the field of deep learning is based on
empirical findings, and the time needed to design a network is
usually spent on hand tuning a number of parameters in order
to increase the performances on the testing data. Moreover,
the very high dimensionality of the optimization space com-
bined with its non-convexity might provoke the convergence
towards a bad local minimum. When this happens, one can
achieve very good performances on a certain dataset but the
network generalization capability will be poor and therefore
lead to incorrect results when evaluated on new data with
a non-trivially overlapping statistical distribution. In prac-
tice, it seems that to overcome these limitations, one needs
to train the network with many, sometimes millions, labelled
examples (LeCun et al. 2015). In the next section, we expose
our strategy to create a training dataset using wave equation
modelling.

R E S U L T S

Training on synthetics

Probably the most challenging part in designing a deep learn-
ing based application is not building the algorithm but rather
preparing the data that will be used for training and evalua-
tion, and most engineering-level applications of convolutional
neural networks (CNNs) require to prepare a very large num-
ber of examples to produce robust and generalizable results
(LeCun et al. 2015). While semantic segmentation offers a
high-resolution interpretation of the data, it comes at the cost
of having to prepare label masks. Such labels are difficult to
get by since we need to annotate every pixel of the training
data, and applications to seismic images usually require ex-
pertise in order to provide an acceptable interpretation. At
this end, rather than manually labelling real data, we resort
to synthetic modelling to create training and testing sets. Ad-
ditionally, because of the inerrant uncertainties on geophysi-
cal data, manual labelling is prone to errors and subjectivity,
while modelling allows us to use physics to control the proce-
dure. As our approach is fully automated, we can cover for a
wide range of velocity contrasts and source wavelets, in order
to incorporate as much diversity in our training examples as

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Automatic detection of diffractors 9

possible. In the next section, we will evaluate our network
performance on high-resolution field-recorded data and we
have chosen the modelling parameters accordingly.

We simulated fifty two-dimensional (2D) marine acqui-
sitions with 250 Hz Ricker wavelets using a finite difference
integration of the acoustic wave equation on a �x × �z =
0.5 m × 0.5 m grid. Punctual high acoustic impedance pertur-
bations are added to the layered velocity and density models
to simulate the diffraction points. Our labels consist of binary
masks indicating the position of the diffractors on the grid by
a 1 and 0 elsewhere. In order to allow for uncertainties in the
exact position of the scattering points, we convolved the masks
with a normalized anisotropic 2D Gaussian (see label patch in
Fig. 4). The central point of the Gaussian indicates the most
likely position, and surrounding pixels show a progressive de-
cay of the likelihood. After migrating the seismic to gathers
with dips ranging from −40◦ to 40◦, we created our training
dataset by randomly extracting 200,000 prestack patches of
shape 40�x × 40�z with the corresponding masks (see Fig. 4
for an example). To augment the diversity of the training
data, we also post-processed them with random band-pass
frequency filtering and phase rotation. The architecture of
our network is presented in Fig. 4. Every convolutional layer
contains twenty-four 3 × 3 kernels. We trained with a mo-
mentum stochastic gradient descent optimizer for 30 epochs
with a batch size of 48, using an initial learning rate of 10−3.
To regularize the training and try to avoid over-fitting, we
perturbed the input patches with additive white noise and ap-
plied dropout (see, e.g., Ronneberger et al. 2015) and a decay
factor of 50 × 37 every 10 epochs to the learning rate.

To control the quality of the training, we additionally
created 10 synthetic datasets with a similar method. Figure 6
shows an example of the application of the trained network on
this data. To count and localize the diffraction points found by
the network, we run a filter on the predicted attribute to find
every local maxima. Our parameters are set such that a local
maximum should be detected only above a 0.5 confidence
and two local maxima should be separated by at least 2 m.
We compared the position of those maxima with those of the
synthetic perturbations we added to the model and obtained
a rate of a 100% true positives and no false negative. We
also ran the network on a dataset imaged with a range of
velocities to analyse the sensitivity of the prediction to errors
in the migration model. Figure 7 illustrates that the algorithm
is resilient to small errors in the velocities and is reaching its
highest confidence for velocities close to the true one.

While the evaluation on synthetic data shows good per-
formances, one should be careful before extrapolating and

claiming that comparable performances will be achieved on
any dataset. It is indeed well known that neural networks can
easily over-fit the training data without learning to extract
meaningful information. Then, if our blind test data are statis-
tically similar to the train data, one is to expect our evaluation
metric to yield good results. However, this is not a guaranty
that we have solved our problem by creating a robust network
that can generalize well. For instance, in this section, we are
using synthetic validation data created with a similar approach
than the training ones, which might not be enough for a thor-
ough evaluation. A second case is when we use real examples
labelled by an interpreter to train the network and evaluate the
performances on the same data few hundreds of meters away.
It might not be a guaranty that the evaluation metric will still
be good if measured on a new dataset with different geology
and processing. Another concern deals directly with the evalu-
ation performance measure and training loss we use. Since the
interpretation of our data is uncertain, it is unclear what the
truth is and trying to match exactly, uncertain, and sometimes
wrong labels might be a problem. In our case, it is difficult to
know where the scatterers exactly stand in the subsurface and
what is their exact spatial extent. In the next section, we judge
the performances of our trained network on field-recorded
data.

Field data evaluation

The data we use in this study is a 3.5-km line acquired in
shallow waters with a high-resolution, shallow penetration
source. It serves in a preliminary study to plan the construction
of an offshore wind farm. Since the area is a former moraine, it
is expected to contain small-scale debris, brought by a glacier,
that need to be avoided while drilling.

Figure 8 shows the result given by the network trained
on synthetic data. Since we do not know the true number
and the location of the scattering objects, we cannot easily
give a quantitative measure of the performance of the net-
work. To assess the results, we investigated the data man-
ually. Figures. 9 and 10 show examples of objects found
by the network that we believe to be indeed boulders. In
Fig. 11, we can see examples of misclassification. A shal-
low diffraction point with a noisy prestack response was not
at all recognized by the machine, while a cross-shaped sig-
nal was, we believe, misclassified as a diffraction. Overall,
we are satisfied with the rate of true positives. Most areas
highlighted by the attribute seem to correspond to actual
diffracted events. Estimating the number of false negatives
is more difficult, but the dense coverage observed in Fig. 8
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Figure 6 Prediction of the network on synthetic data that was not used for training. The machine confidence in having found a diffraction point
is overlaid on the seismic stack. Likelihood inferior to 0.1 is set to be transparent. A vertical red line at x = 40 m passes through a diffractor
and indicates the location of the central dip-gather displayed at the bottom. Remaining gathers are extracted every meter on the left and right
sides. An horizontal line at z = 31 m highlights the signature of the scatterer.

gives us confidence that it found a majority of the scattering
points.

We tried to incorporate as much diversity as possi-
ble in the synthetic data to cover a wide range of possible

geologies, but they remain nevertheless a simplification of the
reality. Using the confidence attribute, we selected the most
probable diffracting objects in the field data and used them
to fine-train the network. The results after such training did
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Figure 7 Prediction of the network in a 25 m × 25 m square around a synthetic point scatterer for data migrated with different velocity
perturbations as presented in Figure 3. The maximum confidence scores are plotted above their corresponding patch.

not dramatically improve, but we believe that progressively
extending our training dataset with real examples found by
the network in different datasets will prove useful in further
work to increase performances.

D I S C U S S I O N

Mapping seismic amplitudes to the dip angle domain is a use-
ful approach to help separate between diffracted and specular
wavefields. Supervised deep learning has become the method
of choice to automatically identify patterns in high dimen-
sional data, and in particular convolutional neural networks
(CNNs) are a suitable choice for seismic images as they learn,
multi-scale, spatial relationships to support their decision.
We proposed an automated workflow to detect point scat-
terers from prestack seismic data using deep learning. We
created with wave equation modelling a large and diverse
database of examples to feed to the network and showed that
our algorithm could successfully transfer the knowledge it
acquired from synthetic data to real data. The architecture
of the network yields a pixel-wise classification enabling a
high-resolution localization of the diffracting objects, while
its probabilistic nature allows for some uncertainties in its
answer. This method also lets us quickly scan through data
migrated with different velocities to overcome the strong sen-
sitivity of the diffraction images to velocity errors. Neverthe-
less, after carefully evaluating the results on field data, we
found few false positives and false negatives and had diffi-
culties to know how to better parameterize the algorithm to
avoid those mistakes.

While deep neural networks can outperform every other
method in classification tasks, they come with a number of dis-
advantages and difficulties. Deep learning is mostly empirical
and works best when trained in a supervised fashion. It relies
on the creation of a vast set of annotated data as well as on tri-
als and errors to tune a large number of hyper-parameters. The

datasets are usually prepared manually beforehand, and the
performance is judged according to evaluation metrics com-
puted on the training and validation sets. Those requirements
are a challenge for applications in seismic interpretation. Be-
cause of inherent uncertainties in the data, the interpretation
is often non-unique and subjective, and it also requires exper-
tise in geology and geophysics. For this reason, as well as for
the fact that most of the interpreted data is not publicly avail-
able, it is difficult to create large training databases. It also
affects the reach of the evaluation metrics we use since they
need to compare the answer of the network to non-perfect,
and sometime non-existent, labels provided by interpreters.

To tackle the problem of creating a large labelled train-
ing dataset, we used synthetic modelling. This allows us to
carefully control the subsurface model and provide an inter-
pretation without manual work. However, synthetic data are
a simplification of the reality and cannot account for all of
the diversity and complexity that exists in nature. Other au-
thors such as Serfaty et al. (2017) suggest to use a network
pre-trained on publicly available datasets containing a very
large number of annotated natural images. They then only
need to label a small number of real seismic examples to fine-
train the last layers of the network. This approach seems to
work well but has few practical limitations. First, the geome-
try of the training data restricts the use of pre-trained nets to
work on two-dimensional (2D) patches with three channels
corresponding to the red, green and blue colour maps. This
is a limiting factor for seismic data where structural objects
are inherently three-dimensional and where full fold prestack
data might bring more information as in this work or in auto-
matic amplitude versus angle classification for instance. Fur-
thermore, while it is understandable that shallow layers that
learn to detect high-frequency characteristics such as edges are
useful when transferred from natural images to seismic data, it
is less intuitive for the deepest layers that have learnt abstract
and large-scale concepts. Since the power of deep learning
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Figure 8 A full stack and the confidence attribute generated by the network. The local minima filter ran on the attribute counted 537 diffracting
objects.

Figure 9 An example of true positive located just beneath the water bottom. The left image is a zoom on the stack with an overlay of the
confidence attribute shown in Fig. 8. A vertical red line indicates the position of the central dip CIG displayed on the right side. Other gathers
are displayed every 0.5 m around the central gather. The vertical red line highlights the signature of the boulder.
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Figure 10 An example of true positive. Disposition of the figure is similar to Fig. 9.

comes from those abstract concepts learnt in the deeper layers
of the network, it is unclear whether such pre-trained net-
works are really taking advantage of the full extent of deep
learning and if traditional machine learning methods would
not yield similar results. We believe that our approach using
synthetic examples to train and progressively adding real ex-
amples as they are found by the network to fine train it is a
good compromise to have full flexibility in the design in the
absence of an ideal training database.

While it is common to judge the performance of a neu-
ral network with a numerical evaluation metric, we believe
that such conclusion is more difficult to draw with geosci-
entific data. The labels we provide are often uncertain and
sometimes wrong. In our work, for example, it is unreal-
istic to expect the network to know the exact position of
the centre of the diffracting object as well as it exact spatial

extent. Therefore, the minimum of the training loss function
is probably not indicating the best possible parameterization
of the network. Additionally, when evaluating our network
on real data we observed a drop in performances compare
to the blind evaluation on synthetic data. It is difficult to
prove the generalization of the performances of a network.
If the blind dataset we use for evaluation is too similar to
the training data, a good evaluation score will not necessary
extrapolate to all new data. Finally, we argue that providing
an evaluation score itself is problematic when working with
real data. Again, because of uncertainties and lack of perfect
manual interpretations, it is not possible to know the truth

and therefore to give a 0 to 1 score that is truly meaning-
ful. We think that qualitative judgement by human experts of
the machine’s findings on field data, while subjective, is still
required.

Figure 11 Examples of a false positive and a false negative. The disposition of the figure is similar to Fig. 9. The blue line indicates a probable
diffraction that was not recognized by the network, while the red line highlights a cross-shaped signal wrongfully interpreted as a scatterer by
the machine.
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In further work, we hope to benefit from the creation
of a dataset of real examples by progressively incorporating
real findings from our method on a variety of field-recorded
data. We plan to extend the method to be three dimensional.
In theory, such extensions do not pose any problem, the mi-
gration will yield three-dimensional (3D) spatial data with 2D
azimuthal dip gathers. The CNN will be working in the same
fashion but with 3D convolutions and a fourth dimension
being channels made of the concatenation of azimuthal mi-
gration dip angles. We also plan to improve the precision of
the method to perform automated residual velocity analysis,
using the results of the network as a misfit criteria to optimize
a tomographic inversion.

CONCLUSION

We have introduced a new method to automatically identify
scattering points from prestack data migrated using diffrac-
tion imaging. We built a database of dip angle common image
gathers containing point scatterers using wave equation mod-
elling and trained a convolutional neural network to compute
a spatially varying attribute, indicating the machine’s confi-
dence in having found diffracting objects in the subsurface.
The use of synthetic data was a key in order to provide a
variety of examples with their interpretation at minimal man-
ual labour cost. We showed that our trained network could
successfully transfer its knowledge on field-recorded data and
bring a valuable help to interpreters on an engineering task.
Additionally, this automated workflow enables us to quickly
scan through different versions of the same dataset to account
for potential errors in the migration velocities.

We also discussed some of the challenges associated with
the use of artificial intelligence–based algorithms to analyse
seismic data. Uncertainties and non-uniqueness of the inter-
pretation as well as the non-guaranty of generalization of the
results should be taken into account when evaluating the per-
formance of a network. In particular, we believe that careful
inspection by experts, while subjective and qualitative, should
be nevertheless carried on a reasonable variety of real datasets
before concluding that the problem at hand was solved. We
see a good potential in our workflow and hope to prove it
valuable in further work for applications to other structural
and amplitude related interpretation tasks.
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