
HAL Id: hal-02354761
https://hal.science/hal-02354761v1

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Measurement of Production Environment
Influence on Code Reuse Availability

Étienne Louboutin, Jean-Christophe Bach, Fabien Dagnat

To cite this version:
Étienne Louboutin, Jean-Christophe Bach, Fabien Dagnat. Statistical Measurement of Production
Environment Influence on Code Reuse Availability. SECURWARE 2019 : The Thirteenth International
Conference on Emerging Security Information, Systems and Technologies, Oct 2019, Nice, France.
�hal-02354761�

https://hal.science/hal-02354761v1
https://hal.archives-ouvertes.fr


Statistical Measurement of Production Environment Influence on Code Reuse

Availability

Étienne Louboutin
Ecole Navale, IMT Atlantique

F-29240 Brest, France
Email: etienne.louboutin@imt-atlantique.fr

Jean-Christophe Bach, Fabien Dagnat
IMT Atlantique, Lab-STICC, UMR6285

F-29238 Brest, France
Email: {jc.bach,fabien.dagnat}@imt-atlantique.fr

Abstract—Return-oriented-programming is widely used for soft-
ware exploits, and ten years after its academic description, little
to no protection is deployed most of the time. Performance
trade-offs or insufficient protection often results in no protection
deployment. Address space layout randomisation is a basic
protection that just increases the complexity of writing attacks
but does not prevent code-reuse exploits. Its overhead is negligible
enough to justify its deployment. These protections come after
software development, and are implemented in the compiler or
via binary modification. Usually, each binary is either critical
and protected or not critical and not protected. This decision
results from a usage criterion, like gzip, or if it exposes network
interfaces, like apache. In this paper, we go through multiple
views to expose elements that make it possible to compare binaries
with respect to their available code-reuse components. We look at
these elements to underline what part of the production process
of a binary can increase or decrease its quantitative inclusion of
code reuse components. With this evaluation, we expose certain
disparities introduced by production tools, by the language used
to write applications or even because of the targeted platform.
We also show how hardware architectures affect this statistical
measurement.

Keywords–Return-Oriented-Programming; ROP; Code-reuse
exploits.

I. INTRODUCTION

With hardware protection against code injection, software
exploitation is widely based on code reuse. Starting with
return-to-libc then generalised with Return Oriented Program-
ming (ROP) [1], the class of code reuse attacks allows an
intruder to recreate any arbitrary program by hijacking the
control flow of a host application. To construct such an exploit,
the needed instructions have to be found in the target binary.
A group of instructions used during such a hijack is called
a gadget. A more precise description of a gadget is provided
in Section II. Address Space Layout Randomisation (ASLR)
makes such a task more difficult, since it allows memory
layout to be randomised when an application is started. The
search of useful instructions must be done at runtime. But
ASLR has been shown as not to be efficient enough for
full protection, and can be bypassed, for example with blind
ROP [2]. In a common playground, such as a JavaScript jail in
a browser, process memory reading cannot be prevented and
ASLR becomes less effective, as shown for example in the
Spectre exploit [3].

For x86, solutions have been proposed [4]–[6] to protect
an application against these attacks. These solutions guaran-
tee that the execution will follow a legitimate control flow.

However, they introduce more overhead in execution time than
what can be accepted for general-purpose programs. Protecting
only the relevant part of a program is an appealing way to
reduce the induced overhead, which is done to some extents in
[6]. The authors propose different selection criteria for level
of protected code pointers and arbitrary jumps, giving some
trade-off between performance and security.

Despite all this work, we lack a way to measure the
effectiveness of these types of protection on security. It is
difficult to compare two binaries, protected or not, with regard
to a notion of ROP-class sensitivity. From a performance per-
spective, unified benchmarks are commonly used to evaluate
the costs induced by the deployment of a protection. The
efficiency of a given protection is more difficult to measure.
Nothing exists to measure effectiveness beyond trying to write
exploits, manually or with human intervention and this is
hardly scalable. We develop this idea in Section III.

More generally, during the creation of an application, a lot
of choices must be made. For example, we have to choose the
language to write our application, the operating system it will
be deployed on and, in some case, the hardware the application
will support. The influence of such choices on the availability
of control flow hijacks in the final binary is not known.

Brown et al. [7] have highlighted how debloating tools
affect sensitivity to control flow hijack. They have shown
that using the gadget number is not enough to define a
security metric. Furthermore, they propose a binary production
process that relies on a human to validate a significant security
improvement. Such a process clearly does not scale and cannot
be integrated in a software-automated build process.

While debloating influences the available gadgets in an
application, this is probably the case as well for other steps of
binary production. We want to know which tool or technology
choices (compiler, language, etc.) have an effect, positive or
negative, on these available gadgets. Instead of finding and
exploring any combination of possible production tools for an
application, we chose to select a wide range of systems. On
those systems, we analyse available binaries to see if we can
characterise the production process by the resulting available
gadgets. We explore how different production setups affect the
notion of gadget density. We investigate what is available to
an attacker to craft a control flow hijack payload and what
characterises a given binary with regard to code reuse exploits.
The objective is to extract information from deployed binaries
on living systems to provide recommendations for building
applications that are more resistant to code reuse attacks. We



study how the target execution environment for binaries affects
the quantity and diversity of elements presented to write an
exploit.

Then, the influence of environment on the quantitative
measurement of code reuse availability is identified. The goal
is to characterise how different steps of a process, from
software creation to execution, could be leveraged to reduce the
number of ROP components exposed by an application. This
paper presents the method we used to define this quantitative
measurement, which allows us to distinguish which binaries
provide the most elements to write code reuse exploits.

This article starts by explaining how control flow hijack
attacks are written in Section II, with a focus on the basic
elements that compose these attacks. We then continue with
the methodology used to retrieve these gadgets from binaries
in Section IV. In Section V, we explore how gadgets are
distributed among analysed binaries, in order to identify those
that are used most often and study their diversity. Then,
we analyse the disparity in binaries, given their hardware
architecture or system environment (for example, the runtime
Linux distribution). In Section V-D, we highlight which binary
production steps influence the availability of control flow
hijack components. In the end, we also show that a ROP
chain crafted to target a given application built on two similar
systems is unlikely to work on both.

II. CONTROL FLOW HIJACKING

The idea behind control flow hijacking is the use of
hardware processor operational behaviour to trick it out of
the normal flow. One known method to hijack control flow
is ROP, first described by Shacham [1]. ROP is a paradigm
which allows generating a completely new application using
the existing set of instructions of a given software. Exploits
written with ROP need an entry point to start the attack,
as detailed at the end of this section, in the threat model
paragraph. Examples given in this section use the x86 family
architecture but other architectures can be targeted by these
attacks.

A program can be decomposed into multiple sequences of
instructions linked by control flow instructions defining where
the execution continues. These instructions can be function
calls, system calls, jumps or returns.

During a control flow hijack, addresses used by control
flow instructions are corrupted to divert the flow toward
libc functions – for return-to-libc attacks. Return
oriented programming uses small subsets of available code
instead of full functions. These subsets are called gadgets.
For example, mov rdi, qword ptr [rbx]; call rdi is
a gadget found in some x86_64 applications.

ROP is the construction of an application by chaining
gadgets together, effectively using only present and legitimate
code. A ROP chain is created by corrupting the memory with
a sequence of addresses pointing toward such elements. If
the execution stack is corrupted, a return instruction is
used to chain the gadgets. On hardware architecture without
this return instruction, other instructions are used to build
similar hijacks of a program execution. These constructions
are shown for x86 and SPARC in [8] and for ARM in [9].

While the term ROP is used only for return-terminated
gadgets, COP (Call-Oriented Programming) is for call-
terminated ones and JOP (Jump-Oriented Programming) is for
jmp-terminated ones. We also consider system call gadgets in
our statistical analysis, amongst all other gadgets. Non-control
data flow hijacks are out of the scope of this paper.

Threat Model: In the context of an attack following
the ROP paradigm, few basic hypotheses are made on what
intruders can do. The capabilities given to them are arbitrarily
read in the process binary, which is not a strong hypothesis.
For writing, we assume W XOR X is enforced, meaning that
writing and executing are mutually exclusive. We also make
the assumption that the executable part of a given program
cannot be corrupted, but any write that does not violate this
property is available. We also assume that a memory corruption
allowing a ROP chain execution to be started is available.
If the application is written in a memory-safe language, a
side channel attack – either hardware or software – can be
used to initiate the chain. We also make the assumption that
attackers have an idea of what they attack, and have some
knowledge on which gadgets they can find, expecting that
hardware architecture is known.

III. RELATED WORK

In a first approach, we looked for a measurement of ROP
effectiveness, apart from Turing-completeness of the set of
gadgets found, which has been demonstrated if code base is
sufficient enough, like the standard C library [8]. The objective
here is to look at how different protections measure their
results, not for performance overhead introduced but regarding
ROP gadget availability.

Schwartz et al. proposed Q [10], a tool that hardens any
ROP exploit to be resistant to ASLR. The tool effectiveness is
proven by testing on which program they can construct a chain.
Based on semantic analysis of gadgets without side effects,
they managed to construct a chain automatically on a large set
of /usr/bin of a given Linux system. However, the only
metric that is used to measure the sensitivity of a given binary
is the success of their tool to craft a chain. They also provide a
statistical study on semantic gadgets available in their surveyed
binaries, with just a short discussion.

Dullien et al. proposed another tool to look for gadgets in
cross-platform environments [11]. The effectiveness of their
solution is demonstrated by checking the Turing-completeness
of the gadget set found in one binary on three different ARM
platforms. The chosen binary is a core library linked with most
applications and no other measurement is proposed.

Keromytis et al. published a protection against ROP [12] on
a part of the binary. The published tool is evaluated in terms of
both performance and security. The efficiency of the protection
is tested using known software to create ROP payloads and
gadgets, Q [10] and Mona [13]. They used two different results
to evaluate the effectiveness of the protection. The first one is
the ability to craft a chain automatically with these tools on the
protected binary. The second one is the count of gadgets which
were found by the two softwares and which are removed in
the protected part of the binary.

In a similar way, published protections like [14], [15] or
debloating techniques [16] often use either automatic crafting



failure as an effectiveness measurement, with either Q [10],
ROPgadget [17] or a custom tool. The default crafted chain is a
shell spawning, but the failure or success of the craft on a given
binary does not provide much information about its protection.
Another chain, which brings as much harm, could be poten-
tially (hand)crafted without being detected by this method of
evaluation. The second method used to evaluate protections is
the enumeration of available gadgets and reduction observed
before and after the protection in question is applied. To do
so, either Q output is used or custom processes are built. Even
when a common tool is used, methods of comparison differ,
implying some lack of common ground with respect to security
benchmarks.

IV. GADGET DENSITY MEASUREMENT

A gadget is a sequence of instructions terminated by a
jump, as defined earlier. For our analysis, a gadget is at
most five instructions long, including the jump, following [8].
Furthermore Homescu et al. [18] have shown that one-byte
instructions can be enough to achieve Turing-completeness.
Therefore, all subsequences of a gadget are relevant. So for
a five-instruction long gadget, all sub-gadgets of one up to
five instructions are counted as different gadgets. As a result,
each control flow instruction can generate up to five different
gadgets. A gadget of size one is limited to a control flow
instruction. For example, call rdi; can be used alone if a
preceding gadget in the chain already set the content of the
register rdi to a desired value. We also want to keep them
for checking control flow instruction diversity. The basic ret
instructions are not considered, as such gadgets are not relevant
(i.e., they do nothing).

In this article, gadget classification is purely based on op-
codes. Two gadgets that are similar semantically but different
syntactically are considered distinct in the measurement. For
example, pop rax;ret and pop rbx;ret are distinct.

The semantic analysis of gadgets is outside of the scope of
this study. It has been demonstrated [10] that some arithmetic
gadgets can be chained in order to create missing stores, load
or any other needed gadgets. All gadgets are treated equally
in the scope of this analysis whether they produce side effects
or are just not usable at all.

Different metrics are used in this comparison. To fairly
compare binaries of different sizes, the number of gadgets
found in a binary is normalised with the size of its executable
section. We define two densities with these measurements:
unique gadget density, which represents the number of distinct
gadgets present in a binary, and total gadget density, which
includes all occurrences of each gadget in an executable file.

These metrics are used to identify how easy it is to attack
a binary using control flow hijacking, given its production
context. The context is composed of hardware architecture
at first, completed by its target environment and its creation
process. This creation process is decomposed to identify the
role that each step plays in the evolution of the gadget density
of a binary.

Methodology: The search for gadgets in a binary is
done using a tool, ROPgadget [17], based on the library
Capstone for assembly parsing. Even though some ar-
chitectures are not supported by the highest-level tool we

used, adding support for more instructions in the future is
not excluded, as the library supports many more hardware
platforms. On top of that, we have developed software for data
aggregation and process automation, which enables an easy
process to integrate more binaries for analysis, or to extract
some data subsets.

V. EXPERIMENTS

This section contains an analysis of how gadgets are
distributed in a binary, and of how different binaries react
regarding the characteristics of gadgets exposed to an attacker.

Analysed binaries come from different Linux distributions
and platforms. All binaries from /usr/bin are used. Most
systems have various applications installed, from system util-
ities to window managers or web servers. We tried to have
a lot of diversity in target usage of these applications to
avoid any bias that may exist, for example due to applications
needing more I/O accesses. All analysed binaries are the
executables without their libraries, except if they are statically
linked. If a program is statically compiled, we did not try
to isolate what comes from the linked libraries and what
is specific to the application, and we analyse it as a single
binary. We excluded any standard libraries in this analysis,
and other dynamically linked libraries. Given that libc and
other libraries are so heavy, we assume that if someone wants
to protect an application, they will either build without relying
on such libraries, or will use static compilation. We focus on
binary specific gadgets, to avoid an already known Turing-
complete set.

The Linux distributions and platforms analysed – with
the snapshot date when relevant – are the following: Fedora
26 (2018-01-19), Ubuntu 16.04 (2017-10-10), Debian Testing
(2018-01-15), Debian 9.3 (2018-01-12), Gentoo (2017-09-07),
Arch (2017-11-23), Buildroot, RISC & CISC (2018-02-05),
Tar 1.30 (multiple compilation flag combinations) and Firefox
(all release versions from 4.0 to 65.0b9).

Around 10 500 binaries went through this process, which
was run on a dedicated platform. The dataset was created on
an Intel® Xeon® CPU E5-2640 clocked at 2.4 GHz. Parsing
the whole set of binaries takes around 48 hours to complete.

A. Binary Gadget Density Measurement

There is a correlation between the size of a binary and its
number of gadgets. As shown in Figure 1, both unique gadgets
and total gadgets increase quite linearly on a log scale with
the size of the executable section (ES) of a binary. From really
small binaries (less than 1 kB of ES), to large ones (more than
10MB of ES), executable size is correlated with new gadgets,
despite greater variation on small binaries. Analysed binaries
present non-negligible variations in gadget count, in a window
which is not correlated with ES size.

The interesting part is that while increasing in size, the
number of unique gadgets keeps increasing. Intuitively, most
gadgets would already be present in a binary when ES is above
a certain threshold, and a slower increase or stagnation would
be observed. Such behaviour is not observed, as binaries keep
introducing new gadgets regularly as they grow in size. A
normalised number of gadgets relative to its ES, in kB, has



Figure 1. Gadgets found depending on the size of the executable sections

been taken as a first quantitative indicator for comparison of
multiple binaries regarding ROP-class availability.

Both these total and unique gadget densities increase with
size, as shown in Figure 2. Two tendencies stand out. First, a
group of binaries has a ratio between the two densities around
1, meaning each gadget is rarely present more than once.
Second, the binaries have a ratio that increases with their ES
size. Amongst all these binaries, some have an extreme ratio,
like Quasselcore, coming from Gentoo Linux, with a ratio
of 6.2. The most impressive one is gregorio, from Arch
Linux, which has a ratio of 8.89, around 3 times the average
of the binaries with similar ES size. For example, coming from
a different platform, ARM32, grep has a ratio of 1.17. Such
a disparity in density ratio is limited to neither architecture
change nor binary size. For instance, a gap is observed between
clang (Arch Linux, x86_64), and darcs (Ubuntu 16.04,
x86_64) with 5.2 and 2.2 for 23MB and 19MB of ES size,
respectively.

On the code reuse availability that a binary could present,
all binaries are not equal regarding what they provide to an
attacker to craft an exploit. There are some extreme cases, but
the global distribution shows a lot of binaries outside common
trend. Moreover, an application can provide more or fewer
gadgets. For example, screen, a binary available on all Linux
systems analysed, does not have the same number of gadgets,
either total or unique, and even has a changing ratio. On three
architectures (SPARC v8 and leon, ARM32), the density ratio
of this binary is around 1.20, 2.1 for ARM64, while it is
around 2.50 on i386 & x86_64 architectures. These disparities
are explored in the following sections, to observe how either
system, in Section V-D, or hardware targets, in Section V-C,
affect software on its control flow hijack elements.

B. Gadget representation

This section studies the diversity of gadgets amongst bina-
ries on the x86_64 architecture. This architecture is selected
because it represents 10 100 binaries out of 10 516. The goal
is to determine how different a ROP chain would have to be,
to execute the same attack on two distinct binaries.

Most available gadgets across all binaries are just manip-

ulations that pop stack values into registers, i.e., pop r14;
pop r15; ret. Such gadgets are available in most binaries.
There is only around 1% of our binaries that do not contain
these gadgets. Most gadgets are not shared amongst the
binaries, with only 16% of them in 2 or more binaries.

In our sample, some binaries expose a lot of the same
gadgets. One gadget is used extensively by a few binaries, by
a large margin compared to the other most popular gadgets.
This gadget comes from binaries that share an interesting
property, namely they are written with the Qt framework (like
Quasselcore).

To evaluate the predominance of ROP gadgets in a binary
compared to other kinds of gadgets, we isolated the ones that
are terminated by any instruction except return. An excerpt
of the results is shown in Table I. For this categorisation
of gadgets, few stand out for their statistical usage. The
two most used gadgets come exclusively from binaries of
programs written in the programming language OCaml, with
an above-average frequency. No C/C++ compiler generated
these gadgets, nor did any other compiler used to produce
one of the analysed binaries. We identified some but not all
compilers used to generate our binaries, including go, rust,
gcc or clang. This gadget can be used as a signature of
OCaml binaries in our dataset.

The presence of these particular behaviours is not limited
to these compilers and libraries. In a first attempt to identify
software engineering choices influencing the gadget density,
the production process of tar and a small graphical game
have been modified to ensure a given compilation option set.
Two compilers were used (gcc and clang) with the usual
options. In this limited sample, the influence of a compilation
option on gadget density does not depend on the compiled
application. The effect of a given option has a similar effect
on both applications. The choice of a compiler did result in
different behaviour. This implies that the compilation process
(the choice of the compiler and its options) cannot be neglected
when designing an application to be less sensitive to code
reuse, and should not depend on the application.

Since these results only concern the x86_64 architecture, it
is planned to check whether such behaviour can be observed
with other hardware architectures. For now, our sample size of
binaries from other architectures is too small and too specific
to be relevant for a comparison with x86_64 figures.

C. Hardware Influence

This section shows the impact that hardware architecture
has on different measurements of gadgets in binaries. In
Section V-B, we explained that x86_64 binaries were overrep-
resented. Therefore some bias may exist in the given results.

TABLE I. MOST USED GADGETS NOT TERMINATED BY A RETURN

Gadget Nb of occurrence Nb binaries Avg Occurrence
mov rdi, qword ptr [rbx] ; call rdi 43 737 54 809.94
mov edi, dword ptr [rbx] ; call rdi 43 202 54 800.04
mov rdi, rbx ; call rax 22 559 698 32.32
mov edi, ebx ; call rax 22 536 786 28.67
add eax, edx ; jmp rax 16 770 1173 14.30
add rax, rdx ; jmp rax 16 624 1168 14.23
add edx, eax ; jmp rdx 15 132 455 33.26
add rdx, rax ; jmp rdx 15 003 398 37.70



Figure 2. Ratio of total to unique gadgets by hardware architecture

Figure 2 presents the ratio between total and unique gadgets
for all 10 516 binaries. It uses two colours to highlight the
differences between the type of architectures, RISC –ARM
(32 & 64 bits), SPARCv8– and CISC –x86 (32 & 64 bits).
The main difference in behaviour between the two groups is
the diversity of gadgets in RISC binaries. They rarely have a
ratio above two, and the ratio does not increase with ES size.
Binaries that target x86 family platform have a higher variance
in gadget density ratio. The bigger the x86_64 binary ES size,
the more often their gadgets appear.

Buildroot is a Linux distribution which targets embed-
ded systems. A system can be built with a list of packages
with a constant configuration from one hardware architecture
to another. With a fixed compiler and its options, the only
parameter that differs from build to build is the target architec-
ture. Binaries are compared respectively on each architecture,
to observe the differences in density.

Comparing these Buildroot, few differences are present
between architectures. Sometimes the average of unique gadget
density displayed by a system is more than twice the density on
its counterpart, like between i386 and ARM32. An interesting
result is that architecture family is not sufficient to classify a
system with respect to its ROP availability. For example, even
if there are more unique gadgets on i386 than ARM32, the
comparison between their 64-bit counterpart gives an opposite
result, with a lot more on ARM64. The availability of more
instructions on ARM64 may be the reason for this evolution,
but this is only a hypothesis that has to be explored further.

Even if what causes such behaviour is not known, it is
certain that hardware architecture has a great effect on diversity
and density in the quantitative measurement of ROP availabil-
ity on these systems. Since gadgets cannot be compared across
architectures on a syntax basis, semantics would be required
to expand the discussion on hardware influence.

D. Disparities in deployment environments

In some Linux communities, security is the main focus,
while in other performance or stability are privileged. This
influences the choice of an application version and the pro-
duction process of the binaries. For instance, in Fedora and

0 20 40 60

0

2

4

6

8

Shared gadgets (%)

N
um

be
r

of
bi

na
ri

es

Number of binary analysed: 679
Average shared: 37.45%; Standard deviation: 12.13

Figure 3. Percentage of shared gadgets on both Fedora and Ubuntu

Red Hat Enterprise [19], there are recommendations on which
gcc compilation flags to use to publish a package. This section
looks into different distributions to identify the influence that it
can have on binary gadget density. We chose different types of
distributions. Some use rolling release, where each application
is updated with upstream updates, and others are stable or
on a slow update cycle. We added some initially uninstalled
packages to have better coverage for comparison.

For the purpose of comparison, only the content of
/usr/bin is used in the five distributions. To compare two
distributions, a binary is searched on both, and if it exists on
only one, it is discarded from the result. If it is available on
both distributions, the density of unique and total gadgets are
compared. Then results are aggregated.

On average, only a small deviation can be observed be-
tween two distributions, around a few percent, and standard
deviation between 25 and 30 percentage points increase or
reduction in density on two distributions. Despite the majority
of binaries showing little to no differences in density between
two distributions, others bring up more questions, with up to
three times more gadget density in one environment.

In some cases, there is only a small difference in version,
like minor version or just a distribution patch that differs. On
top of that, compilation flags and compilers can also vary
between distributions. A lot of different behaviours are ob-
served, since there is a huge sample of contributors involved in
development and packaging. Compilation flags can be chosen
for technical reasons, or due to distribution directives given to
maintainers, or even users who change these themselves.

Having high average differences in density between two
Linux distributions is not sufficient to evaluate the usability
of a crafted chain on a similar binary from one to the other.
A program available on both systems may contain different
gadgets even if it exposes a similar density. Figure 3 presents
the extent to which a Fedora desktop distribution and its
Ubuntu counterpart share gadgets.

First, with only 37% (around 600 gadgets) of shared
gadgets on average between two distributions for a binary,
the ability to create an easily distributable chain becomes



compromised. An attack would probably have to use different
gadgets for each target distribution. The low re-usability of a
given chain is reinforced by the fact that only a few binaries
between systems have up to 75% shared gadgets, and way
more than half of those analysed do not even reach 50%.
Few variations in a software production process can result in
enough variations to reduce the portability of a code reuse
exploit.

E. Results

These experiments have shown multiple parameters that
have a significant influence on gadget density. A wide disparity
of density amongst binaries is observed. Interestingly, the
bigger a binary gets, the more unique gadgets it has.

We have also seen that despite gadgets being widely
available on all hardware architectures, gadget availability is
influenced by these architectures. Specifically, RISC architec-
tures tend to have a gadget available only once per binary.

The results also highlighted the fact that the whole pro-
duction environment has a role in the creation of gadgets.
Some impactful steps are, amongst others, the choice of the
source language, its compiler and the compilation options. This
step can reduce or increase density, but most importantly they
affect the variety and type of gadgets one can find in a binary.
This fact is reinforced by the disparity in gadgets found in
two binaries from the same application produced for distinct
environments, shown in the last section. As a consequence, it
is very unlikely to be able to port a given ROP chain at a low
cost from a system to another.

VI. CONCLUSION AND FUTURE WORK

In this paper, using a statistical analysis, we highlighted the
influence of the binary production process on the number and
density of gadgets. While this does not provide a direct security
metric, it shows that code reuse has to be taken into account
at an early stage of application design. Understanding what
impacts the number of gadgets may lead to better protection,
a more suitable protection, or one with less overhead.

The next step to expand this work is to consider the
semantics of gadgets, to check whether each design decision
has the same effect on density for gadgets with similar
semantics. We have started to work on a measurement of
semantic diversity, to ease the comparison of binaries. We
also plan to improve the dataset of analysed programs, with
more diverse source languages, and complete the dataset with
more RISC binaries. We have seen limitations of our dataset
with respect to hardware architecture in Section V-C, with the
over-representation of x86_64. The diversity of gadgets has
been inspected only with this architecture. We will expand this
analysis to other available architectures. We plan to complete
the study on compilation options, compilers and languages,
started in Section V-B, with, for example, the addition of
applications written in a memory-safe language like rust.
The enhancement of the dataset is important to confirm what
is shown on a small scale here. It would help confirm that
other systems (POSIX compliant or not) behave differently
than those in Section V-D. With enough information on what
impacts the number of gadgets, an application could be built
with guidelines to become less sensitive to code reuse exploits.

ACKNOWLEDGMENTS

This research is supported by the Chair of Naval Cyber
Defense, funded and supported by Ecole navale, ENSTA
Bretagne, IMT Atlantique, Thales and Navale Group.

We also thank Pierre-Henri Horrein for his support during
his work at IMT Atlantique.

REFERENCES

[1] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM Conference on Computer and Communications Security, ser.
CCS ’07. New York, NY, USA: ACM, 2007, pp. 552–561.

[2] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in 2014 IEEE Symposium on Security and Privacy,
May 2014, pp. 227–242.

[3] P. K. et al., “Spectre attacks: Exploiting speculative execution,” CoRR,
vol. abs/1801.01203, 2018.

[4] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow in-
tegrity,” in ACM Conference on Computer and Communication Security
(CCS), Alexandria, VA, November 2005, pp. 340–353.

[5] T. Coudray, A. Fontaine, and P. Chifflier, “Picon: Control flow integrity
on LLVM IR,” in Symposium sur la sécurité des technologies de
l’information et des communications (SSTIC), 2015.

[6] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity.” in OSDI, vol. 14, 2014.

[7] M. D. Brown and S. Pande, “Is less really more? why reducing code
reuse gadget counts via software debloating doesn’t necessarily lead to
better security,” arXiv preprint arXiv:1902.10880, 2019.

[8] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans. Inf.
Syst. Secur., vol. 15, no. 1, Mar. 2012, pp. 2:1–2:34.

[9] T. Kornau, “Return oriented programming for the arm architecture,”
Master’s Thesis, Ruhr-Universität Bochum, 2010.

[10] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening
made easy,” in USENIX Security Symposium, 2011.

[11] T. Dullien, T. Kornau, and R.-P. Weinmann, “A framework for auto-
mated architecture-independent gadget search,” in Proceedings of the
4th USENIX Conference on Offensive Technologies. Berkeley, CA,
USA: USENIX Association, 2010.

[12] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in 2012 IEEE Symposium on Security and Privacy,
May 2012, pp. 601–615.

[13] Corelan team, “Mona,” 2013, https://github.com/corelan/mona (last ac-
cessed on 18/09/2019).

[14] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “Ilr:
Where’d my gadgets go?” in 2012 IEEE Symposium on Security and
Privacy, May 2012, pp. 571–585.

[15] X. Chen, H. Bos, and C. Giuffrida, “Codearmor: Virtualizing the code
space to counter disclosure attacks,” in Security and Privacy (EuroS&P),
IEEE European Symposium on. IEEE, 2017, pp. 514–529.

[16] G. Mururu, C. Porter, P. Barua, and S. Pande, “Binary debloating for
security via demand driven loading,” arXiv preprint arXiv:1902.06570,
2019.

[17] J. Salwan, “ROPgadget tool,” 2012, http://shell-
storm.org/project/ROPgadget (last accessed on 18/09/2019).

[18] A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and M. Franz,
“Microgadgets: Size does matter in turing-complete return-oriented
programming,” in Proceedings of the 6th USENIX Conference on
Offensive Technologies, ser. WOOT’12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 7–7.

[19] F. Weimer, “Recommended compiler and linker flags for gcc,”
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-
flags-gcc (last accessed on 18/09/2019).


