

Penalized ordinal logistic regression using cumulative logits

Clémence Karmann, Anne Gégout-Petit, Aurélie Muller-Gueudin

▶ To cite this version:

Clémence Karmann, Anne Gégout-Petit, Aurélie Muller-Gueudin. Penalized ordinal logistic regression using cumulative logits. Journée scientifique FCH: "Méthodes et modèles pour comprendre les réseaux biologiques", Jan 2019, Nancy, France. hal-02354731

HAL Id: hal-02354731

https://hal.science/hal-02354731

Submitted on 8 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Penalized ordinal logistic regression using cumulative logits

Clémence Karmann, Anne Gégout, Aurélie Gueudin

Inria Nancy Grand Est - BIGS

clemence.karmann@inria.fr

Journée scientifique FCH :

"Méthodes et modèles pour comprendre les réseaux biologiques"

January 15th 2018

Introduction

• Analyze links between a variable (response) and covariates

Introduction

- Analyze links between a variable (response) and covariates
- Variable selection problem: identify relevant covariates

Introduction

- Analyze links between a variable (response) and covariates
- Variable selection problem: identify relevant covariates
- Ordinal response

Overview

- Cumulative logit model
 - Generalities
 - Coefficients
- 2 Estimation, inference
 - Lasso estimation of the coefficients β
 - Penalty parameter and variable selection
- Simulation studies
- 4 Application to network inference of zero-inflated data

- Cumulative logit model
 - Generalities
 - Coefficients
- Estimation, inference
 - Lasso estimation of the coefficients β
 - Penalty parameter and variable selection
- Simulation studies
- 4 Application to network inference of zero-inflated data

Multi-class regression: cumulative logit model

Idea

Generalization of the logistic regression for a response Y with K>2 ordered categories.

Multi-class regression: cumulative logit model

Idea

Generalization of the logistic regression for a response Y with K > 2 ordered categories.

If we have p covariates X_1, \ldots, X_p , we model

$$p^j_{\beta}(x) := \mathbb{P}_{\beta}(Y \leq j | X = x) \text{ for } j = 1, \dots, K - 1, \text{ by:}$$

logit
$$p_{\beta}^{j}(x) = \alpha_{j} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p}$$
,

i.e.:

$$p_{\beta}^{j}(x) = \frac{\exp(\alpha_j + \beta_1 x_1 + \dots + \beta_p x_p)}{1 + \exp(\alpha_j + \beta_1 x_1 + \dots + \beta_p x_p)}$$

Pour
$$j=1,2,\ldots,K-1$$
: logit $\mathbb{P}_{\beta}(Y\leq j|X=x)=\alpha_j+\beta_1x_1+\ldots+\beta_px_p$

• Coefficients $(\beta_i)_{i=1}^p$ do not depend on j.

Pour
$$j = 1, 2, \dots, K - 1$$
:
logit $\mathbb{P}_{\beta}(Y \leq j | X = x) = \alpha_j + \beta_1 x_1 + \dots + \beta_p x_p$

- Coefficients $(\beta_i)_{i=1}^p$ do not depend on j.
- $\alpha_1 < \alpha_2 < \ldots < \alpha_{K-1}$.

Pour
$$j = 1, 2, \dots, K - 1$$
:
logit $\mathbb{P}_{\beta}(Y \leq j | X = x) = \alpha_j + \beta_1 x_1 + \dots + \beta_p x_p$

- Coefficients $(\beta_i)_{i=1}^p$ do not depend on j.
- $\alpha_1 < \alpha_2 < \ldots < \alpha_{K-1}$.
- As $p_{\beta}^{K}(x) = 1$, there are K 1 + p coefficients to be estimated (by maximization of the likelihood).

Pour
$$j = 1, 2, \dots, K - 1$$
:
logit $\mathbb{P}_{\beta}(Y \leq j | X = x) = \alpha_j + \beta_1 x_1 + \dots + \beta_p x_p$

- Coefficients $(\beta_i)_{i=1}^p$ do not depend on j.
- $\alpha_1 < \alpha_2 < \ldots < \alpha_{K-1}$.
- As $p_{\beta}^{K}(x) = 1$, there are K 1 + p coefficients to be estimated (by maximization of the likelihood).

Interpretation of coefficients

The coefficient β_i measures the conditional dependence between Y and X_i given $X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_p$. \rightsquigarrow Nullity of coefficients β

- Cumulative logit mode
 - Generalities
 - Coefficients
- Estimation, inference
 - Lasso estimation of the coefficients β
 - Penalty parameter and variable selection
- Simulation studies
- 4 Application to network inference of zero-inflated data

Lasso optimization

★ Sparsity assumption to identify the influential covariates (variable selection)

Lasso optimization

- ★ Sparsity assumption to identify the influential covariates (variable selection)
- * Lead to solve the following optimization problem:

$$\underset{\beta \in \mathbb{R}^p}{\operatorname{argmax}} \Big[\log \mathcal{L}_{\alpha,\beta} - \lambda ||\beta||_1 \Big]$$

Lasso optimization

- ★ Sparsity assumption to identify the influential covariates (variable selection)
- * Lead to solve the following optimization problem:

$$\underset{\beta \in \mathbb{R}^p}{\operatorname{argmax}} \Big[\log \mathcal{L}_{\alpha,\beta} - \lambda ||\beta||_1 \Big]$$

equivalent to (lagrangian duality):

$$\mathop{\mathrm{argmax}}_{\substack{\alpha_1 < \ldots < \alpha_{K-1} \\ ||\beta||_1 \leq \tau}} \log \mathcal{L}_{\alpha,\beta}$$

Frank-Wolfe algorithm

Frank-Wolfe algorithm

$$\min_{x \in C} f(x)$$
; f, C convex

Iteration k:

•
$$s^{(k)} \in \underset{s \in C}{\operatorname{argmin}}^t \nabla f(x^{(k-1)}).s$$

•
$$x^{(k)} = (1 - \gamma_k)x^{(k-1)} + \gamma_k s^{(k)}, \ \gamma_k = \frac{2}{k+1}$$

□ linear approximation of the target function

Variable selection

$$\mathop{\mathrm{argmax}}_{\substack{\alpha_1 < \ldots < \alpha_{K-1} \\ ||\beta||_1 \leq \tau}} \log \mathcal{L}_{\alpha,\beta}$$

■ How to perform variable selection?

Revisited knockoffs

- Inspired from Barber and Candès (2015)
- Intuitive and suitable to any regression framework
- Provides a sorting of covariates

- Inspired from Barber and Candès (2015)
- Intuitive and suitable to any regression framework
- Provides a sorting of covariates

Idea

The idea is to use a matrix of knockoffs of covariates whose structure is similar to X but independent from Y:

- If X_i enters the model after its KO $\rightsquigarrow X_i$ does not belong to the model
- Otherwise $\rightsquigarrow X_i$ is more likely to be relevant

Revisited knockoffs

Procedure

• We construct the knockoffs matrix \tilde{X} by swapping (randomly) the rows of X

Procedure

- $\textbf{ We construct the knockoffs matrix } \tilde{X} \text{ by swapping (randomly)} \\ \text{ the rows of } X$
- **②** We calculate statistics $T_i := \inf \{ \tau > 0, \ \hat{\beta}_i(\tau) \neq 0 \}$, i = 1, ..., 2p for each variable of the augmented design

Revisited knockoffs

Procedure

- $\textbf{ We construct the knockoffs matrix } \tilde{X} \text{ by swapping (randomly)} \\ \text{ the rows of } X$
- **2** We calculate statistics $T_i := \inf \{ \tau > 0, \ \hat{\beta}_i(\tau) \neq 0 \}$, i = 1, ..., 2p for each variable of the augmented design
- $\textbf{ § For } i \in \{1,...,p\}, \ W_i := T_i \wedge T_{i+p} \times \left\{ \begin{array}{cc} +1 & \text{if } T_i < T_{i+p} \\ -1 & \text{if } T_i \geq T_{i+p} \end{array} \right.$

Procedure

- $\textbf{ We construct the knockoffs matrix } \tilde{X} \text{ by swapping (randomly)} \\ \text{ the rows of } X$
- **2** We calculate statistics $T_i := \inf \{ \tau > 0, \ \hat{\beta}_i(\tau) \neq 0 \}$, i = 1, ..., 2p for each variable of the augmented design
- $\textbf{ § For } i \in \{1,...,p\}, \ W_i := T_i \wedge T_{i+p} \times \left\{ \begin{array}{cc} +1 & \text{if } T_i < T_{i+p} \\ -1 & \text{if } T_i \geq T_{i+p} \end{array} \right.$
- Change detection methods applied to the sorted positive statistics W_i to select variables for which statistics W is positive and small

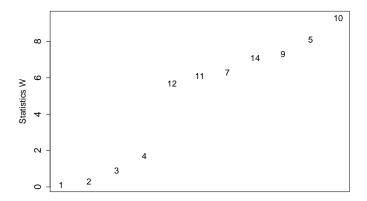


Figure: Example of sorted positive statistics W_i . Only variables X_1 , X_2 , X_3 and X_4 belong to the model (in this case, $\beta = (8, 6, 4, 2, 0, \dots, 0)$).

- Cumulative logit mode
 - Generalities
 - Coefficients
- 2 Estimation, inference
 - Lasso estimation of the coefficients β
 - Penalty parameter and variable selection
- Simulation studies
- 4 Application to network inference of zero-inflated data

• Covariates X are simulated as gaussian s.t. X_i conditionaly independent to X_i with probability 1 - p, p = 0.6

- Covariates X are simulated as gaussian s.t. X_i conditionaly independent to X_j with probability 1 p, p = 0.6
- n = 200 or 100 samples, p = 50 covariates

- Covariates X are simulated as gaussian s.t. X_i conditionaly independent to X_j with probability 1 p, p = 0.6
- n = 200 or 100 samples, p = 50 covariates
- K = 3 modalities (for the response variable Y)

- Covariates X are simulated as gaussian s.t. X_i conditionaly independent to X_j with probability 1 p, p = 0.6
- n = 200 or 100 samples, p = 50 covariates
- K = 3 modalities (for the response variable Y)
- Regression coefficients $\beta = (8, 6, 4, 2, 0, \dots, 0)$

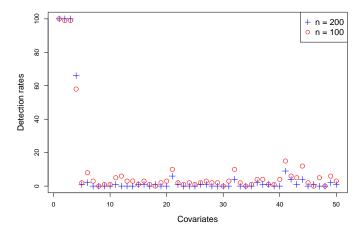


Figure: Detection rates on 100 repetitions after applying revisited knockoffs method.

- Cumulative logit mode
 - Generalities
 - Coefficients
- Estimation, inference
 - Lasso estimation of the coefficients β
 - Penalty parameter and variable selection
- 3 Simulation studies
- 4 Application to network inference of zero-inflated data

Model to simulate data which looks like our kind of data (positive, zero-inflated) and such that we know the theoretical graph structure \rightarrow latent Gaussian graphical model:

Model to simulate data which looks like our kind of data (positive, zero-inflated) and such that we know the theoretical graph structure \rightarrow latent Gaussian graphical model:

• Simulate a Gaussian vector $X \sim \mathcal{N}_p(\mu, \Sigma)$ (we choose the parameters) \leadsto the graph structure is given by Σ^{-1} .

Model to simulate data which looks like our kind of data (positive, zero-inflated) and such that we know the theoretical graph structure \rightarrow latent Gaussian graphical model:

- Simulate a Gaussian vector $X \sim \mathcal{N}_p(\mu, \Sigma)$ (we choose the parameters) \rightsquigarrow the graph structure is given by Σ^{-1} .
- Simulate a Bernoulli *p*-random vector such that $Ber_i \sim B(\tilde{p}(X_i))$ for an increasing function \tilde{p} .

Model to simulate data which looks like our kind of data (positive, zero-inflated) and such that we know the theoretical graph structure \rightarrow latent Gaussian graphical model:

- Simulate a Gaussian vector $X \sim \mathcal{N}_p(\mu, \Sigma)$ (we choose the parameters) \leadsto the graph structure is given by Σ^{-1} .
- Simulate a Bernoulli *p*-random vector such that $Ber_i \sim B(\tilde{p}(X_i))$ for an increasing function \tilde{p} .
- Final data are then $Z = Ber \cdot X$.

Network inference

Goal

Retrieve links of conditional dependence between variables X_i (known in theory thanks to the matrix Σ^{-1}) with the observations Z.

Network inference

Goal

Retrieve links of conditional dependence between variables X_i (known in theory thanks to the matrix Σ^{-1}) with the observations Z.

• Cumulative logits regression (+ revisited KO) of each variable on the others → need to break down the corresponding response variable into classes

Network inference

Goal

Retrieve links of conditional dependence between variables X_i (known in theory thanks to the matrix Σ^{-1}) with the observations Z.

- Cumulative logits regression (+ revisited KO) of each variable on the others → need to break down the corresponding response variable into classes
- Two networks can be built: the 'and' or the 'or' versions

•
$$n = 200$$
 samples, $p = 200$ variables

- n = 200 samples, p = 200 variables
- 'chain' structure

- n = 200 samples, p = 200 variables
- 'chain' structure
- zero-inflation: \approx 12%, varying from 0 to 64%

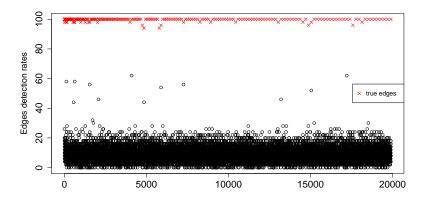


Figure: Edges detection rates (network 'and') on 50 repetitions after applying revisited KO method. Circles and crosses represent respectively false and true edges.

Thank you!