p j β (x) := P β (Y ≤ j|X = x) for j = 1, . . . , K -1, by: logit p j β (x) = α j + β 1 x 1 + ... + β p x p , i.e.:

p j β (x) = exp(α j + β 1 x 1 + ... + β p x p ) 1 + exp(α j + β 1 x 1 + ... + β p x p ) 

Coefficients

Pour j = 1, 2, . . . , K -1 : logit P β (Y ≤ j|X = x) = α j + β 1 x 1 + ... + β p x p Coefficients (β i ) p i=1 do not depend on j.

α 1 < α 2 < . . . < α K -1 .

As p K β (x) = 1, there are K -1 + p coefficients to be estimated (by maximization of the likelihood). 

Coefficients

Pour j = 1, 2, . . . , K -1 : logit P β (Y ≤ j|X = x) = α j + β 1 x 1 + ... + β p x p Coefficients (β i ) p
i=1 do not depend on j.

α 1 < α 2 < . . . < α K -1 .
As p K β (x) = 1, there are K -1 + p coefficients to be estimated (by maximization of the likelihood).

Interpretation of coefficients

The coefficient β i measures the conditional dependence between Y and X i given X 1 , . . . , X i-1 , X i+1 , . 

Frank-Wolfe algorithm

Frank-Wolfe algorithm 

min x∈C f (x); f , C convex Iteration k: s (k) ∈ argmin s∈C t ∇f (x (k-1) ).s x (k) = (1 -γ k )x (k-1) + γ k s (k) , γ k = 2 k + 1

Revisited knockoffs

Inspired from Barber and Candès (2015) Intuitive and suitable to any regression framework Provides a sorting of covariates

Idea

The idea is to use a matrix of knockoffs of covariates whose structure is similar to X but independent from Y : 

If X i enters

Revisited knockoffs

Procedure 1 We construct the knockoffs matrix X by swapping (randomly) the rows of X 2 We calculate statistics T i := inf {τ > 0, βi (τ ) = 0}, i = 1, . . . , 2p for each variable of the augmented design 

3 For i ∈ {1, ..., p}, W i := T i ∧ T i+p × +1 if T i < T i+p -1 if T i ≥ T i+p 12/

Revisited knockoffs

Procedure 1 We construct the knockoffs matrix X by swapping (randomly) the rows of X 2 We calculate statistics T i := inf {τ > 0, βi (τ ) = 0}, i = 1, . . . , 2p for each variable of the augmented design 

3 For i ∈ {1, ..., p}, W i := T i ∧ T i+p × +1 if T i < T i+p -1 if T i ≥ T i+p 4 Change

Zero-inflated data simulation

Model to simulate data which looks like our kind of data (positive, zero-inflated) and such that we know the theoretical graph structure → latent Gaussian graphical model: Simulate a Gaussian vector X ∼ N p (µ, Σ) (we choose the parameters) the graph structure is given by Σ -1 .
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Zero-inflated data simulation

Model to simulate data which looks like our kind of data (positive, zero-inflated) and such that we know the theoretical graph structure → latent Gaussian graphical model: Simulate a Gaussian vector X ∼ N p (µ, Σ) (we choose the parameters)

the graph structure is given by Σ -1 .

Simulate a Bernoulli p-random vector such that Ber i ∼ B(p(X i )) for an increasing function p. 

Network inference

Goal Retrieve links of conditional dependence between variables X i (known in theory thanks to the matrix Σ -1 ) with the observations Z. 

Network inference

Goal Retrieve links of conditional dependence between variables X i (known in theory thanks to the matrix Σ -1 ) with the observations Z. 
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Figure: Example of sorted positive statistics W i . Only variables X1, X2, X3 and X4 belong to the model (in this case, β = (8, 6, 4, 2, 0, . . . , 0)).

Figure: Detection rates on 100 repetitions after applying revisited knockoffs method.
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  Edges detection rates (network 'and') on 50 repetitions after applying revisited KO method. Circles and crosses represent respectively false and true edges.
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