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ABSTRACT:

1.  Larval  transport  by  ocean circulation  and its  emerging  property  at  the  population  level,  i.e.

connectivity, have received increasing attention thanks to the Aichi target 11 of  protecting 10% of

ocean  surfaces.  Furthermore,  it  is  also  important  to  investigate  retention  within  a  site  as  it

determines a population’s self-persistence in an isolated marine protected area.

2. Mediterranean rocky substrates host a conspicuous and diverse biota, which explains that MPA

designation targetted the rocky habitat. Retention rates in the fragmented rocky habitat of the Gulf

of Lion were established at two spatial scales (10- and 1-km2) using dispersal simulations. To this

end we computed three dimensionnal flow simulations with high spatial resolution nearshore (80 m)

combined with a high density of release spots (every 100 m).

3. This study shows that among the six rocky 10-km2 patches, marine protected areas (MPAs) were

designated in the four ones with highest average retention rates for Pelagic Larval Duration (PLD),

of up to 42 days. Furthermore, within each MPA, small zones where special protection measures are

applied correspond to 1-km 2 subpatches where highest local retention rates were found. Yet, the

2% most retentive subpatches of the rocky habitat do not exhibit retention rates large enough to

ensure the local persistence of most species.
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Introduction

Larval  transport  by  ocean  circulation  and  its  emerging  property  at  population  levels,  i.e.

connectivity,  have gained increasing attention in the past 10 years as displayed by the ten-fold

increase in number of citations of papers refering to marine or ocean connectivity between 2005 and

2015 (Web of Science,  June 1,  2017).  This  increase was inpart,  at  least  stimulated by Cowen,

Lwiza, Sponaugle, Paris, & Olson (2000), who questioned the broadly accepted paradigm of open

marine  populations.  Interestingly,  the  beginning  of  ocean  connectivity  studies  traces  back  to  a

pioneering  study  that  linked  connectivity  to  spatial  planning  of  marine  resources  management

through MPA networks (Roberts, 1997). However, to date networks of MPAs are rarely found,

given that they require joint efforts of several players (local authorities, government, etc.) that are

more difficult to set and manage than single MPAs promoted by local communities (IUCN-WCPA,

2008). Within such a context, it is therefore crucial to test the efficacy of single MPAs based on

local retention values and in terms of ensuring species persistence through generations, in particular

if new protected areas are to be designated (Halpern & Warner, 2003; Guizien, Belharet, Marsaleix,

& Guarini, 2012). 

Due to major advances in computing performances in the last decade, the use of ocean circulation

models  in  ecological  studies  has  greatly  increased,  providing  insight  at  both  higher  spatial

resolutions  and  broader  scales  compared  with  flow  measurements.  Several  studies  of  regional

connectivity for coastal species have recently been carried out using high resolution configurations

of Regional Ocean Circulation Models (ROCMs) with horizontal resolutions of 1-2 km (e.g., Di

Franco et al., 2012: 2.2km; Nicolle, Dumas, Foveau, Foucher, & Thiébaut, 2013: 2km; Myksvoll,

Jung, Albretsen, & Sundby, 2014: 800m). Additionally, the efforts of climatologists to make high

resolution  downscaled  versions  of  Global  Ocean  Circulation  Models  (e.g.  NEMO-MED12 and

NEMO-OPA 1/16: 6-8km) available to the scientific community has also facilitated their spread

among ecologists interested in large scale connectivity studies (Andrello et al., 2013; Rossi, Ser

Giacomi,  Lopez  Cristobal,  &  Hernandez-Garcia,  2014).  Nevertheless,  the  terminology  ’high

resolution’ may have proved misleading in the field. ’High resolution’ refers here to the level of

computing power effort devoted to the simulation – e.g., a large number of grid points to cover the

simulated area - and not the actual resolution of ocean flow spatial structures. A spatial resolution of

6-8 km is currently termed ’high’ in simulations covering the Mediterranean basin while it would be

termed ’coarse’  in  coastal  simulations.  In fact,  for  any given level  of  computing  effort,  spatial

coverage and resolution are inversely related : if one is to increase the spatial coverage, resolution

would have to decrease in order to maintain the same computing effort (the reverse holds too).
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Crucially, prior to performing any connectivity study using biophysical models, it is thus necessary

to compromise between resolving the spatial range of the flow relevant for populations connectivity

(spatial coverage) and that relevant for larval dispersal (spatial resolution). 

With regard to empirical spatial coverage, although long range connections should not be totally

excluded,  frequent  and  demographically  efficient  larval  transfer  was  estimated  over  distances

ranging from 10 to 100 kms, due to the limitation imposed by larval survival (Cowen, Paris, &

Srinivasan, 2006) and large-scale ocean current shaping hydrodynamical provinces (Rossi, et al.,

2014). With regard to spatial resolution, larval dispersal simulations led to very different level of

retention in a a bay in the south-west of the Gulf of Lion when either varying spatial resolution from

250 m to 100 m or the distance between spawning grounds and the coastline in flow simulations

(Guizien, Brochier, Duchêne, Koh, & Marsaleix, 2006). Along jagged coastlines, eddies developing

in the lee of capes may act as accumulative and retentive structures for particle dispersal (Denniss,

Middleton, & Manasseh, 1995; Graham & Largier, 1997; Roughan et al., 2005; Mace & Morgan,

2006). 

In simulations it is thus of utmost importance to resolve in 3D these flow structures in order to

accurately compute larval dispersal around these geomorphological features (Doglioli,  Griffa, &

Magaldi,  2004).  Until  recently,  in  3D ROCMs  resolving  flow equations  with  finite-difference

numerical methods applied on cartesian grid computational limitations imposed a tradeoff between

spatial resolution and spatial coverage. Nesting multiple simulations of increasing resolution and

decreasing coverage was the only possibility to yield a resolution of 100 m, necessary to describe

nearshore eddies (Guizien et al., 2006). The introduction of bipolar curvilinear grids transformed

from Earth spherical coordinates in those ROCMs (Bentsen, Evensen, Drange, & Jenkins, 1999)

enables  to  yield  wide  spatial  ranges  with  increased  spatial  resolution  around  specified  poles.

Nevertheless,  bipolar curvilinear  grids, although allowing differential  spatial  resolution over the

simulation domain, do not reach the meshing flexibility of models resolving flow equations with

finite-element numerical method. However, up to date, those latter models have only been used in

2D depth-integrated version for regional ocean simulations  (Lambrechts et al., 2008).

Besides,  another  important  question  for  biophysical  modellers  of  larval  dispersal  is  the  spatial

density of particles that have to be released to account for the spatial variability of hydrodynamics.

So far, particles or larvae have been released at coarse resolutions (Guizien et al., 2012: from 1/11

km-2 to 1/216 km-2 ; Di Franco et al.,  2012: 1/3.25 km-2; Myksvoll et al., 2014: 1/16 km-2 ). Di

Franco et al. (2012) reported that increasing the spatial density of particles did not show significant

difference in dispersal trajectories given the coarse resolution (2.2 km on the horizontal)  of the

underlying flow simulations they used. However, a relationship between the spatial resolution of
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flow simulations and the distance between release spots is to be expected, and to our knowledge its

influence on retention has yet to be explicitly assessed. 

The aim of the present study is to investigate the local retention and potential connectivity within

the fragmented hard-bottom habitat of the Gulf of Lion (NW Mediterranean), which hosts a high

biodiversity (Laubier, 1966; True, 1970; Hong, 1980) and where marine protection measures have

been  taken  (MAPAMED,  2016).  The  originality  of  the  study  is  to  perform  larval  dispersal

simulations using ad hoc simulations of the ocean circulation over a 100,000 km2 area, yielding a

spatial  resolution  of  80  m  along  its  jagged  coastline.  To  the  best  of  our  knowledge,  these

simulations feature the highest spatial resolution ever used in 3D larval dispersal studies over such

large spatial coverage. This study tested the importance of resolving (1) small scale (hundreds of

metres) hydrodynamical structures, and (2) spawning timing (a few days) in larval dispersal when

studying  retention  rates.  We  argue  that  adapting  the  spatial  and  temporal  resolution  of  ocean

circulation and the seeding spatial density in larval dispersal simulations to resolve flow transport at

kilometric  scale  provides  reliable  estimates  of  local  retention  and  potential  connectivity,  with

important implications for guiding marine protection extension.

Material and Methods

Area of study

The Gulf  of  Lion  is  a  wide,  micro-tidal  continental  shelf  in  the  North-western  Mediterranean,

delineated  by a  steep  shelf-break  along which  the  Northern Current  (NC, return  branch of  the

western  Mediterranean  basin  cyclonic  circulation)  flows  south-westward  (Millot,  1990).  The

infralittoral area (down to 40 m) consists mainly of soft bottoms delimited along the shore by a

smooth coastline, except at its two extreme tips (Côte Bleue to the east and Côte Vermeille-Cap de

Creus to the west, Fig. 1) where the coastline becomes jagged and rocky sea beds extend down to a

depth of 80 m (Aloisi, Got, & Monaco, 1973). Aside these two large hard-bottom areas, only a few

small areas of less than 20 km2 are found, complementing the fragmented rocky shallow habitat

(Figure 1). Coralligenous assemblages on these rocky shallow substrates host a high biodiversity

(Laubier,  1966;  True,  1970;  Hong,  1980),  including  sponges,  gorgonians,  molluscs,  bryozoans,

tunicates, crustaceans and fishes. Their vast biodiversity together with their proximity to the coast

makes this coralligenous habitat highly vulnerable to anthropogenic pressures such as recreational

and professional fisheries (Font & Lloret, 2014), scuba-diving (Sala, Garrabou, & Zabala, 1996),

and recreational boats’ anchoring (Millazo, Chemello, Badalamenti, Camarda, & Riggio, 2002). In
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order to protect these assemblages from anthropogenic pressure, four locally managed MPA have

been designated along the Gulf of Lion coastline (Aire Marine Protégée Agathoise, Parc Naturel

Marin du Golfe du Lion, Parc Marin de la Côte Bleue, and Réserve Naturelle Marine de Cerbère-

Banyuls (MAPAMED, 2016).

The coastal circulation in the Gulf of Lion is a wind-buoyancy driven circulation resulting from

meteorological forcings prevalence over tidal influence, with rare intrusions of the  NC on the shelf

under specific wind and stratification conditions (Millot & Wald, 1981; Petrenko, 2003; Barrier,

Petrenko, & Ourmières, 2016). Two wind regimes can be distinguished in the Gulf of Lion: 1)

strong  continental  northerly  (Mistral)  and  north-westerly  (Tramontane)  winds  that  blow

approximately 2/3 of time, for periods ranging from a few hours to a few days (Guénard, Dobrinski,

Caccia, Campistron, & Benech, 2005), and 2) easterly and south-easterly sea winds that blow less

frequently (1/3 of time) and with lower intensity (Fichaux, Poglio, & Ranchin, 2005). Despite the

fact that circulation patterns related to wind regimes in the Gulf can be identified (Estournel et al.,

2003), the erratic temporal variability in wind conditions translates into highly variable currents in

both space and time (Petrenko, Dufau, & Estournel, 2008), with localized up- and down-wellings

throughout  the  area  (Millot,  1979;  Millot  &  Wald,  1981;  Hua  &  Thomasset,  1982;  Johns,

Marsaleix, Estournel, & Véhil, 1992), and mesoscale eddies (Hu, Petrenko, Doglioli, & Dekeyser,

2011). 

Three-dimensional coastal circulation and particle tracking simulations 

Three-dimensional  currents  were computed with the free-surface ocean model  Symphonie  (ver.

2015) for the extended summer period (May, 28 to November, 15) over three years (2010, 2011 and

2012). The Symphonie model solves hydrostatic primitive equations with a finite-difference method

on a C curvilinear grid under Boussinesq approximation and with an energy conserving numerical

scheme  (Marsaleix et al., 2008). In the current configuration, turbulent closure scheme was set to

two-equation K-ԑ (Michaud et al., 2012). Horizontal meshing was a 680 by 710 curvilinear grid

with the same local resolution in orthogonal directions. The curvilinear grid was adapted to the

geomorphology of the Gulf of Lion thanks to  a conformal  mapping (i.e.,  a transformation that

preserves local angles) of the Earth spherical coordinates (Bentsen, Evensen, Drange, & Jenkins,

1999, details  in legend of Figure 1). This bipolar grid allowed differential  horizontal  resolution

across  the  domain  while  conserving  coordinates  orthogonality,  with  high  resolution  over  the

continental shelf in order to resolve small scale vortices and coarse resolution in the open sea in

order to ensure continuity when applying matching conditions with a large-scale oceanic model at

the open boundaries.  Horizontal  resolution ranged from 80 m along the Côte Vermeille-Cap de
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Creus coastline to 400 m over the continental shelf break, to 2.7 km over the abyssal plain. The

bathymetry was smoothed prior vertical meshing in order to avoid large bottom steepnesses that

would create spurious vertical velocities due hydrostatic inconsistency (Beckmann & Haidvogel,

1993). Smoothing consisted in limiting relative water depth variation to 15 % between grid points

applying an iterative laplacian diffusion to the initial bathymetry.  Generalized σ-coordinates were

used for vertical meshing, with 29 vertical levels regularly spaced for water depth lower than 100

m. For water depth larger than 100 m, the spacing between vertical levels became irregular, with a

value of about 3.5 m at the surface (the vertical resolution at 100 m water depth) and increasing

values towards the bottom, where spacing matched the spacing of regular  σ-coordinates  at  that

water depth. Sea surface and open-sea boundary conditions were updated every 3 h from regional

downscaled climatic simulations (6-7 km horizontal resolution, NMFREE ; Hamon et al., 2016),

performed at the Mediterranean basin scale by coupling the atmospherical model ALADIN forced

by  ERA-interim  atmospherical  reanalysis  (12  km  horizontal  resolution,  tri-hourly)  with  the

oceanical model NEMO-MED12 (6-7 km horizontal resolution). Open-boundary forcings included

measured discharge from the eight main rivers of the Gulf of Lion (Grand Rhône, Petit Rhône,

Hérault, Orb, Aude, Agly, Têt, Tech) and the Var river in the Ligurian sea. Hydrodynamical outputs

were stored at the computing grid resolution every hour for subsequent ’offline’ simulations. 

Neutrally  buoyant  particles  were  dispersed  ’offline’  using  a  pure  Lagrangian  approach,  i.e.

integrating along individual tracks, the 3D velocity field linearly interpolated in space and time

between hourly discrete velocity outputs. In particular, no species-specific motility behaviour was

included and dispersal duration lasted up to 42 days so as to not restrict the study to a specific

species. The present study concerned larval dispersal of any species dwelling on rocky substrates

and  reproducing  in  summer,  the  most  frequent  reproductive  season  (D.  Cortese,  Personal

communication). Release spots were spread evenly with a spatial density of 100/km2 over the only

rocky habitat of the Gulf of Lion (1 release spot every 100m, Figure 1). Only those locations in

which flow velocity was computed according to land/sea mask were taken into account. In each

spot, one particle was released 1 m above the bed (benthic species) every hour from beginning of

June until the end of August, summing up to 16.2 million particles for each summer season. 

Upscaling particles dispersal into connectivity matrices

Particle  tracking  simulations  were  post-processed  to  compute  larval  connectivity  matrices,

integrating individual tracks at the population level. A larval connectivity matrix contains larval

transfer rates Tij between release (rows) and destination (columns) patches. T ij is  the proportion of

the total number of particles released in a patch i per unit area of release during a given period of
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release  that reach the destination patch j per unit area of the destination after a dispersal duration

(the PLD). Connectivity matrices may thus vary according to : (1)  the size and location of the

patches they connect, and (2) the duration and timing of the release period it summarizes. Building

connectivity  matrices  thus  require  choosing spatial  and temporal  scales  of  aggregation  that  are

ecologically relevant. Hence, as initial conditions, spatial and temporal scales of aggregation were

defined according to usual ecological drivers: environment fragmentation and seasonality. Larval

transfer  rates  were  computed  among  habitat  patches  delineated  by  expected  meso-scale

hydrodynamical structures and the rocky habitat fragmentation. 

Six rocky habitat patches were identified in the Gulf of Lion (Figure 1, Table 1): Cap de Creus

(CC, 21km2), Côte Vermeille (CV, 4.2km2), Cap Leucate (CL, 6.5km2), Cap d’Agde (CA, 16.4km2),

Plateau  des  Aresquiers  (PA,  16km2)  and  Côte  Bleue  (CB,  10.4km2).  A  larva  was  counted  as

reaching  a destination patch after the dispersal duration if its position was less than 100 m of at

least one of the release spots of this patch. Connectivity matrices were built for the entire summer

season in three consecutive years (2010, 2011 and 2012), and for PLD ranging from 3.5 to 42 days.

Local retention rates Tii correspond to the diagonal of the connectivity matrix. The Relative Out-

strength RO of each release patch within the patch network was defined as the proportion of out-

strength (Bocaletti, Latora, & Moreno, 2010) of a patch that connects to any other patch except

itself: 

RO i=(1 −
T ii

∑
j=1

6

T ij )∗ 100

Sensitivity of retention rate to release spots spatial distribution

Given the ecological importance of local retention for population persistence (Halpern & Warner,

2003), the sensitivity of retention rates estimated at the habitat patch scale to the spatial density of

release spots within the habitat patch was examined. Sensitivity analysis was performed for a 3-

week PLD. To do so, the spatial  density of release spots was gradually reduced by varying the

distance distance (spatial resolution) from 100 m to 120 m, 200 m, 350 m, 500 m, 700 m, 1 km, 1.5

km, 2 km, 3 km and 5 km. For each spatial density (or spatial resolution) of release spots, many

subsets of the original set of release spots were generated (Table 1). 

For a given density of release spots to be sufficient  to describe the habitat  patch retention,  the

retention rate should not vary between the subsets of release spots. For each spatial resolution, the

frequency distribution of retention rate estimates across all subsets was computed. For each habitat

patch, convergence of local retention rates estimates was obtained when the frequency distribution
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reaches a unimodal and narrow distribution. This is equivalent to the limit when the median value

Q50 for  the  next  higher  resolution  remains  unchanged  compared  to  current  resolution,  (see

Supplementary  Material  1  and  Supplementary  Figure  1).  As  a  criteria  for  converging  to  an

unimodal  distribution,  a  threshold  of  20% of  uncertainty  was  applied,  defined  as  the  relative

interquantile range (Q90−Q10)/Q50 with Q90 and Q10 being the 90% and 10% quantiles of the retention

rate distribution, respectively.

The sensitivity of the local retention rates to the density of release spots may reflect small-scale

hydrodynamical  spatial  structures  of  retention.  Thus,  contribution  of  each  release  spot  to  the

retention rate of the habitat  patch it belongs to was calculated and used to define subpatches in

which  retention  rate  was  spatially  homogeneous  (see  Supplementary  Material  1).  Finally,  high

spatial resolution connectivity matrices were build using 115 subpatches ranging in area from 0.16

to 1.4 km 2 (0.66 km 2 on average, Supplementary Figure 5). The cumulative area distribution of

local retention rate, i.e. the proportion of the rocky surface area where local retention rate is lower

than a threshold value, was computed using these 115 subpatches, for PLD ranging from 3.5 to 42

days.

Sensitivity of connectivity to release timing variability

Whilst the summer reproductive season is from June to August, species display variations in their

spawning  timing  (e.g.  among  sponges:  Mariani,  Uris,  &  Turon,  2005;  among  gorgonians:

Santangelo,  Carletti,  Maggi,  &  Bramanti,  2003,  Gori,  Linares,  Rossi,  Coma,  &  Gili,  2007).

Furthermore,  the coastal  circulation in the Gulf of Lion is also driven by erratic  wind regimes,

leading to high spatio-temporal variability of ocean currents (Millot,  1990; Petrenko, 2003). We

thus  questioned  if  summer  connectivity  patterns  for  a  week-long  spawning  event  were  pre-

dominantly driven by meteorological, seasonal or climatic (inter-annual) variability. To this end, 39

different connectivity matrices (13 per year in 3 years), each representing a non-overlapping week-

long  release  period  were  built  spanning  the  entire  summer  reproductive  season  (starting  and

finishing dates are given in Supplementary Table 1). The variability of larval transfer probabilities

at various temporal scales (within month hereinafter called Varintra-month, within season hereinafter

called Varintra-summer,and between years hereinafter called Varinter-summer) was computed as defined in

see also Supplementary Material 2.

Results
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Average summer connectivity among rocky habitat patches

The average summer particle flows among the six main rocky habitat patches of the Gulf of Lion

were less than a few percent, and heterogeneous, regardless of the duration of dispersal (Figure 2).

The average connectivity pattern revealed two types of habitats: « closed» ones with retention rate

larger than export rates (relative out-strength lower than 50 %), and « open » ones with export rates

larger than retention rate (relative out-strength larger than 50 %). After seven days of dispersal,

retention rate clearly dominated over export rate in Cap de Creus, Côte Vermeille, Cap d’Agde,

Plateau des Aresquiers and Côte Bleue with retention rate values of 3.39, 1.65,  1.40, 0.89 and

1.94%, respectively (Figure 2A), and relative out-strength values RO ranging from 0 to 34% (Table

1). Conversely, Cap Leucate exhibited a much lower retention rate value of 0.15 % and a high

relative out-strength value (RO = 74 %), transferring particles predominantly to Côte Vermeille

(0.22 % after 7 days of dispersal).  The connectivity matrix for a 7-day Pelagic Larval Duration

(PLD) was fairly symetrical. It displayed three clusters of rocky habitat patches formed by closest

neighbouring  patches  exchanging  a  proportion  of  particles  comparable  to  the  proportion  that

remained in their release grounds  (more than 0.2 %): one cluster included Cap de Creus, Côte

Vermeille and Cap Leucate, another cluster included Cap d’Agde and Plateau des Aresquiers, while

Côte Bleue was disconnected from these two former clusters (Figure 2A). 

Increasing the PLD up to 21 days, retention rate values decreased in all habitat patches, yielding

1.43, 0.60, 0.05, 0.50, 0.08 and 0.74 % from west to east (Figure 2B and 3). However, only Plateau

des  Aresquiers  rocky habitat  shifted  from a closed to  an open habitat  patch,  with relative  out-

strength increase from 33% to 82% (Table 1). In Cap de Creus, Côte Vermeille, Cap d’Agde and

Côte Bleue, retention remained dominant over export for a 21-day PLD (Figure 2B). Nevertheless,

relative  out-strength increased in  eastern  habitat  patches  thanks to an increase  in  long distance

connections  within the Gulf of Lion while it  decreased in the western habitat  patches due to a

decrease of the transfer rate to closest neighbours and export out of the Gulf of Lion (Table 1). The

connectivity matrix became asymmetrical, with a dominant North-east to South-west particle flow

(higher  transfer  rates  above  the  diagonal,  Figure  2B)  and  the  three  clusters  of  preferentially

connected habitat patches for a 7-day PLD merged into a single cluster when PLD was set to 21

days. Yet, it is noteworthy that Côte Bleue received a very low proportion of particles from the

other habitat patches of the Gulf for a dispersal duration up to 42 days (data not shown, incoming

transfer rates ranged between 10−4 and 10−3 % for a 21-day PLD). In contrast, outgoing transfer rates

from Côte Bleue to all other habitat patches were one order of magnitude higher than incoming

transfer rates. For PLD lower than 14 days, Côte Bleue was only supplying the closest neighbouring

habitat patch, namely Plateau des Aresquiers. For dispersal duration larger than 14 days, this pattern

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312



was reversed: the closer the habitat patch is to Côte Bleue, the fewer particles it received, with Côte

Bleue now mainly supplying the Cap Creus, the furthest from Côte Bleue (transfer rates from Côte

Bleue to Cap de Creus, Côte Vermeille, Cap Leucate, Agde and Plateau des Aresquiers respectively

being 0.026; 0.017; 0.017; 0.008; 0.004 % after 42 days of dispersal).

Retention rates (the diagonal of a connectivity matrix) decreased rapidly up to a 21-day PLD and

reached a stable value for longer dispersal duration in all habitat patches, except in Cap Leucate in

which retention rate was always small (Figure 3). The habitat patch ranking with regard to retention

rate was maintained for all dispersal durations, Cap Creus being the most retentive, followed by

Côte Vermeille, Côte Bleue, and Cap d’Agde, than Plateau des Aresquiers and last, Cap Leucate.

Yet,  average  retention  rate  values  should  be  taken  with  caution  as  retention  rates  varied

significantly among the different release periods of three consecutive summers

 (2010, 2010 and 2012) with standard deviation yielding 100% of the mean in all habitat patches

and for all dispersal durations.

Meteorological variability during release period drives connectivity

Seasonal  variability  (between different  months  of  reproduction  within  a  year,  Varintra−summer)  and

climatic variability (between the same month of reproduction in different years, Var inter−summer) had

the same order of magnitude, whatever the dispersal duration (Figure 4A). Their ratio for any of the

36 pairwise transfer probabilities among the six habitat patches ranged from 0.3 to 2.6, whatever the

dispersal duration. Neither seasonal nor climatic variability dominated for dispersal durations of up

to 21 days (median of the 36 values of the ratio between climatic and seasonal variability  was close

to 1). When dispersal duration increased from 21 to 42 days, climatic variability started to exceed

seasonal variability (median of the 36 values of the ratio between climatic and seasonal variability

larger than 1). This was the case  in 26 out of the 36 possible pairwise connections among the six

habitat patches for a dispersal duration of 35 days. 

In contrast, meteorological variability (between release periods within each month of reproduction,

Varintra−month)  clearly  outweighted  seasonal  variability  in  all  pairwise  connections  among  the  six

habitat patches for dispersal durations of up to 21 days (Figure 4B), with an effect as large as 7.8

times  larger  than  the  seasonal  variability.  The  dominance  of  meteorological  variability  over

seasonal variability was observed for all dispersal durations, although decreasing when dispersal

duration increased: the  median of the 36 values of the ratio of meteorological to seasonal variability

varied from 3 to 4 for PLD lower than 21 days and dropped below 2 for PLD larger than 21 days.

Coastline indentation drives retention rates patchiness down to 1km2 scale
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Retention  rate  estimates  varied  according  to  the  density  of  release  spot,  but  did  so  differently

according to habitat patches. While retention rate estimates did not vary much with release spot

distance in the Plateau des Aresquiers and Cap Leucate,  uncertainty on retention rate estimates

notably decreased

 when distance between release spots  decreased below 1 km in Cap de Creus, Cap d’Agde, Côte

Bleue and Côte Vermeille, with a faster reduction of uncertainty in Cap de Creus than in the three

other habitat patches (Figure 5B). The distance between release spots required to reach a precision

of 20 % in retention rate estimates among different release spot subsets (relative interquantile range

less than 20%)  was 700 m in Plateau des Aresquiers, 350 m in Cap Leucate and 200 m in Cap de

Creus, while it was 100 m in Cap d’Agde and Côte Bleue. In Côte Vermeille, with a distance of 100

m between release spots, the precision of 20 % around the median could not be obtained and the

deviation between the 10 % and 90 % quantiles was 35%.

Stabilization of the median retention rate values was reached for a distance between release spots of

250 m in all habitat patches except in Côte Vermeille (deviation by less than 5% between median

retention rate values for release spot spatial resolution of 100 m and 250 m, Figure 5A). In Côte

Vermeille, median retention rate still exhibited 25% deviation between the 120 m and the 100 m

release spots spatial resolution. However, such a deviation was four times lower than the variability

among retention rate values at different release periods (Figure 3). 

The large uncertainty on retention rate estimates when distance between release spot  was larger

than 1km in Cap Creus, Côte Vermeille, Cap d’Agde and Côte Bleue (Figure 5A) indicated that

retention rates could vary greatly over a 1 km distance within these habitat patches (Supplementary

Figures 2, 3 and 4 and Figure 6). Retention rates computed within 115 subpatches of about 1 km2

(defined  in  Supplementary  Figure  5)  showed  highly  retentive  subpatches  in  Cap  Creus,  Côte

Vermeille, Cap d’Agde and Côte Bleue with retention rates greater than 2% for a 21-day PLD.

Crucially, those subpatches correspond to locations where special marine protection is implemented

(Figure 6). The highest local retention rate was found in one subpatch of Cap de Creus, ranging

from 5% for a 7-day PLD to 3.5% for a 42-day PLD. Altogether, in the Gulf of Lion, local retention

rate was higher than 5% in only 6.8% of the rocky surface area for PLD of 3.5 days (data not

shown), and equal or lower to 5% everywhere in the rocky habitat for PLD equal or larger to 7 days

(Figure 7). For a PLD of 7 days, local retention rates was less than 2 % over 90 % of the rocky

surface area and less than 4 % over 98 % of the rocky surface area (Figure 7). For PLD larger than 7

days, local retention rates was less than 1.5 % over 90 % of the rocky surface area and less than

2.5 % over 98 % of the rocky surface area .
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Average connectivity matrices at high spatial resolution (that is, among the 115 subpatches, Figure

8) further indicated that highly retentive subpatches (displayed by vertical stripes in Figure 8C and

D)  corresponded  as  well  to  sink  areas  that   received  particles  from  neighbouring  or  distant

subpatches  (displayed  by  vertical  stripes  in  Figure  8A and  B).  Conversely,  source  subpatches

displayed by horizontal stripes could be both retentive

 and non-retentive. It is worth noting that regardless of the PLD, transfers within subpatches

 of the southern part of Cap de Creus were high and bidirectional. On the other hand, the direction

of transfer to distant habitat patches varied with the PLD. For a 7-day PLD, the southern part of Cap

de Creus spread a higher proportion of particles to the Côte Vermeille than it received from it. For a

21-day PLD, it received particles from up to Cap d’Adge but spread only to Cap Leucate.

Discussion

The present study shows the strong spatial heterogeneity in local retention rates estimated at a scale

of  1 km2 around a jagged coastline.  The results  reported  here highlight  the inadequacy of low

resolution flow simulations produced with global ocean climatic models for tackling the question of

retention  in  coastal  MPAs (Andrello  et  al.,  2013).  Criticisms  as  to  the  realism of  the  in  silico

approach of larval dispersal has mainly focused on the assumptions restricting larvae to neutrally-

buoyant  particles,  disregarding  their  motility  behaviour  (Cowen  et  al.,  2006),  ontogenic

development (Guizien et al., 2006) or mortality (Cowen et al., 2000). Furthermore, incorporating

this  information  is  still  currently limited  by gaps in  biological  knowledge.  Notwithstanding the

importance  of  such  biological  aspects  in  altering  dispersal  patterns,  the  choice  of  spatial  and

temporal  resolutions  of ocean flow simulations  in  larval  transport  studies should be questioned

(Putman & He, 2013). For instance, spatial resolution as low as tens of metres were used to depict

flow variability  in  reef  mosaic  or  complex  costalines  (Andutta,  Kingsford,  & Wolanski,  2012;

Herbert  et  al.,  2012).  Yielding  such spatial  resolution  in  flow simulations  covering  an  area  of

hundred of square kilometers representative for populations connectivity was only achievable in 2D

finite-element models. Yet, coastal flows influenced by wind forcing are not accurately resolved

with 2D models, and 3D models able to resolve Ekman layers should be used (Petrenko et al.,

2008).

Until  recently,  3D models based on a finite-difference numerical  scheme were limited  by their

regular orthogonal meshing and required successive nested meshes to improve spatial resolution

(Blayo & Debreu,  1999).  However,  nested  meshes  can  complicate  particle  tracking  when they
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disperse outside the smallest nested domain and return to it thanks to meso-scale eddies (Guizien et

al., 2006). In the present study, such retention processes were observed in rocky patches located a

few kilometers offshore (Cap Leucate and Plateau des Aresquiers) and resulted in evenly distributed

retention  rates.  The  latter  a posteriori justifies  the  coarse  750 m horizontal  resolution  used  in

Guizien et al. (2012) to study soft-bottom species dispersal. Conversely, on other rocky patches

retained particles did not leave the habitat during their entire dispersal, regardless of the PLD used.

In those patches, retention resulted from either simulated weak flow velocities due to important

bottom friction in shallow areas in Cap d’Agde or from simulated retention structures with spatial

scales less than 200m in the lee of capes or in bays along the steep bathymetry of Côte Bleue, Côte

Vermeille and Cap de Creus.

Such small scale structures could not be simulated in a previous study using the same model but

with a 750 m horizontal  resolution. Very low retention rates were reported in large soft-bottom

areas (11 to 216 km2), spanning water depths of 10 to 30 m, at  three of the four rocky habitat

patches investigated (Guizien et al., 2012). Increasing horizontal resolution by a factor of about 10

in  the  same  numerical  model  enabled   simulation  of  small  scale  hydrodynamical  structures

important  for  retention  in  rocky  habitat  patches  adjacent  to  jagged  coastlines  and  nearby  soft

bottoms. Hence, incorporating curvilinear meshing into 3D finite-difference models such as the one

used in  the present  study opens the way for  improved horizontal  resolution  in  3D ocean flow

simulations used for larval dispersal studies. This is of particular interest where the geomorphology

imposes high horizontal resolutions, in order to avoid computationally costly nesting procedures. 

Nonetheless, one has to keep in mind that the true resolution of flow structures in ocean models

may  be  different  from  the  theoretical  grid  resolution.  Numerical  schemes  used  to  discretize

primitive  equations  constrain  the  effective  resolution  of  flow  dissipation  and  may  alter  flow

representation  in  simulations  (Soufflet  et  al.,  2016).  However,  in  the  absence  of  ground  truth

validation versus flow measurements, larval dispersal simulation reliability is difficult to estimate.

For  instance,  high  retention  rates  in  isolated  locations  very  close  to  the  coast  are  most  likely

artifacts: in the absence of a hydrodynamic calculation point between a release spot and the coast,

the logarithmic decay of flow velocity in the coastal boundary layer will be linearly interpolated and

the flow underestimated.  Conversely, can several release spots spaced a 100 m from each other

(more than grid resolution) along the Côte Vermeille consistently depicting high retention rate be

considered as a reliable indicator of the existence of actual retention ? Strikingly, the four rocky

habitat patches with highest average retention for PLD up to 42 days, namely Cap de Creus, Côte

Vermeille, Cap d’Agde and Côte Bleue correspond to areas designated for marine protection in the
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Gulf of Lion. Furthermore, areas with highest average local retention at the 1-km2 scale in Cap

d’Agde and Côte Bleue, and partially in Côte Vermeille, correspond to areas where special marine

protection have been implemented. Given that the present study quantified for the first time the

retention  in  those  places,  this  criterion  was  not  used  in  their  designation.  Until  now,  MPA

designation has been largely based on the biotic richness of areas. Persistence of high biomass and

biodiversity  in  some  locations  indicates  that  in  those  locations,  many  species  reached  local

equilibrium, that is, colonization compensated local extinction. For species with a dispersive larval

stage  which  can  potentially  form metapopulations  (Levins,  1969),  colonization  can  result  from

either local retention or import from distant populations. Both local retention rates as well as import

rates were higher in the small subpatches where marine protection had been designated based on

biotic richness. These finding validate the present simulations. 

Designating  areas  with  high  local  retention  for  marine  protection  is  essential  for  at  least  two

reasons.  On the one  hand,  such areas  are  highly vulnerable  to  contaminations.  In  a  context  of

limited  dispersal,  low  dilution  of  organic  or  inorganic  effluent  is  likely  to  lead  to  local

eutrophication and/or anoxia (Xu et al., 2010). On the other hand, such areas are the ones where

self-persistence  of isolated populations  can be expected.  Hence,  we advocate  using biophysical

models with adequate spatial  resolution to identify areas with high local retention to help guide

future marine spatial planning. Meanwhile, verifying that highly retentive areas effectively ensure

population  self-persistence requires comparison of retention  rates with the threshold defined by

species life-history traits. Neglecting losses during recruitment (taking a recruitment success equal

to 1, Hastings & Botsford, 2006), local retention rates should be ranging from 5.9 to 14.4% to

ensure population self-persistence for species with 3-yr life expectancy, a fecundity of 104 eggs per

adult and a PLD ranging from 1 to 4 weeks (Guizien et al., 2012). Hence, self-persistence of species

with such life-history traits would not be achieved in any subpatch of the rocky habitat of the Gulf

of Lion. However, for a PLD ranging from 5 to 6 weeks and a fecundity of 105 eggs per adult,

population self-persistence would be yielded in about 2% of the rocky surface area, although still

ignoring  losses  during  recruitment.  Indeed,  increasing  the  coverage  of  no-take  zones  in  the

Mediterranean Sea from the current value of 0.04% to 2% by 2020, targeting key functional areas is

the  objective  set  up  during  the  2016  MEDPAN  Forum  (Tangier  declaration,

http://www.medmpaforum.org/sites/default/files/tangier  declaration.pdf).  Meanwhile,  keeping  in

mind that recruitment success is by definition less than 1, this means that even if marine protection

designation was directed towards those most retentive areas, self-persistence may not be achievable

for species whose life-history traits impose much higher local retention rates than the flow allows.

In such cases, populations persistence at a regional scale would rely on connectivity among distant
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subpatches  forming  persistence  loops  over  multiple  generation  (Hastings  &  Botsford,  2006).

Indeed, achieving species conservation objectives in the fragmented rocky habitat of the Gulf of

Lion relies on the identification of networks of connected subpatches. Indeed, protecting source

populations  providing  larvae  to  unprotected  populations  (identified  by  horizontal  stripes  in

connectivity  matrices),  may  prove  completely  unefficient  if  those  source  populations  do  not

maintain themselves through receiving sufficient larvae. Yet, protecting sink populations receiving

larvae from unprotected populations is even more cynical. In addition to being unefficient because

depending on the wealth of unprotected supplying populations, it may give a false impression  of

protection efficiency as sink populations have a higher resistance to local perturbations. Designating

efficient MPAs requires to go beyond the easy identification of source and sink populations from

connectivity patterns, by investigating the populations network functionning within a region. To this

aim, the present study provides ready-to-use connectivity matrices among 1-km2 rocky subpatches

to  analyze  the  persistence  of  rocky  populations  in  the  Gulf  of  Lion  through  metapopulation

modeling, accounting for demographical processes (Moilanen, 2011) . Such an approach will enable

to evidence the minimal set of populations necessary to achieve conservation objectives and test

future maritime spatial planning scenarios including MPA extension (Guizien, Belharet, Guarini, &

Moritz, 2014 ; Padron & Guizien, 2016). 
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List of Figures

Figure 1 : Spatial extent of the simulated domain with the dipolar grid (680 × 710; 1 blue line every

10 cells) and the 20 m, 50 m, 100 m, 200 m, 500 m, 1000 m and 2000 m bathymetric contours.

Parameters for the projection were: North pole (44.2° N ; 5.3° E) at indices (170; 710); South pole

(42.37° N; 2.82° E); reference latitude for Mercator projection was 52° N. The 6 rocky habitats

(CC= Cap de Creus, CV= Côte Vermeille, CL= Cap Leucate, CA= Cap d’Agde, PA= Plateau des

Aresquiers, CB= Côte Bleue) are indicated in red and the coastline is depicted by a bold line.
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Figure 2 : Connectivity matrices containing mean transfer rates (in %) computed for the summer

seasons of 2010, 2011 and 2012 between the 6 main rocky habitat patches of the Gulf of Lion (CC=

Cap  de  Creus,  CV=  Côte  Vermeille,  CL=  Cap  Leucate,  CA=  Cap  d’Agde,  PA=  Plateau  des

Aresquiers, CB= Côte Bleue) (A) for a 7-day PLD and (B) for a 21-day PLD. Symbol (+) display

those transfer rates that increased in the 21-day PLD compared to the 7-day PLD.

764

765

766

767

768

769

770

771

772

773

775

776

777

778

779

780

781

782

783

784



Figure 3 : Boxplots of the mean retention rate in the six main rocky habitat patches (CC= Cap de

Creus, CV= Côte Vermeille, CL= Cap Leucate, CA= Cap d’Agde, PA= Plateau des Aresquiers,

CB= Côte Bleue) computed for the thirteen 1-week release periods in 3 consecutive years (2010,

2011 and 2012) and for dispersal duration ranging from 3.5 days to 42 days. 
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Figure 4 : Boxplot of (A) Varinter-summer /Varintra-summer ratio and (B) Varintra-month /Varintra-summer ratio of any

element  in  the  connectivity  matrices  computed  for  the  thirteen  1-week  release  periods  in  3

consecutive years (2010, 2011 and 2012) and for PLD ranging from 3.5 days to 42 days.
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Figure 5 : (A) Median Q50 retention rate at habitat patch scale versus minimal distance between

release spots d for each habitat and a 21-day PLD (open symbols, CC= Cap de Creus, CV= Côte

Vermeille, CL= Cap Leucate, CA= Cap d’Agde, PA= Plateau des Aresquiers, CB= Côte Bleue).

Filled symbols indicates the retention rate when all release spots are considered. (B) Difference Q90

− Q10 as percentage of the median Q50 for each distance d.
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Figure 6 : Each panel is a close up of one of the six main rocky habitat patch showing the average

retention rate over three years (2010, 2011 and 2012) in each of the 115 subpatches for a 21-day

PLD (bold dots). A displays Cap de Creus, B displays Cap Leucate, C displays Cap d’Agde, D

displays Plateau des Aresquiers, E displays Côte Bleue and F displays Côte Vermeille. Bathymetric

contours are displayed in gray and labeled in meters, and coastline is displayed by the black thick

line.  Thin dashed line delimitates the areas designated for marine protection.  Thick dashed line

delimitates the areas where special protection is implemented.
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Figure 7 : Cumulative area distribution of local retention rate in the rocky habitat of the Gulf of

Lion for a PLD of 1 week (circle), 3 weeks (square), and 5 weeks (triangle). Shaded dark grey area

displays the maximum local retention values if the 10% MPA coverage extent targetted by the 10th

United Nations Conference of the Parties for 2020 concerned the most retentive subpatches in the

Gulf of Lion. Shaded light grey area displays the maximum local retention values if the 2% no-take

zones coverage extent targetted by the MEDPAN Forum for 2020 concerned the most retentive

subpatches in the Gulf of Lion.
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Figure 8 : Average connectivity matrices between 115 subpatches of 1-km2 for summer 2010, 2011

and 2012 for a 7-day PLD (A and C) and for a 21-day PLD (B and D). To give more visibility to

transfer  rates  between subpatches,  (A) and (B) displays  transfer  rates  between subpatches  only

(outside diagonal), and (C) and (D) displays the local retention in each subpatch (values on the

diagonal). Horizontal and vertical lines delimitate the six main rocky habitat patches (CC= Cap de

Creus, CV= Côte Vermeille, CL= Cap Leucate, CA= Cap d’Agde, PA= Plateau des Aresquiers,

CB= Côte Bleue) used to establish low-resolution connectivity matrices. The southern part of the

Cap de Creus is delineated with red dashed lines. Transfer rates are in %.
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List of Tables

Cap de 
Creus

Côte 
Vermeille

Cap Leucate Cap d’Agde Plateau des 
Aresquiers

Côte Bleue

Number of 
release spots

2085 421 654 1638 1595 1041

d=120m 1026
(175)

215
(57)

322
(29)

794
(449)

777
(83)

516
(36)

d=200m 524
(869)

115
(193)

162
(369)

394
(1107)

402
(869)

266
(471)

d=350m 189
(1591)

48
(295)

51
(585)

121
(1546)

119
(1505)

93
(832)

d=500m 102
(1818)

31
(358)

28
(551)

68
(1426)

67
(1245)

55
(817)

d=700m 64
(1897)

21
(340)

16
(571)

36
(1593)

35
(1434)

33
(860)

d=1km 42
(1891)

12
(320)

9
(570)

20
(1467)

18
(1457)

20
(882)

d=1.5km 27
(1892)

8
(326)

5
(494)

10
(1443)

10
(1509)

13
(822)

d=2km 20
(1947)

5
(323)

4
(583)

7
(1602)

6
(1456)

10
(841)

d=3km 13
(1877)

4
(314)

2
(583)

4
(1518)

3
(1333)

6
(859)

d=5km 7
(1920)

2
(305)

2
(653)

2
(1509)

2
(1220)

4
(819)

RO7days(%) 22 34 74 31 32 0

RO21days(%) 18 25 76 48 82 7

Table 1 : First line indicates the original number of release spots regularly distributed over a 100 m

by 100 m grid for each habitat.  Following lines provide the mean number of release spots per

subset, and between parenthesis the number of different subsets that were found for each minimum

distance d. Last two lines gives the relative out-strength values calculated for a 1 week and a 3 week

dispersal duration for each habitat.
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Supplementary Material 1 to High resolution modelling of

ocean circulation can reveal retention spots important for

biodiversity conservation: Sensitivity of retention rate to

release spots spatial distribution

Florence Briton 1, Daphne Cortese 1, Thomas Duhaut 2, Katell Guizien 1,∗

1 CNRS, Sorbonne Universités (UPMC Univ Paris 06), Laboratoire d’Ecogochimie des Envi-

ronnements Benthiques (LECOB), Observatoire Ocanologique, Banyuls/Mer, F-66650, France

2 CNRS, Université de Toulouse, Laboratoire d’Aérologie de Toulouse, 14 avenue E. Belin - Toulouse,

F-31400, FRANCE

∗ guizien@obs-banyuls.fr

Thanks to the high resolution of flow simulations (less than 300 m in each habitat patch), the

sensitivity of habitat patch retention rate estimates to the spatial density of release spots (hereafter

indicated by release spot distance) could be reliably assessed. The robustness of habitat patch

retention rate estimates was determined by two criteria: the reduction of the uncertainty defined

as the relative interquantile range (Q90 −Q10)/Q50 and the stabilization of the median value Q50 of

retention rate frequency distribution. As an example, in the Cap de Creus habitat patch, with low

density of release spot (d=1500m , d=700m, Fig.1B and D), local retention rates are quite evenly

distributed across a wide range of values, and the mode does not appear (Fig.1A and C): the median

retention rate is not representative and increased from 1.85% for d=1500m to 2.47% for d=700m.

For a minimum distance of 500m between release spots (Fig.1F, H and J), the mode emerges, and

the quantiles Q10 and Q90 get closer to the median (Fig.1E, G and I). Both stabilization of the

median value Q50 and reduction of the relative interquantile range (Q90 − Q10)/Q50 (herein called

uncertainty) when release spot distance decreases define the convergence toward a stable unimodal



distribution. Convergence is reached when uncertainty becomes lower than 20% and the retention

rate of the habitat is estimated by the median value of the converged distribution (Fig.1G).

The contribution of each release spot to the retention rate of the habitat patch it belongs to was

calculated as the proportion of particles released in that spot during a release event that came back

into its original habitat patch after a certain PLD. The history of the particle contributing to the local

retention was investigated as well. Indeed, local retention can result from two different processes.

Either the particles remained in the patch where they were released, kept by local hydrodynamics

structures, or they are swept away from their release patch and find their way back through meso-

scale recirculation structures. To arbitrate between the two possibilities, for each release spot the

proportion of particles released there that contributed to the local retention staying in the patch

during the whole dispersal period was also calculated.

As an example, Supplementary Figure 2 displays the spatial distribution of the release spots

having the highest retention rates in the habitat and cumulating 75% of the habitat patch retention

rate for a 21-day PLD. These release spots were evenly distributed and represented 41% and 51% of

the release spots in Plateau des Aresquiers and Cap Leucate, respectively. In Cap de Creus, 75% of

the habitat patch retention rate is accounted for by 31% of the release spots which were regularly

distributed along the southern half of the habitat. In contrast, 75% of the habitat patch retention

rate was accounted for by only 17% of the release spots in Côte Vermeille, 16% in Cap d’Agde, and

3% in Côte Bleue. The latters were sometimes isolated but more often accumulated in subpatches

of ten or more release spots. In Côte Vermeille, those spots were located around bays and capes.

In Côte Bleue, there were a few retention pools close to the shore but in steep bathymetry in its

eastern part. In Agde, they were concentrated near the coast at depths less than 5m. The most

retentive release spots did not vary for PLDs larger than 21 days in Cap de Creus, Côte Vermeille,

Cap d’Agde and Côte Bleue (Supplementary Figures 3 and 4 ) indicating that particles released in

those most retentive spots did not leave the habitat patch during their dispersal period. In contrast,

in Cap Leucate and Plateau des Aresquiers, no particles remained in their original habitat patch

during their whole dispersal period (data not shown), and the ones contributing to habitat patch

retention depended only on recirculation structures to return to their original habitat. This analysis

guided the definition of 115 subpatches ranging in area from 0.16 to 1.4 km2 (0.66 km2 on average),

in which retention rate was spatially homogeneous (Supplementary Figures 5).
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Supplementary Figure 1: Frequency distributions of local retention rates at Cap de Creus for in-
creasing density of release sites (A: d=1.5km; C: d=700m; E: d=500m; G: d=200m; I: d=120m,
where d is the distance between release sites). For each release spatial density, the number of samples
is equal to the number of subsets that could be made from the original distribution at 100m resolution
as indicated in Table 1. The solid line represents the median value Q50, and the dashed lines the
quantiles Q10 and Q90. A sample of a release sites subset for each release spatial density is mapped
on the right panels (B: d=1.5km; D: d=700m; F: d=500m; H: d=200m; J: d=120m).
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Supplementary Figure 2: Each panel is a close up of one of the six main rocky habitat patch showing
the distribution of release spots spaced by a 100 m (small grey dots) and the most retentive release
spots accounting for 75% of the average habitat retention rate over the summer of 2010, 2011 and
2012 for a 21-day PLD (bold red dots). A displays Cap de Creus, B displays Cap Leucate, C displays
Cap d’Agde, D displays Plateau des Aresquiers, E displays Côte Bleue and F displays Côte Vermeille.
Bathymetric contours are displayed in gray and labeled in meters, and coastline is displayed by the
black thick line. Thin dashed line delimitates the areas designated for marine protection. Thick
dashed line delimitates the areas where special protection is implemented.
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Supplementary Figure 3: Same as Figure 2 but for a 7-day PLD.
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Supplementary Figure 4: Same as Figure 2 but for a 35-day PLD.
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Supplementary Figure 5: Each panel is a close up of one of the six main rocky habitat patch showing
the distribution of 115 subpatches of about 1-km2 grouping release spots spaced by a 100 m. The
subpatches are individuated by different gray intensity. Bathymetric contours are displayed in gray
and labeled in meters, and coastline is displayed by the black thick line. Thin dashed line delimitates
the areas designated for marine protection. Thick dashed line delimitates the areas where special
protection is implemented.
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The 39 non-overlapping week-long release periods (13 per year in 3 years) defined in Supple-

mentary Table 1 were used to calculate connectivity matrices for different week-long release periods.

The meteorological, seasonal and climatic (inter-annual) variability was quantified by intra-month

Varintra−month, intra-summer Varintra−summer and inter-summer Varinter−summer variabilities, respec-

tiveley, and defined as follows:

Meteorological variability on any transfer rate T (anu element of the connectivity matrix)

was quantified by the intra-month (i.e between release periods within each month of reproduction)

variability of the transfer rate defined as:

Varintra−month =

Nyear∑

y=1

Nmonth∑

m=1

(

Nperiod∑

p=1

(T y
m,p−T

y
m)2

Nperiod
)

NyearNmonth

(1)



with the average transfer rate of month m in year y defined as:

T
y
m =

Nperiod∑

p=1

T y
m,p

Nperiod

(2)

Seasonality on any transfer rate T (any element of the connectivity matrix) was quantified by

the intra-summer (i.e between different months of reproduction within a same year) variability of

the transfer rate defined as:

Varintra−summer =

Nyear∑

y=1

(

Nmonth∑

m=1

(T y
m−T y)2

Nmonth
)

Nyear

(3)

with the average connectivity matrix of year y defined as:

T y =

Nmonth∑

m=1

T
y
m

Nmonth

(4)

Climatic variability on any transfer rate T (any element of the connectivity matrix) was quan-

tified by the inter-summer (i.e between the same month of reproduction in different years) variability

of the transfer rate defined as:

Varinter−summer =

Nmonth∑

m=1

(

Nyear∑

y=1

(T y
m−Tm)2

Nyear
)

Nmonth

(5)

with the average connectivity matrix of month m defined as:

Tm =

Nyear∑

y=1

T
y
m

Nyear

(6)

with Nyear = 3 the number of years (2010, 2011, 2012), Nmonth = 3 the number of reproductive

months (June, July, August), Nperiod = 4 the number of one-week long release periods per month.

Thus, only the week-long release periods 1 to 12 (Table 1) were taken into account in the calculation

of meteological, seasonal and inter-annual variability, in order to maintain a same number of periods

per month.
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2010 2011 2012 Assigned
reproductive month

Period 1 June, 6 June, 5 June, 3 June
to June,12 to June, 11 to June, 9

Period 2 June, 13 June, 12 June, 10 June
to June, 19 to June, 18 to June, 16

Period 3 June, 20 June, 19 June, 17 June
to June, 26 to June, 25 to June, 23

Period 4 June, 27 June, 26 June, 24 June
to July, 3 to July, 2 to June, 30

Period 5 July, 4 July, 3 July, 1 July
to July, 10 to July, 9 to July, 7

Period 6 July, 11 July, 10 July, 8 July
to July, 17 to July, 16 to July, 14

Period 7 July, 18 July, 17 July, 15 July
to July, 24 to July, 23 to July, 21

Period 8 July, 25 July, 24 July, 22 July
to July, 31 to July, 30 to July, 28

Period 9 August, 1 July, 31 July, 29 August
to August, 7 to August, 6 to August, 4

Period 10 August, 8 August, 7 August, 5 August
to August, 14 to August, 13 to August, 11

Period 11 August, 15 August, 14 August, 12 August
to August, 21 to August, 20 to August, 18

Period 12 August, 22 August, 21 August, 19 August
to August, 28 to August, 27 to August, 25

Period 13 August, 29 August, 28 August, 26 none
to September, 4 to September, 3 to September, 1

Supplementary Table 1: Starting and finishing date of the thirteen week-long release periods in the
three consecutive years 2010, 2011 and 2012. Last column indicates the reproductive month to which
each period was assigned for testing the intra-summer variability.
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