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1 - Introduction

Expansion in French total agricultural output over the last four decades has been accompanied
by an equally, if not more, significant increase in France's trade for agri-food products. Thus,
the volume of French agri-food exports increased more than six-fold between 1961 and 1990
(Monceau, 1995). France which was a net importer of food products in the sixties became a
net exporter in 1970. This net exporting position in agri-food products was steadily
consolidated over the 70's and 80's so that France is now the second world exporter of agri-

food products behind the USA and before Netherlands.

Although French imports of agri-food products did not experience the same expansion as agri-
food exports during the same period, they have steadily increased to reach in value terms 150
billion french francs in 1994, among which 2/3 represented import shipments of processed food
products. Such a pattern is not surprising and is associated with a gradual integration of the
EU agri-food sectors, and the development of intra-trade in this kind of products (Chevassus-
Lozza and Gallezot, 1993; de Frahan and Libert, 1996). French imports of agri-food products
originating from the rest of the EU are now representing about 70% of the total. Given this
situation, it is interesting to know how the various competing import supplies of a given agri-
food product interact between each other but also with the production of home-produced agri-

food products.

The objective of this paper is to explain the patterns of imports and home-produced supplies
for raw and processed agricultural products, using a differentiated product model. For this
purpose, we propose a generalization of the Armington model based on an homogenous,
indirect and implicitly additive structure of consumer preferences from which demand for
imported and home-produced products are derived. Its empirical implementation is facilitated
by the use of an homogenous 'Constant Difference of Elasticities' (CDE) functional form
developed by Hanoch (1975). Relative to the Armington model, this proposed differentiated
product model offers the advantage of computing varying elasticities of substitution among

sources of import and domestic supplies.

When estimated econometrically, the CDE functional form must satisfy certain conditions (in
the form of inequality restrictions on its parameters) to be globally or locally valid over its
regularity domain. If conventional econometric estimation techniques were used, these

conditions are not imposed and are usually tested "ex-post". On the other hand, in order to



ensure that the estimated parameters of the CDE function are globally or locally valid,
constrained estimation techniques similar to those developped by Shumway et al. (1990) or
Hazilla and Kopp (1986) for flexible functional forms could have been applied. We did not
follow this route in estimating the CDE functions but rather leant towards an ancther
alternative bayesian-like approach developed by Geweke (1988, 1989). In fact, imposing
inequality constraints on parameters can be viewed as supplying prior information before we
proceed to the econometric estimation of the functional form with a data sample, and then to
infer the posterior distribution of the parameters. Such an estimation strategy which has been
employed recently by Chalfant ez al. (1991), Hayes et al. (1990), and Tiffin and Moxey (1992)
for input and consumer demand and output supply systems derived form flexible functional
forms has never been applied to agricultural trade modelling. It is also our intent to fill this gap

by adapting the Geweke's procedure to the estimation of CDE demand functions.

The rest of the paper is structured in the following manner. The next section develops the
conceptual model used to explain the imports and home supplies of goods. The estimable
version of this model is also presented in this section. This is then followed in section 3 by a
presentation and explanation of the bayesian estimation procedure employed in this study. In
section 4, we report and discuss econometric results for twenty six agri-food products
consumed in France, using annual data from 1977 to 1994. Concluding remarks are provided

in the last section.

2 - Conceptual and empirical models

The proposed differentiated product model framework retains two essential characteristics
from the Armington specification. First, we distinguish commodities that are differentiated by
kind as "goods" and "goods" that are differentiated by origin as "products". Second, we
assume that the utility function is homogenously and weakly “separable. This proposed
framework is however more general than the Armington model in the sense that we allow for
imperfect substitution between various import and domestic sources of a given commodity but
we also make the following additional asumptions: (i) varying elasticities between any two
products of a good in a given market; (ii) distinct elasticities of substitution between any two
pairs of products in a given market; and (i) imports and domestic production are viewed as
final good supplies entering the decision process of the consumers.

Given these assumptions, it is then possible to define a direct, homogenously and weakly
separable consumer preference structure where each good g; fori=12,., n can be supplied
by a set of m geographically differentiated products gjs from s= 1.2,.... m. The products g;¢ can



be ordered into a set of n separable and mutually-exclusive groups. The utility function
corresponding to this separable structure is homogenously weakly separable and is defined as

follows:

Ulq] = UM(q,;.9,50-491m) va( Q900 Gom) -on V(G Dz Do) (1]

where v,(.) are viewed as homogenous sub-utility functions which depend upon a set of
geographically differentiated products g;¢. Linear homogeneity of the sub-utility functions also
implies that g, =v,(). U[] and v,() satisfy the usual conditions of monotonicity, quasi-
concavity and differentiability. Due to the linear homogeneity of the sub-utility functions v;(.),
it is possible to derive subgroup conditional demands of the form, for all s belonging to group

i
q./q;=g[p,] Jor s=1..m and i=1,..n [2]

The optimization procedure behind the utility function [1.] may be viewed as occuring in two
stages. The consumer determines first the product aggregates of each good 7 subject to an
income constraint and then allocates them among competing suppliers. Because the utility
function is homogenously separable, we can define aggregate price indices p; which depend
upon each p; ¢ through an explicit price function. In the Armington model, these price functions

are represented by CES price aggregators of all import source prices.

The proposed differentiated product model expresses these prices functions (indices) in an
implicitly additive fashion through the use of a CDE functional form. Hence implicit CDE price
functions are defined and expressed as:

ZHi‘\'(pisvpi) = ZB,'SZ,'Sbh =1 [3 ]
s=1

§=

where each Hj is approximated by a CDE functional form, z;¢ is the product price pjg

normalized by the aggregate price of good i. In [3.], Bjg is called the distribution parameter.
b;s or a; =1-b, are the price parameters. a;, is also called the substitution parameter. The

CDE price function is globally valid if B, >0, b, <1, and either b, <0 for all sor 0<b, <1

for all s (Hanoch, 1975, p 411). Weaker conditions can be obtained and consist of (i) one
b, >1 and (ii) some B;g and b being of different signs. By applying Roy's identity, we derive

the CDE demands for various (import and domestic) supplies:
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The subscript i is now omitted for reasons of convenience.

Allen elasticities of substitution can be derived using the following expression:

m s
O-sI:a.s+al-ZSk ak _5,;»]— [5]

k=1 S
s

where &, is the Kroenecker sign equal to 1 for s = / and 0 elsewhere.

From expressions [4.] and [5.] it can be seen that the Armington model characterized by a
constant elasticity of substitution o can be derived by setting all the A equal to a constant b.
The elasticity of substition o is then equalto a=1-5.

The system of demand share equations formed by expression [3.] and with stochastic residuals
#g could be estimated by an appropriate system estimation technique such as iterative
seemingly unrelated estimation (ITSUR) or maximum lilkelihood (ML) approach, which takes
into account the adding up conditions associated with the budget shares (.S, ). However, due to
the highly nonlinear structure of the CDE demand equations, it is probable that non convergent
and/or local optimum estimation solutions will occur. Furthermore, the existence of a right
hand side endogenous variable implies a simultaneous estimation bias problem that needs to be
taken into consideration. One way to overcome the nonlinearity of the CDE demand equations
is to linearize and transform all of them in a log-ratio form!. Then, iterative three stage least
squares estimation is applied to this new sytem of linearized CDE demand equations in order
to ensure that, first, the estimated parameters are invariant with respect to the share equation

dropped, and second, that the simultaneity bias problem is taken into account.

As it will be explained later, the above estimation procedure is not feasible in our study
because the bayesian estimation procedure that we are using requires all the explanatory
variables in'the CDE share equation system to be exogenous. As a result, we adopt a two-step
approach to estimate the parameters of the CDE demand equations. First, the system of log-
linearized CDE demand equations is transformed in first differences. Therefore, the
explanatory variables are expressed in a rate of variation form. We approximate the rate of
variation of the price aggregator p by a Stone's geometric price index of all import and
domestic sources. This transformation is justified through a total differentiation and a re-
arrangement of the implicit CDE price function. To show this, let us differentiate expression
[3.] and express dp/p as a function of all the p. The rate of change dp/p is then given by:

! This transformation which was first suggested by Theil to estimate multinomial logit model and then used by
Rossi for system of cost share equations ensures that the estimated shares are always positive and smaller than
one. Consequently, the monotonicity conditions are automatically satisfied. From an econometric estimation
perspective, it means that the stochastic residual 4 follows a logistic distribution.
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Then, substituting dp/p in the first-difference, log-linearized CDE equations yields the final
estimable econometric model specification (which we designate LA-CDEH):

ﬂ:bsi"’—’x——bm%ﬂbm-b,)(ﬁssdpswgs fors=1,.m-1 [7]
ys Ds Py s=1

s

where dy/y=(dS,/S,)-(dS,,/S,); d(.) designates the symbol "first-difference”; and &, is a
vector of stochastic residuals which follows a multivariate normal distribution with zero means
and a variance/covariance matrix T . Note that in expressing the CDE demand share equations
in first difference, the parameters By vanish and are not identifiable. It is also worth pointing
that this two-stage estimation of the CDEH demand equations is somewhat similar in spirit to
the estimation procedure of the LA-AIDS model within which the aggregate translog price
index (common to all AIDS share equations) is replaced by a Stone's geometric price index. It
differs however from the LA-AIDS approach in the sense that the CDE demand equations are

expressed in first differences?.

3 - Econometric implementation

Given the proposed empirical model, the objective is to obtain bayesian estimates of the
parameters b, incorporating (global or local) vailidity conditions. This section describes the
bayesian estimation procedure used to estimate the coefficients b, and explains a practical
method to generate posterior distributions that satisfy the validity conditions of the CDE
function.

3.1 - Bayesian approach

Bayesian estimation consists of combining prior information (prior density functions) with
sample information (sample likelihood function) to obtain a posterior density of the
parameters. Prior information that can be used for the parameters can be either informative
(based on existing data or knowledge of the phenomen under study by the investigator) or non-
informative or diffuse. In the former case, a prior density function can be well defined and
incorporated into the bayesian approach. In the latter, diffuse priors are characterized by a flat

2 This link with the LA-AIDS approach justifies the use of the acronym LA-CDEH for the above estimable
CDE equations.



density function approximated by a constant. In this study, we assume that prior information is
diffuse, consisting of validity conditions imposed on the LA-CDE model. This means that in
either cases - local or global validity conditions® - the vector of parameters (b) will satisfy the
inequality constraints defined earlier. We also consider that this prior information on the
parameters b is known with certainty, so that a prior density function can be defined by a single
indicator function:

(b = {1 forallbeD 8]

0 otherwise

where D is the region of the parameter space for which global or local validity conditions are
satisfied. Then, through the Bayes rule, we obtain a posterior density function f{.) expressed
as:

S Bly)=p(d).L(y) [9]

where y is the sample data set and L(.) is the likelihood function based on observed data. As
the prior density function is a simple (unitary) indicator function, the posterior probability
distribution is no more than a truncated density function generated from the sample likelihood
function in expression [9.]. A point estimate of the parameters » which does not violate the
regularity conditions is then obtained by taking the mean of the posterior distibution over the
the domain D, that is*:

E(B) = J,epb £ (bly)edb [10]

Expression [10.] is the conceptual tool that serves to derive point estimates of the parameter .
Its implementation is only feasible in simple cases where the number of parameters is scant (in
general no more than three). Beyond this, it is impossible to integrate expression [10.]
analytically, and we must have recourse to Monte Carlo integration procedures.

3.2 Monte Carlo integration with importance sampling
At first glance, the most logical way to use Monte Carlo integration to approximate expression

[10.] is to draw a large number of random drawings from the posterior distribution and then
take the sample means as a "proxy" for E(b). To find a posterior distribution of 4 consistent

3 1t should be reminded that there is no need to worry about monotonicity conditions since they are built in the
empirical CDEH specification,

4 It should be pointed out that several estimates of b can be formed, depending upon the investigator's objective
function (see Chalfant et al., 1991, p. 479). In our case. the adoption of the means of the posterior distribution
implicitly implies that the loss function is quadratic. Then, the mean of the posterior distribution for &
minimizes the expectec loss.



with the (global or local) validity conditions, we would only retain the replications for which
such conditions are satisifed and then compute the means of the parameters 4. In so doing,
these "restricted" means approximate the truncated posterior density function defined by
expression [10.].

In cases where random numbers cannot be easily generated from the posterior distribution, it is
possible to use Monte Carlo integration techniques with importance sampling. This alternative
procedure involves drawing from a density function known as the importance function and
then taking weighted averages across draws. Put more formally, consider g(b) to be the
importance function, from which random numbers are generated. Assume that the b; is the ith
random draw from g(b) and w, = f(}, | y)/ g(b,). Then, the weighted means can be shown to

approximate the integral appearing in expression [10.]:

2 IR Byl
- RGO _ia g (b )
=E(b)= b
b=E®)=,pb e g" (Bly)db o) [11]
i=18" (b |)

where f* and g® are the truncated posterior density functions, b, is a draw of parameter b

for which the validity conditions hold, and # is the number of draws for which the validity
conditions hold.

At the same time as the means is generated, it is possible to compute other relevant indicators.
The first one is the probability that the validity conditions are satisfied. This probability is given
by the following expression:

U fR(b(L)‘}’)
e=18" (b )
xS G l)
k=lgR(b(k)‘.V)

p = [12]

where N is the total number of draws. Another useful indicator is the variance (and then the
standard deviation) of the posterior distribution which is obtained by taking the estimated
variance of the posterior distribution. The latter is computed taking into account the

importance density function.

n 17 by )
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Finally, to check whether the selected importance density function behaves well, the numerical
standard error (nse) proposed by Geweke (1989) can be used for the indicators previously
defined. The numerical standard error is given by the following formula:

— 2, (b |y)

by —b) (=

1( @ ) (g(b(k)l.)’)

L .fﬁ(b(k}ly) 2
(X

k=1gR(b(k)lJ’))

2

)21

M=

k

nse(b) = [14]

In our case of estimating the LA-CDEH, the method of Monte Carlo integration with
importance sampling is well justified because the posterior distribution of the parameters b has
a complex form, thus hindering to generate a well behaved truncated density function through
simulation. To show this, the results obtained by Zellner for a set of regression equations is
applied to the parameters » of the LA-CDEH. Assuming diffuse priors for » and T, the

resulting posterior density function for 4 is given by:

T/2

f@ly) |4 [15]

where oc denotes "is proportional to", T is the number of observations and A4 is a matrix of size

m-1 by m-1 formed by the following elements:
a; =[e;(b) e;(b)]
where e;(b) is the vector of residuals for the ith CDEH equation.

Although the above posterior density function is "unfamiliar", it is much easier to work with
than the corresponding posterior probability distribution associated with an estimable CDEH
model expressed in levels. In this latter case, the CDE demand equations include a right hand
side (RHS) endogenous variable (i.e. the price aggregator p) which should be accounted for.
To incorporate this RHS variable in the bayesian estimation of the parameters of the CDE
model specification expressed in level form would have required to undertake a full system
analysis of the CDE model including the demand equations and the CDE implicit price function
given by expression[3.]. This would have resulted in a highly nonlinear model structure from
which it would have been impossible to generate a posterior distribution of the parameters.
Furthermore, a review of the literature on bayesian econometrics reveals that, apart from

Zellner's study of systems of linear simultaneous equations which derives the posterior



distributions of the parameters’, no work has been conducted over the last two decades on the
bayesian estimation of nonlinear simultaneous equations. Given this situation, we had side-
stepped this simultaneity bias problem by exogenizing the price aggregator and then by

expressing the CDE demand functions in first difference form.

3.3 - Estimation strategy

To implement Monte Carlo integration with importance sampling for the parameters of the
LA-CDEH model, we follow closely the multi-step procedure proposed by Chalfant et al
(1991). First the system of LA-CDEH demand equations given by expression [7.] and

~

estimated by ITSUR estimation method produces estimates 5 and its variance/covariance

matrix V(I;) . Then, the random draws for the parameters b are generated with the importance
density function which is assumed to follow a multivariate Student-# distribution. The random
number generator used for the #-distribution is based on random drawings from the multivariate
normal distribution which are then adjusted to the -distribution using the various relationships
existing between the normal, chi-squared and Student #-distributions. This procedure suggested
by Van Dijk and Kloek (1990) included several steps which are easily implementable. To
expand the number of drawings and also to improve convergence (Geweke, 1988), antithetic
replications are also obtained and included into the bayesian estimation procedure. Once the
random drawings for the parameters b have been generated, the corresponding values of the
posterior density functions f{.) are computed using expression [11.]. The third step of the
estimation procedure consists of checking whether each replication satisfies the global or local
validity conditions. Then, the means and the variance of the posterior distributions and the

assoicated probability distributions for which validity conditions hold are estimated using

expressions [12.] and [13.]. Finally, n.s.e. of the estimated parameters b are derived to check

the accuracy and the stability of the econometric results.

4 - Application to France

The generalized Armington model developed in the previous section is estimated for import

and home produced supplies of agri-food goods in France. For each of the goods considered,

5 Even in Zellner's case, the posterior distribution function of the strucutural parameters is even more
"anfamiliar" than the one found for a set of regression equations.



we distinguish three sources of competing supplies, namely imports from the Rest of the EU
(5=1) and from the Rest of the World (RoW) (s=2) and consumption of home-produced
products (s=3). A time trend is also incorporated to capture non-price effects. The empirical
CDEH demand specification (expressed in first differences) that will be used with the French

data has the following form:

3 3
Dy, +b{ﬂ—(zss "”’)j —bm(%—@&. "”f)j ‘e,
P &

Vs s=1 [16]

s s =1 ps

Jor s=172
where A is a constant term standing for the autonomous effect of the trend variable.

4.1 - Data

Data used to estimate the system of CDEH demand equations stem from two reference
sources. Import data by origin were obtained from the French Customs trade data base while
the prices and quantity consumed of home-produced goods are aggregates from the French
national accounts developed by the Institut National des Statistiques et des Etudes
Economiques (INSEE). Before we proceeded with the bayesian estimation, both data sources
had to be harmonized to generate comparable price and quantity aggregates on the various
supplies of agri-food products. Such a task is difficult, if not impossible, to perform at the
aggregate level (3 SITC digit levels for instance). On the other hand, it is possible to obtain
satisfactory and comparable data if we develop all these quantity and price aggregates at a
more detailed and disaggregated level. For this purpose, we used the "NAP 600" level of the
French National Accounts nomenclature (about 700 products) and matched it with the
corresponding nomenclature of the French Customs data base. There are about 80 agri-food
products® at the NAP 600 level but we only retain the ones for which each of the three import
and home-produced supplies represent at least 1% of the total consumption. This selection
resulted in a set of 26 (7 agricultural and 19 processed food) products, the consumption of
which represents over 300 billion FF in 1994. Imports of the retained products represent 60%
of total imports of French agri-food products on average (1990-94).

Data for all the dependent and explanatory variables are available on an annual basis over the

period 1977-1994 and are all expressed in rate of variation. The rate of change for the Stone's

6 There are respectively 30 and 50 raw agricultural and food processed products in the NAP 600 nomenclature.
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geometric price index was computed using an arithmetic average of current and past year

budget shares.

4.2 - Econometric results

Table 1 reports results on the structure of consumer preferences, including results obtained
with the conventional econometric approach on the one hand, and those based on the bayesian
approach on the other hand. Tables 2 and 3 give the associated parameter estimates of the
generalized Armington model under the three assumptions: the unrestricted case, the global
validity case, and the local validity case. With the traditional econometric (unrestricted)
estimation, global validity conditions are satisfied for only three products, and local validity
conditions for eight products (column (2) of Table 1). For the other products, estimated
parameters should not lead to any interpretation, due to the non-validity of the demand
equations. This can be seen through the signs of Allen partial elasticities of substitution
(columns (3) to (5) of Table 1).

(insert Table 1)
(insert Tables 2 and 3)

These difficulties to interpret substituability and complementarity relationships among the
various import and home-produced sources can be overcome by using results of the bayesian
approach, which imposes local or global validity conditions on the parameters. First, it can be
seen (column (6)) that the posterior probability for the global validity is frequently small,
except for products such as "flowers and plants" (16%), "milk industry by-products” (23%),
"baby food and dietetic foods" (15%), "brandies" (63%), "wine aperitives" (15%), and "fruit
and vegetable juices" (21%). Nevertheless, it can be noticed that the posterior probability for
global or local validity is greater than 30% for about two-thirds of the set of agri-food
products (this probability is greater than 20% for 85% of the products). Moreover, the
standard deviations computed for these posterior probabilities are always very small’, and such

a finding ensures the robustness and the stability of derived results.

The examination of posterior probabilities on the signs of Allen elasticities of substitution
under the global validity restriction (columns (7) to (11) of Table 1) gives the following

information on the substituability relationships among sources:

7 These standard deviations are not reported in Table 1 due to lack of space.

11



- The posterior probability that there exists at least one complementarity relationship between
two sources is generally small (see column (8) of Table 1). Cases where the posterior
probability that all Allen elasticities are positive is greater than 50%, are the most common (see
column (7) of Table 1). Exceptions are for "canned vegetables", "prepared feed", "coffee, tea
and other herbs", "soup mixes", and "brandies". In all these cases, the complementarity occurs

between French products and imports from the Rest of the EU.

Conditionnally upon the existence of at least one complementarity relationship among sources

(columns (9) to (11) of Table 1), this complementarity can be characterized as follows:

- The elasticity of substitution is negative with a high posterior probability, between imports
from the Rest of the EU and imports from the RoW for all raw agricultural products, except:
"fresh vegetables" and "dried vegetables", and for all processed food products, except: "canned

fruit and jam" and "fruit and vegetable juices".

- The elasticity of substitution is never negative, with a significant posterior probability,

between imports from the Rest of EU and home-produced products, for any product.

- The elasticity of substitution is significantly negative between imports from the RoW and
home-produced products for only one product among processed food products ("fruit and

vegetable juices").

As a result, imposing global validity conditions on the CDEH demand equations in the case
where at least one complementarity relationship occurs, allows us to conclude to a high
tendency to complementarity between the two kinds of imports (from the Rest of the EU and
from the RoW) for a very large majority of goods. Otherwise, substituability is the rule
between French products and imports from the Rest of the EU on the one hand, and between
French products and imports from the RoW on the other hand. Such a result clearly runs

counter the "preference communautaire™.

8 This result must be qualified when only weak conditions are imposed on parameters (local validity). Recall
that these conditions are associated with a posterior probability which is largely greater than the one of the
global conditions.In this case of local validity, complementarity between French products and imports from the
Rest of the EU can be observed for several raw agricultural products and for some processed food products. But
in the case of local validity, complementarity between French products and imports from the RoW remains the
exception for raw agricultural products, but can be encountered with a significant posterior probability for a few
processed food products (see columns (9) to (11) of Table 1).

12



5 - Concluding remarks

The objectives of this paper are two-fold. First, we develop an alternative product
differentiation model which is more general than the Armington specification. econd, we
propose the use of bayesian estimation procedures in agricultural trade modelling. The
application to this Generalized Arminton model to French trade in agri-food products yields
mixed results which are however superior to those obtained with a conventional estimation

procedure.

These mixed econometric results may lead readers to question the usefulness of bayesian
estimation methods to agricultural trade modelling. We do not think so and opt for a more
optimistic outlook in suggesting that this first attempt in applying bayesian mehtods can be
improved in several respects. First, the adoption of an homogenous consumer preference
structure is too restrictive and should be relaxed towards more general non-homogenous
structures. Second, the use of of Monte Carlo integration with importance sampling is one
procedure among a set of simulation methods to generate random numbers. Hence, there have
been some recent applications of Monte Carlo method based on the use of Markov chains to
econometric modelling (Gordon and Bélanger, 1996). We could perhaps employ this latter
approach in estimating the Generalized Armington model developed in this paper. Finally, a
third direction to improve the econometric performance of this trade model would be to select
other bayesian estimation procedures which are not necessarily based on the approximation of
integrals of posterior distributions. In this vein, we are especially thinking of bayesian bootstrap
analysis of systems of equations similar to the one proposed by Heckelei and Mittelhammer

(1996).

13
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Table 4: Results on the structure of the consumer preferences

Conventionat approach

Bayesian approach

Posterior Posterior Posterior
B Posterior | probability probabllity probability
T Validity A mol:'::st Direct | b cterior pprg;:xel:ill‘i,try probability t.hﬁ.A."l.e > t.haf.A“f 0 t.hiA"m
rend Allen Allen e that at least ities ities
cond. elast. >0 Allen elast. >0 probability |that all Allen one Allen S N PPy
last. <0 elasticity >0 s
elasticity <0 | products 1-2 products 1-3 products 2-3
! <0 <0 <0
(1] 2 {3} 4 | (5 (6} {7) | (B) J—) (19) [11)
Agricultural raw products
"1 Potatoes X
Global validity 0,0249’ 0,8861 0,1139 0,8696 0,0000 0,1304
Local validity 0,4137 0,4159 0,5841 0,0070 0,0000 0,9830
12 fresh vegetables X
Global validity 0,0015 1,0000 0,0000 0,0000 0,0000 0,0000
Local validity 0,3860 03172 0,6828 0,0125 0,9875 0,0000
113 Drioed vegetables X X s
Global validity 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
Local validity 09798 0,9353 0,0647 0,0000 0,9702 0,0298
114 Fruit X |
Global validity 0,0004 1,0000 0,0000 0,0000 0,0000 0,0000
Local validity X 0.9937 0,8212 0,1788 0,0000 1,0000 0,0000
122 Non tropical olisesds X
Global validity 0,0007 05714 0,4286 1,0000 0,0000 0,0000
Local validity 02143] 00046 0,4043 0,5957 0.0000 0,7857
142 Flower and plants % X
Global validity 0,1596 0,7265 0,2735 1,0000 0,0000 0,0000
Local validity 0,2270 0.6692 0,3308 0,9663 00199 0,0138
143 Other vegetable products X X |
Global validity | 0,0084 0,8861 0,1139 1,0000 0,0000 0,0000
Local validity 0,4068 0,7085 0,2815 0,0628 09115 0,0257
Processed food products
3502 Fresh meat
Global validity 0,0130 0,6154 0,3846 0,9500 0,0000 0,0500
Local validity X _ 01940) 00748 09252 0,8665 0,0021 0,1315]
3505 Game and poultry meat X |
Global validity 0,0084 0,8542| 0,1458 1,0000 0,0000 0,0000
Local validity ~0,2838 0,7305| 02695 0,0329 0,6859 0,2812
3614 Cheese |
Global validity X 0,0587 0,9510 0,0491 0,9032 0,0000 0,0968
Local validity | 0,2309 0,8592 ~0,1409 0,1871 0,1710 0,6419
3616 Milk industry by-products x |
Global validity X | 0,2314 0,6831 0,3169 1,0000 0,0000 0,0000
Local validity 0,2328 0,5344| 0,4656 0,8405 0,0046 0,1550
3701 Canned fruit and jJam X X
Global validity 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
Local validity 00000} 0,0000 0,0000 0.0000 0,0000 0,0000
3702 Canned vegetables x| -
Global validity | 0,0200 0,3710 0,6290 1,0000 0,0000 0,0000
Local validity X 0,1784 0,0769 0,9231 0,8762 0,0204 0,0034
3703 Canned fish X ] T
Global validity 0,0417 0,9407 0,0593 0,9546 0,0000 0,0455
Local validity X o 0,_@ 0,5937 | 0,4063 0,3342 0,1146 0,6512
3902 Cookies and bakery products X
Global validity 0,0999 0,7475 0,2525 1,0000 0,0000 0,0000
Local validity X 0,6006 0,3504 06496 0,8217 0,0070 0,1712
3907 Starch products X
Global validity 0,0367 0,6491 0,3509 0,8938 0,0000 0,1062
Local validi 0,0658] __0.0203 0,9797 0,9689 0,0000 0,0311
908 Prepared feeds X | )
Global validity 0,0317 0,1283 0,8717 1,0000 0,0000 0,0000
Local validity 02167 05218 0,4782 0,6316 0,0154 0,3531
Chocolate and confectionery
4031 products X
Global validity 0,0000 0,9475 0,0525 0,9091 0,0000 0,0809
Local val X 0,0000 0,3860 0.6140 0,0048 0,0000 0,9952
4032 Coaeffes, tea and other herbs X
Global validity 0,0002 0,2500 0,7500 1,0000 0,0000 0,0000
Local validity 0,3420 0,0000 1,0000 0,9997 0,0000 0,0003
Seasonings and salad
4033 dressings X x
Global validity 0,0033 0,9655 0,0345 1,0000 0,0000 0,0000
Local validity 0,0268 0,5068 0,4932 0,3611 0,3241 0.3148
4034 Baby food and dietstic foods X
Global validity 0,1527 0,6449 0,3551 1,0000 0,0000 0,0000
Local validity 0,1189 0,0034 0,9966 1,0000 0,0000 0,0000
4036 Soup mixes X
Global validity 0,0805 0,4452 0,5548 1,0000 0,0000 0,0000
Local validity 0,5374 0.6849 0,3151 0,9696 0,0233 0,0071
4037 Miscall food products X |
Global validity 0.0753 0,6626| 0,3374 0,8602 0,0108 0,1290
Local validity X 0,1788 0.0106| 0,9894 0,9915 0,0032 0,0053
4101 Brandles X . T I
Global validity X 0,6294 0,4205| 0,5795 1,0000 0,0000 0,0000
Local validity | 01364] 09738 00262 0,1765 08235 0,0000
4104  Wine aperitives X | = [ !
Global validity 1 0,1461 0,6459 | 0,3541 1,0000 0,0000 0,0000
Local validity X 07378  0.8805, 01195 0,0000 0,0010 0,9990
4108 Fruit and vegetable juices X
Global validity X 0,2122 0,9633 0,0367 01136 0,0114 0,8750
Local validity 0,0933 0.3078 0,6922 0,4499 00281 05220




Table 2: Parameter estimates of the generalized Armington model

Agricultural raw products

|
b, b, | b a, a,
111 |Potatoes I
Conventional LsQ Estimates 0,0253 0,6377 | 4,2422
estimation Standard error 0,2824 0,2647 | 2,3769
Global validity Estimates 0,3180 0,8136 | 0,5884
Bayesian Standard error 0,3200 02958|  3,6637
estimation Local validity Estimates -0,1679 0,3833 5,1737
Standard error 0,2357 0,2195 1.7415
112 |Fresh vegetables
Conventional LSQ Estimates 0,7213 -0,7240 2,8552
estimation Standard error 0,4592 0,3919 1,8156
Global validity Estimates 0,8787 0,0692 0,2084
Bayesian Standard error 0,1748 0,7945 | 2,5699
estimation Local validity Estimates 0,4531 -0,7357 | 2,9873
Standard error 0,4016 03136 | 1,3834
113 |Dried vegetables |
Conventional LsSQ Estimates -0,2159 -0,4060 3,6334 -0,1060 -0,0987
estimation Standard error 0,0992 0,2134 0,8056 0,0425 0,0665
Global validity Estimates 0,0000 0,0000 I[ T 0,0000 0,0000 0,0000
Bayesian Standard error 0,0000 0,0000 | 0,0000 0,0000 0,0000
estimation Local validity Estimates -0,2150 -0,4075 | 3,6010 -0,1059 -0,0985
Standard error 0,0765 0,1614 | 0,5921 0.0316 0,0489
114 [Fruit !
Conventional LSQ Estimates -1,2735 -1,9526 | 2,8301
estimation Standard error 0,7257 06707, 07788
Global validity Estimates 0,5447 015121 0,4604 |
Bayesian L Standard error 1,8407 21130 2,3794 |
estimation Local validity Estimates -1,2877 -1,9589 | 2,8419 |
_ Standard error 0,7080 0,6564 | 07518
122 [Non tropical oilseeds |
Conventional LSQ Estimates 0,5533 0,8076 | 2,6601 |
estimation Standard error 0,5054 0,4805 | 0,9858 |
Giobal validity Estimates 0,7574 0,8647 | 0,7075
Bayesian Standard error 0,2599 0,0092 | 19615
estimation Local validity Estimates -0,0582 -0,0470 2,9854 |
Standard error| 0,6754 0,9092 | 0,7187
142 |Flowers and plants
Conventional LsSQ Estimates 0,2685 -0,5112 -1,4594 0,0677 0,0824
estimation Standard error 0,5875 0,1400 | 2,6958 0,0268 0,0304
Global validity Estimates -0,2861 -0,5627 |*** 0,0677 0,0817
Bayesian Standard error 0,5999 0,1273 1,2969 0,0230 0,0266
estimation Local validity Estimates 0,3504 -0,5087 ~-0,0363 ~ 0,0665 0,0806
Standard error: 0,7635 0,1382 3.3403 0,0236 0,0263
143 |Other vegetable products !
Conventional LsQ Estimates 0,4056 -0,1016 15,3918 0,0507 -0,0039
estimation Standard error 0,2508 03748 | 12,2898 0,0386 0,0629
Global validity Estimates 0,5421 0,3162 | 0,3245 0,0347 -0,0286
Bayesian Standard error 0,2715 0,4941 | 15,1194 0,0480 0,0730
estimation Local validity Estimates 0,3093 -0,3928 | 16,8410 0,0476 -0,0058
Standard error 0,3019 0,4406 | 10,6159 0,0455 0,0754




Table 3: Parameter estimates of the generalized Armington model

Processed food products

b, b, b, a, a4
3502 Fresh meat
Conventional LSQ Estimates 1,3302 0,6346| -55331 0,0525| -0,0410
estimation Standard error 0,8449 0,2753 4,5996 0,0146 0,0237
Global validity Estimates 0,2888 0,3780| -0,3882 0,0456| -0,0404
Bayesian Standard error 1,1366 0,4544 55916 0,0239 0,0348
estimation Local validity Estimates 0,9315 0,3848| -6,1570 0,0510| -0,0352
Standard error 1,1985 0,4406 7.0069 0,0232 0,0377
3505 |Game and poultry meat
Conventional LSQ Estimates 0,2294 0,0959| 15,5078
estimation Standard error 0,2899 0,2521 7.,7529
Global validity Estimates 0,3202 0,3424 0,2813
Bayesian Standard error 0,2890 0,3424 | 15,2767
estimation Local validity Estimates -0,0678| -0,0032| 12,5663 B
Standard error 0,4569 0,3193 6,6904
3614  |Cheese |
Conventional LsQ Estimates 03362| 02123| 2,0250
estimation Standard error 0,2069 0,2857 3,3420
Global validity Estimates 0,3946| 03799 04606 i 1
Bayesian Standard error 0,2178 0,2981 1,6098
estimation | Local validity Estimates 0,1740| -0,0719! 45930 |
Standard error 0,3136| 04186! 3,6862
3616  |Milk industry by-products | ' i
Conventional LSQ Estimates -0,0546| -0,6559| -3,1317 [
estimation B Standard error 0,6026 0,9757 2,8076
Global validity ~Estimates 20,4957 | -1,5045| -2,7494 ]
Bayesian Standard error 0,5728 1,2797 | 1,9209 |
estimation Local validity — Estimates 0,3117| -0,8533| -1,1004| t— |
Standard error 1,2245 1,1699| 5,8944 |
3701 [Canned fruit and jam [ |
Conventional LSQ Estimates -2,6496 0,2744 | 7,6248 0,1077 0,0408
estimation Standard error 0,9617 0,81 47‘ 1,7522 0,0391 0,0313
Giobal validity ~Estimates 0,0000 0,0000| 0,0000 ~0,0000 0,0000
Bayesian Standard error 0,0000 0,0000| 0,0000 0,0000 0,0000
estimation Local validity Estimates 0,0000 0,0000| 0,0000 0,0000 0,0000
Standard error 0,0000 0,0000| 0,0000 0,0000! 0,0000
3702  |Canned vegetables
Conventional LSQ Estimates 1,3854 0,2800| -7,6475
estimation Standard error |  0,8432 08808, 58135|
Global validity Estimates 0,1720| -0,4078| -3,8902
Bayesian Standard error 1,6157 0,9245 5,2482 -
estimation Local validity  Estimates 1,0996 | -0,1581 -8,1131
| Standard error 0,6349 0,8834 57419
703 |Canned fish
Conventional LsQ Estimates -0,3186 0,6611 1,1703
estimation Standard error 0,3300 0,8088 2,2301
Global validity Estimates -0,1036| -0,0852| -0,5393
Bayesian Standard error 0,2863 0,8682 1,9835
estimation Local validity  Estimates -0,2959 0,5378 0,6974 =
Standard error 0,2394 0,6890 1,3713
3802 |[Cookles and bakery products
Conventional LSQ Estimates 1,5450| -1,8141 -7,2389
estimation Standard error 1,2864 0,8168 4,1986
Global validity Estimates -0,7893| -2,5144| -2,9751
Bayesian Standard error 2,4260 1,4223 4 8569 B
estimation Validité Locale Estimates 1,1625| -2,1980| -6,5412
_ Standard error 2,5919 13051 9,5597
3907 [Starch products 1
Conventional LsSQ Estimates 0,8764 1,2698 | -0,9366
estimation Standard error 0,3266 0,3098 0,9960
Global validity Estimates 0,5708| 0,7305| 0,4364 N
Bayesian Standard error 0,3932 0,5794 14001,
estimation Local validity Estmates | 1,0848| 07196/ -19323] |
Standard error 0,3846 05952, 11,6254 |




3908

Prepared feeds

|
0,9306 |

Conventional LSQ Estimates 0,0967 | -8,9296
estimation Standard error 0,6815| 0,6488 | 14,9404
Giobal validity Estimates -0,4267| -0,4121| -9,4210
Bayesian Standard error 0,6748| 1,4158| 18,0636
estimation Local validity Estimates -0,4060 0,0325 2,4812
Standard error 1,1557 1,1007 | 25,3631
4031 |Chocolate and confectionery |
products |
Conventional LSQ Estimates -0,6727 0,3436 2,3545
estimation Standard error 0,5908 0,2611 1,6630
Global validity ~Estimates (f2§§4 0,6034 0,4425
Bayesian Standard error 0,9103 0,3026 1,8307
estimation Local validity Estimates -0,8812 0,2704 2,9765
Standard error 0,5132 0,2332 1,3869
4032 Cooffee, tea and other herbs
Conventional LsaQ Estimates 0,4019 0,9958| -3,9132
estimation Standard error 0,3387 0,1713 1,0350
Global validity ~Estimates 0,7135 0,8566 0,4183
Bayesian Standard error 0,3778 0,1564 4,3331
estimation Local validity = Estimates 0,2887 1,0825| -4,0682
Standard error 0,4035 0,1388 1,1614
4033 Seasonings_and salad | _
dressings | [
Conventional LsQ Estimates 0,7207 | 0,0154| 10,0214 0,2419 0,1980
estimation Standarderror | 05461 0,1792| 46359 0,0727 0.,0756
Global validity Estimates 0,54821 01517, 0,4490 0,1540 0,1238
Bayesian Standard error 0,3326 ; 0,1778 1 ~9,5893 0,1074 0,1003
estimation Local validity ~ Estimates 02265, -0,0100| 22326 0,1795| 0,1437
Standard error 07987, 0,1664| 8,2010 0,0945 0,0949
4034 Baby and dietetic foods | '
Conventional LSQ Estimates 0,3377| 03190 -2,4459
estimation Standard error 05729| 03866  09070|
Global validity ~Estimates -0,5393| -0,2975 -1,5224
Bayesian Standarderror | 0,9546| 0,6556| 1,2058 L
estimation Local validity — Estimates 1,1609 0,5059| -3,0430
Standard error 0,8826| 0,3645! 1,0622
4036  |Soup mixes ! i
Conventional LsSQ Estimates 02454 | -0.7054| -2,3627
estimation Standard error 09235, 03766| 9,7740 _
Global validity Estimates -0,2906 | -0,8322 I -3,3840
Bayesian Standard error | 0,5838 02651 2,8744_ |
estimation Local validity Estimates 0,0110 -0,7950| 1,2621
Standard error 1,0496 0,4000 11,1753
4037 |Miscallenous food products } '
Conventional LsQ Estimates 1,0885 0,8635| -0,3882
estimation Standard error 0,6841 0,6222 1,9806
Global validity ~Estimates 0,6632 0,6649 0,4917
Bayesian Standard error 0,4840 0,3068 0,9274
estimation Local validity  Estimates 1,2933 0,5190| -1,3915
- Standard error 0,3675 0,4435 1,3987
4101 Brandies |
Conventional LsQ Estimates -0,3928 | -3,2646| -4,9442
estimation Standard error 0,4536 0,4481 5,7286
Global! validity Estimates -0,5511 -3,2332| -6,6837
Bayesian Standard error 0,3899 0,4714 4,5436
estimation Local validity = Estimates -0,4673| -3,3452 3,5377
Standard error 0,4635 0,4231 8,8235
4104  |Wine aperetives
Conventional LsQ Estimates -1,3696 | -0,8566 6,9518
estimation Standard error 0,6347 0.2509| 6,8245 M
Global validity Estimates -0,7326 | -0,8424| -2,9906
Bayesian Standard error 0,7344 0,2213| 10,2322
estimation Local validity = Estimates -1,4380| -0,8767| 8,1121
Standard error 0,4669 0,2491| 42501
4108 Fruit and vegetable juices |
Conventional LsQ Estimates 01789 0,6847| 09674
estimation Standard error 0,2638 0,3576| 1,2640
Global validity ~Estimates 0,2999 0,5966 0,5231
Bayesian Standard error 0,2161| 02499 0,5288
estimation Local validity |Estimates 0,0063| 0,8023/ 0,5010
Standard error 0,2742 | | 1,1575




Table 4: Allen elasticities of substitution

Raw agricultural products

L_ P O3 (SPR
111 Potatoes
Conventional Sample mean value 4,1840| 0,4795 -0,0329
estimation |
Global validity Posterior mean value 0,2879| 0,5131 0,0176
Bayesian Standard error 14,0588 0,0512 0,0547
estimation Local validity Posterior mean value -2,7568 -7,5472 -8,0984
_ Standard error 3,4998 0,0245 0,0175
112 Fresh vegetables
Conventional Sample mean value 3,3283 -0,2509 1,1944
estimation - )
Global validity Posterior mean value 0,7001 0,4708 1,2803
Bayesian Standard error 8,6153 0,1870 0,0466
estimation Local validity Posterior mean value -0,1154 -3,8384 -2,6495
_ Standard error 2,6765 0,0646 0,0254
113 Dried vegetables |
Conventional Sample mean value 42387 0,1994 0,3894
estimation B B
Global validity Posterior mean value 20000  2,0000 2,0000
Bayesian Standard error 0,0000| 0,0000 0,0000
estimation Local validity Posterior mean value 0,0301 | -3,9783 -3,7859
Standard error 0,2718 | 0,0215 0,0312
114 Fruit | .
Conventional Sample mean value 5,1338 0,3513 ] 1,0302
estimation . 1
Global validity Posterior mean value 0,9070 | 0,5979]  0,9914
Bayesian Standard error 19,8249 | 0,0322| 0,0828
estimation Local validity Posterior mean value [
Standard error 43361 -0,4647 0,2065
18813 0,1566 0.0696
122 Non tropical cilseeds |
Conventional Sample mean value 1,7131] -0,1394 -0,3937
estimation ] - o )
Global validity Posterior mean value -0,3749 -0,2177 -0,3249
Bayesian Standard error 2,5464 0,2092 0,3383
estimation Local validity Posterior mean value 0,0652 -2,9672 -2,9783
L Standard error 2,5676 0,2088 0,2568
142 Flower and plants
Conventional Sample mean value 0,2505 1,1988 1,9784
estimation
Global validity Posterior mean value 41872 5,3843 5,6509
Bayesian Standard error 1,0040 0,3700 0,1413
estimation Local validity Posterior mean value 2,0996 1,6271 2,4863
Standard error 84280 0,4353 1,0511
Other agricultural
e products
Conventional Sample mean value 15,6363 0,1429 0,6501
estimation
Global validity Posterior mean value 0,8141 0,8058 T 1,0317
Bayesian Standard error 231,3109 0,1605 0,0757
estimation Local validity Posterior mean value -14,2572 -31,4910 -30,7889
Standard error 112,6905 0,0667 | 0,2188




Table 5: Allen elasticities of substituion

Processed food products

- SEP) G G,,
3502 Fresh meat
Conventional Sample mean value -5,3437 0,824 15196
estimation
Global validity ~Posterior mean value 1,6031 2,3693 2,2801
Bayesian Standard error 31,4512 0,4402 0,9898
estimation Local validity  Posterior mean value 5,6438 12,1857 12,7324
Standard error 43,1985 0.7401 1,9942
3505 |Game and poultry product
Conventional Sample mean value 15,4420 0,0301 0,1637
estimation
Global validity Posterior mean value 1,0536 1,1147 1,0924
Bayesian Standard error 220,7673 0,5121 0,3127
estimation Local validity  Posterior mean value -9,8885 -22,4580 -225226
- Standard error 40,5576 0,3809 0,1400
3614 [Cheese |
Conventional Sample mean value 2,3260 [ 0,5133 0,6372
estimation -
Globatl validity ~Posterior mean value 0,7709 0,6902 0,7048
Bayesian Standard error 2,9006 0,0471 0,0624
estimation Local validity ~— Posterior mean value -2,3024 -6,9674 -6,7214
Standard error 14,0610 0,0648 0,1706
3616 Milk industry by-products
Conventional Sample mean value -0,7827 | 1,6932 2,2945
estimation !
Global validity Posterior mean value j
Bayesian Standard error 6,3350 7,5800 85888
estimation Local validity  Posterior mean value 5,2604 0,2264 1,3936
Standard error 4,1379 43850 4,9266
- Standard error 35,9890 0,2980 2,2938
3701 Canned fruit and jam
Conventional Sample mean value 7.2473 -0,1031 -3,0272
estimation -
Global validity  Posterior mean value 2,0000 2,0000 2,0000
Bayesian Standard error 0,0000 0,0000 0,0000
estimation Local validity  Posterior mean value 2,0000 2,0000 2,0000
Standard error 0,0000 0,0000 0,0000
3702 1Canned vegetables
Conventional Sample mean value -6,7213 1,2063 23116
estimation
Global validity ~Posterior mean value 5,8052 9,2966 9,5324
Bayesian Standard error 33,2911 1,2113 1,0445
estimation Local validity ~ Posterior mean value 7,5584 15,5134 16,7712
Standard error 26,0938 1,0336 15727
3703 |Canned fish = . =
Conventional Sample mean value 1,4959 0,9867 0,0070
estimation
Global validity ~Posterior mean value 2,5352 2,9893 29709
Bayesian Standard error 0,6531 0,3087 2,0203
estimation Local validity ~ Posterior mean value 1,2256 1,0659 0,2322
Standard error 1,2099 0,7119 0,1989
Cookies and bakery
2802 Iproducts
Conventional Sample mean value -4,1295 1,2953 4,6544
estimation
Global validity Posterior mean value 7,8354 8,2960 10,0211
Bayesian Standard error 40,5377 1,2555 2,2606
estimation Local validity  Posterior mean value 7,9695 123127 15,6732
Standard error 95,7296 0,6026 6,9001
390 Starch products
Conventional Sample mean value -1,7550 | 0,4514 0,0581
estimation
Global validity Posterior mean value 0,2353 0,5294 0,3696
Bayesian Standard error 3,7928 0,0487 0,1049
estimation Local validity ~ Posterior mean value 1,6038 4,2556 4,6209
Standard error 1,6892 0,0683 0,6783




SV SE P
3908 |Prepared feeds
Conventional Sample mean value -8,5796 | 1,2805 0,4466
estimation !
Global validity  Posterior mean value 11,8951 | 20,9040 20,8894
Bayesian Standard error 61,3022 0,5263 | 2,1086
estimation Local validity ~ Posterior mean value 0,0033 | -2,4454 | -2,8838
Standard error 670,4030 | 0,3603 | 1,0691
4031 Chocolate and |
confectionery products '
Conventional Sample mean value 3,0403 1,0294 0,0131
estimation -
Global validity ~Posterior mean value 0,7610 10,9219 0,5409
Bayesian Standard error 6,1221 | 0,0989 0,1483
estimation Local validity ~ Posterior mean value 0,4623 | -2,2438 -3,3954
Standard error 25402 0,0601 0,0838
4032 |[Coffee, tea and other herbs
Conventional Sample mean value -3,3898 ! 15192 0,9254
estimation _
Global validity ~Posterior mean value -0,0593'§ 0,3790 0,2360
Bayesian Standard error 10,9645 | 1,3902 0,5137
estimation Local validity ~ Posterior mean value 3,7520 8,8027 8,1089
Standard error 0,8908 | 02116 0,0658
Seasonings and salad I
083 |dressings i
Conventional Sample mean value 83713/ -1,6348 | -0,9295
estimation o o | )
Global validity ~Posterior mean value 0,8582 | 0,5610 | 0,9574
Bayesian Standard error 58,4037 4 4063 3,1703
estimation Local validity =~ Posterior mean value -0,0305 -2,2731 -2,0365
Standard error 39,6363 | 4,0482 2,7069
4034 |Baby and dietetic foods - |
Conventional Sample mean value -1,5258 1,2391 1,2578
estimation i
Global validity  Posterior mean value 41477 53725 75,1308
Bayesian Standard error 49388 | 0,3488 0,1293
estimation Local validity =~ Posterior mean value 2,5248 6,0738 | 6,7288
Standard error 25267 | 0,3859 0,1297
4036 [Soup mixes | —
Conventional Sample mean value -0,6934 | 0,9639 1,9147
estimation 1
Global validity  Posterior mean value 6,2468 '8,7985 9,3401
Bayesian Standard error 6,6912 0,4209 0,1199
estimation Local validity Posterior mean value 16478  -0,4002 0,3968
Standard error 130,0161 | 0,1837 0,5952
lMlscailenous food |
8937 products
Conventional Sample mean value -0,7705 | 0,4812 0,7062
estimation L
Global validity Posterior mean value 0,1115] 02847 0,2830
Bayesian Standard error 1,1025 | 0,0429 0,1614
estimation Local validity ~ Posterior mean value 0,5776 | 2,4880 3,2624
Standard eror 0,7147 | 0,1585 09012
4101 |Brandies |
Conventional Sample mean value 0,0969 | 1,7765 4,6483
estimation |
Global validity ~Posterior mean value 11 ,90701 15,3575 18,0396
Bayesian Standard error 16,7386 0,3899 0,4311
estimation Local validity =~ Posterior mean value 2,8131| -4,0699 -1,1919
_ Standard error 64,6972 0,9478 0.9431
104 |Wines aperitives
Conventional Sample mean value 9,1324 1,3241 0,8111
estimation |
Global validity ~Posterior mean value 6,2804 | 8,4286 8,5381
Bayesian Standard error 90,9213 0,6145 1,8830
estimation Local validity ~ Posterior mean value -2,5959 -11,5847 -12,1460
Standard error 16,0684 0,2154 0,3406
4108 |Fruit and vegetable juices
Conventional Sample mean value 0,8928 0,6101 | 0,1042
estimation . R | ]
Global validity ~Posterior mean value 0,6039 0,6774 0,3807
Bayesian Standard error 0,1591 | 0,0463 0,1237
estimation Local validity —Posterior mean value 0,7097 | 1,0110 0,2150
Standard error 0,9509 0,3644 | 0.0894




