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Asymptotic of products of Markov kernels. Application to deterministic and random forward/backward products

Introduction

There is a large literature on the asymptotic behaviour of non-homogeneous Markov chains. A main objective is to get convergence properties as well as rate of convergence of stochastic algorithms based on general Markov chains as, for instance, in Markov search for optimization or in stochastic simulation. Such an issue requires to analyse various products of transition kernels of the underlying Markov chain. In this paper the asymptotic of products of Markov/transition kernels is investigated using Doeblin's coecient and the total variation norm. Let us introduce the basic material relevant to this work. Let (X, X ) be a measurable space. We denote by K the set of all the Markov kernels on (X, X ), and by P the set of all the probability measures on (X, X ). If K ∈ K and if (a, ν) ∈ [0, 1] × P, we write K ≥ a ν when ∀(x, A) ∈ X × X , K(x, A) ≥ a ν(A).

(1)

Obviously every K ∈ K satises (1) with a = 0. Doeblin's coecient α(K) of any K ∈ K is dened as in [START_REF] Lladser | Approximation of sojourn-times via maximal couplings: motif frequency distributions[END_REF] by α(K) := sup a ∈ [0, 1] : ∃ν ∈ P, K ≥ a ν .

(2)

When α(K) ∈ (0, 1], K satises the so-called minorization property [START_REF] Roberts | General state space Markov chains and MCMC algorithms[END_REF]. We denote by E the set of all the positive measures µ on (X, X ) such that µ(X) ≤ 1. Let (B, ∥ • ∥ ∞ ) denote the space of bounded measurable real-valued functions on (X, X ), equipped with the supremum norm: ∀f ∈ B, ∥f ∥ ∞ := sup x∈X |f (x)|. Let (L(B), ∥ • ∥) be the Banach space of all the bounded linear operators on B where ∥ • ∥ denotes the operator norm on L(B) dened by

∀T ∈ L(B), ∥T ∥ := sup ∥T f ∥ ∞ , ∥f ∥ ∞ ≤ 1 .
Note that if T is non-negative (i.e. f ≥ 0 ⇒ T f ≥ 0) then ∥T ∥ = ∥T 1 X ∥ ∞ . Throughout the paper, K ∈ K is identied with its functional action on B (still denoted by K) dened by ∀f ∈ B, ∀x ∈ X, (Kf )(x) := X f (y) K(x, dy).

Similarly any element µ ∈ E acts on B according to:

∀f ∈ B, µf = µ(f )1 X where we shortly set µ(f ) := X f (y) µ(dy).

Obviously the maps f → Kf and f → µf are in L(B). Finally, if (A, B) ∈ K 2 then A • B denotes the Markov kernel on (X, X ) dened by the product of A by B, which is identied with its action A • B on B (to simplify we only use the notation A • B).

The following key statement (Theorem 2.2) is proved in Section 2. Let (K j ) j≥1 ∈ K N and, for every j ≥ 1, let (a j , ν j ) ∈ [0, 1] × P be chosen for K j satisfying Inequality (1). For every n ≥ 1 let σ n be a permutation on the nite set {1, . . . , n}, and introduce

K σn := n j=1
K σn(j) and µ σn := K σn -n j=1 K σn(j) -a σn(j) ν σn(j) .

(3)

Then, for all n ≥ 1, we have µ σn ∈ E, µ σn ≤ K σn and the following assertions are equivalent:

(a)

i≥1 a i = +∞. (b) ∃(σ n ) n≥1 , lim n ∥K σn -µ σn ∥ = 0. (c) ∀(σ n ) n≥1 , lim n ∥K σn -µ σn ∥ = 0.
As a result, Seneta's statements [START_REF] Seneta | Nonnegative matrices and Markov chains[END_REF] for the convergence of forward/backward products of nite stochastic matrices are extended in Section 3 to general Markov kernels via a condition of type (a) for some block-kernels. When X is nite, this condition is necessary and sucient for the so-called weak ergodicity, see [START_REF] Seneta | Nonnegative matrices and Markov chains[END_REF][START_REF] Ipsen | Ergodicity coecients dened by vector norms[END_REF]. Using Notation (3) with some xed (σ n ) n≥1 , the weak ergodicity property writes as follows:

lim n→+∞ sup (x,x ′ )∈X 2 sup ∥f ∥∞≤1 (K σn f )(x) -(K σn f )(x ′ ) = 0. ( 4 
)
When X is innite, condition of type (a) (for block-kernels) seems to be only sucient for (4) to hold, as mentioned in [START_REF] Lladser | Approximation of sojourn-times via maximal couplings: motif frequency distributions[END_REF] in the context of forward products (see Remark 3.6 for details and further comparisons with [START_REF] Lladser | Approximation of sojourn-times via maximal couplings: motif frequency distributions[END_REF]). The novelty in our work is that the weak ergodicity condition (4) is replaced with the condition lim n ∥K σn -µ σn ∥ = 0 which implies that

d TV K σn , E := inf µ∈E sup x∈X ∥K σn (x, •) -µ(•)∥ TV -→ 0 when n → +∞, (5) 
where ∥β∥ TV := sup |f |≤1 X f (x) β(dx) denotes the total variation norm of any nite signed measure β on (X, X ). The weak ergodicity property (4) directly implies that lim n d TV K σn , P = 0. However the possibility in (5) of considering the distance with respect to the set E (in place of P) provides much more exibility in the proofs, knowing that the above positive measure µ σn satises lim n d TV (µ σn , P) = 0. The rst interest of our approach is that the property lim n ∥K σn -µ σn ∥ = 0 is more explicit than weak ergodicity, since the sequence (µ σn ) n is simply dened from the kernels K j and from the elements of the associated minorization conditions. The second interest is that Condition (b) is equivalent to Condition (a), contrarily to weak ergodicity (excepted in matrix case). The third interest is that the norm equality of Lemma 2.1 gives an accurate control of ∥K σn -µ σn ∥, thus of d TV K σn , E .

This new approach allows us to extend some classical results on products of stochastic matrices to general Markov kernels via very simple proofs. For instance, Corollary 4.1 and Theorem 4.3 extend the asymptotic results of [START_REF] Wolfowitz | Products of indecomposable, aperiodic, stochastic matrices[END_REF][START_REF] Coppersmith | Conditions for weak ergodicity of inhomogeneous Markov chains[END_REF][START_REF] Steno | Perfect sampling from the limit of deterministic products of stochastic matrices[END_REF] and of [START_REF] Huang | The rate of convergence of certain nonhomogeneous Markov chains[END_REF] and provide explicit rates of convergence.

Our approach is also relevant to study the products of random Markov kernels. In particular simple criteria are presented in Theorem 5.1 for the convergence of forward/backward products when (K j ) j≥1 is a sequence of independent and identically distributed random Markov kernels. To the best of our knowledge the results obtained in Section 5 in the random context are new too, even in matrix case.

Mention that the notion of weak ergodicity also leads to investigate stability issues for discrete and continuous time non-homogeneous Markov processes with respect to the parameters of the models (initial distributions, transition matrices in discrete time, intensity matrix-generator in continuous time). We refer to [START_REF] Gland | Basic properties of the projective product with application to products of column-allowable nonnegative matrices[END_REF] and to the recent review [START_REF] Zeifman | Two approaches to the construction of perturbation bounds for continuous-time markov chains[END_REF] (see also the references therein) for such questions in discrete or continuous time context. These issues are not addressed in our work.

The paper is organized as follows. General results concerning the convergence of products of Markov kernels in link with Doeblin's coecient dened in (2) are presented in Section 2. The specic cases of backward and forward products are studied in Section 3. Complementary statements on the rate of convergence of forward/backward products are presented in Section 4. Applications to products of random Markov kernels are proposed in Section 5.

Convergence of products of Markov kernels

Let us consider any p ∈ N * and any family (T j ) 1≤j≤p ∈ K p . For every 1 ≤ j ≤ p, let a j ∈ [0, α(T j )] and ν j ∈ P such that T j ≥ a j ν j . Set

T p := p j=1 T j and µ p := T p - p j=1 T j -a j ν j . (6) 
Lemma 2.1 The element µ p given in (6) belongs to E and we have µ p ≤ T p . Moreover

T p -µ p = p j=1
(1 -a j ).

Proof. Let us prove by induction on the integer p that µ p ∈ E and µ p ≤ T p . If p = 1, then µ 1 = a 1 ν 1 , so that µ 1 ∈ E and µ 1 ≤ T 1 . Now assume that the conclusions µ p ∈ E and µ p ≤ T p holds true for some p ≥ 1. Let (T j ) 1≤j≤p+1 ∈ K p+1 and, for every 1 ≤ j ≤ p + 1, let a j ∈ [0, α(T j )] and ν j ∈ P be such that T j ≥ a j ν j . Let T p and µ p be given in (6). Introduce T p+1 = T p • T p+1 and

µ p+1 = T p+1 - p+1 j=1 T j -a j ν j = T p+1 -(T p -µ p ) • T p+1 -a p+1 ν p+1 . (8) 
Then we get T p+1 -µ p+1 = (T p -µ p ) • T p+1 -a p+1 ν p+1 so that T p+1 -µ p+1 ≥ 0 since T p -µ p ≥ 0 by induction assumption and T p+1 ≥ a p+1 ν p+1 ≥ 0. Moreover (8) gives

µ p+1 = a p+1 ν p+1 + µ p • (T p+1 -a p+1 ν p+1 )
and we know from the induction assumption that

µ p ∈ E with ∀f ∈ B, µ p f = µ p (f )1 X . Thus µ p+1 f = µ p+1 (f )1 X with µ p+1 (f ) = a p+1 ν p+1 (f ) + µ p T p+1 f -a p+1 ν p+1 (f ) so that µ p+1 (•) is dened as a nite signed measure on (X, X ). But µ p+1 (•) is a positive measure on X such that µ p+1 (X) ≤ 1 since a p+1 ν p+1 ≤ T p+1 , (T p+1 -a p+1 ν p+1 )(1 X ) = (1 -a p+1 )1 X and µ p (X) ≤ 1.
We have proved that µ p+1 ∈ E. The rst part of Lemma 2.1 is established.

Finally, to obtain (7), note that

T p -µ p = (T p -µ p ) • 1 X = p j=1 (T j -a j ν j ) • 1 X ∥ = p j=1
(1 -a j )

since we have T p -µ p ≥ 0, and ∥T j -

a j ν j ∥ = ∥(T j -a j ν j ) • 1 X ∥ ∞ from T j -a j ν j ≥ 0 and (T j -a j ν j ) • 1 X = (1 -a j )1 X .
□ Let Σ be the set of all the sequences σ := (σ n ) n≥1 , where σ n is a permutation on the nite set {1, . . . , n}. For any (K j ) j≥1 ∈ K N and σ ∈ Σ, let (K σn ) n≥1 ∈ K N be dened by

∀n ≥ 1, K σn := n j=1 K σn(j) . (9) 
For every j ≥ 1, let a j ∈ [0, α(K j )] and let ν j ∈ P be such that K j ≥ a j ν j . Finally dene

∀n ≥ 1, µ σn := K σn - n j=1 K σn(j) -a σn(j) ν σn(j) . (10) 
The following theorem, which has its own interest, is crucial for the study of the forward and backward products in the next section.

Theorem 2.2 For every σ ∈ Σ and for every n ≥ 1, we have µ σn ∈ E, µ σn ≤ K σn , and

∀n ≥ 1, K σn -µ σn = n j=1 (1 -a j ). (11) 
Moreover the following assertions are equivalent:

(a)

j≥1 a j = +∞. (b) ∃σ ∈ Σ, lim n ∥K σn -µ σn ∥ = 0. (c) ∀σ ∈ Σ, lim n ∥K σn -µ σn ∥ = 0.
Proof. The rst part follows from Lemma 2.1. Since Condition (a) does not depend on σ ∈ Σ, the equivalences hold true if we show that, for any

(K j ) j≥1 ∈ K N and σ ∈ Σ, lim n ∥K σn -µ σn ∥ = 0 ⇔ j≥1 a j = +∞. (12) 
The following equivalences hold true from (11)

lim n ∥K σn -µ σn ∥ = 0 ⇐⇒ lim n→+∞ n j=1 ln(1 -a j ) = -∞ ⇐⇒ j≥1 ln(1 -a j ) = -∞.
Moreover the last condition is equivalent to j≥1 a j = +∞. Indeed, we have ∀x ∈ [0, 1),

-x/(1 -x) ≤ ln(1 -x) ≤ -x from Taylor's formula. Thus j≥1 a j = +∞ implies that j≥1 ln(1 -a j ) = -∞.
Conversely assume that j≥1 a j < +∞, and set τ j = a j /(1 -a j ). We have lim j a j = 0, thus τ j ∼ a j when j → +∞, so that j≥1 τ j < +∞. Therefore the series j≥1 ln(1 -a j ) converges. The proof of (12) is complete. □ Let us complete Theorem 2.2 with the following statement.

Proposition 2.3 Let (K j ) j≥1 ∈ K N and let σ ∈ Σ. The following assertions are equivalent.

(a) There exists

(m n ) n≥1 ∈ E N such that ∀n ≥ 1, m n ≤ K σn , and lim n ∥K σn -m n ∥ = 0. (b) lim n α(K σn ) = 1.
Proof. Assume that Assertion (a) holds true. Write

m n = b n β n with (b n , β n ) ∈ [0, 1] × P. Then b n β n ≤ K σn implies that b n ≤ α(K σn ). Moreover lim n b n = 1 from 1 -b n = ∥(K σn -m n )1 X ∥ ∞ = ∥K σn -m n ∥.
This gives lim n α(K σn ) = 1. Conversely assume that lim n α(K σn ) = 1. For every n ≥ 1 there exists

(a n , ν n ) ∈ [0, 1] × P such that α(K σn ) - 1 n ≤ a n ≤ α(K σn ) and a n ν n ≤ K σn
from the denition of α(K σn ). Moreover we have a n ν n ∈ E and

∥K σn -a n ν n ∥ = ∥(K σn -a n ν n )1 X ∥ ∞ = 1 -a n with lim n a n = 1 since lim n α(K σn ) = 1. This gives (a) with m n = a n ν n . □

Convergence of forward and backward products

Through this section we consider any sequence (K j ) j≥1 ∈ K N . For every 1 ≤ k ≤ n, set

K k:n := n j=k K j ; note that K k:n+1 = K k:n • K n+1 (forward products). K n:k := k j=n K j ; note that K n+1:k = K n+1 • K n:k (backward products).
In the next statements, the integer k ≥ 1 is xed, and the sequence of interest is then, either (K k:n ) n≥k for forward products (Theorem 3.2), or (K n:k ) n≥k for backward products (Theorem 3.3). The sequences (K k:n ) n≥k and (K n:k ) n≥k are both of the generic form (9) since we have K 1:n = n j=1 K σn(j) with σ n (j) = j, while K n:1 = n j=1 K σn(j) with σ n (j) = n -j + 1 (setting k = 1 to simplify). The common basic property of both backward and forward products with respect to Doeblin's coecient is the following. Lemma 3.1 For any k ≥ 1, the sequences (α(K k:i )) i≥k and (α(K i:k )) i≥k are non-decreasing.

Proof. These sequences are both non-decreasing provided that:

∀(K, K ′ ) ∈ K 2 , α(K) ≤ min α(K • K ′ ), α(K ′ • K) .
Let (a, ν) ∈ [0, 1] × P be such that aν ≤ K. Then (aν) (b) There exists a strictly increasing sequence (ℓ j ) j≥1 of positive integers such that we have Proof. Assume that Assertion (a) holds. Set ℓ 1 := 1. From Proposition 2.3 we know that lim n α(K 1:n ) = 1. Thus there exists ℓ 2 > 1 such that α(K 1:ℓ 2 -1 ) ≥ 1/2. Similarly it follows from (a) that there exists ℓ 3 > ℓ 2 such that α(K ℓ 2 :ℓ 3 -1 ) ≥ 1/2. Iterating this fact shows that there exists an increasing sequence (ℓ j ) j≥1 of positive integers such that, for every j ≥ 1, α(Q j ) ≥ 1/2 with Q j := K ℓ j :ℓ j+1 -1 , so that j≥1 α(Q j ) = +∞. Assume that Assertion (b) holds. Let k ≥ 1, and let i ≥ 1 such that ℓ i ≥ k. For every j ≥ i, it follows from the denition of α(Q j ) that there exists (a j , ν j ) ∈ [0, 1] × P such that

• K ′ = a(ν • K ′ ) ≤ K • K ′ . Thus a ≤ α(K • K ′ ) since ν • K ′ ∈ P. Hence α(K) ≤ α(K • K ′ ). Similarly we deduce from K ≥ aν that K ′ • K ≥ K ′ • (aν) = aν, thus a ≤ α(K ′ • K). Hence α(K) ≤ α(K ′ • K). □
j≥1 α(Q j ) = +∞ with Q j dened by Q j := K ℓ j :ℓ j+1 -1 . (c) ∀k ≥ 1, lim n α(K k:n ) = 1.
α(Q j ) - 1 j 2 ≤ a j ≤ α(Q j ) and Q j ≥ a j ν j .
Then j≥i a j = +∞. Thus, by applying Theorem 2.2 to (Q j ) j≥i , we can dene an explicit sequence (µ i:n ) n≥i ∈ E N such that µ i:n ≤ Q i:n and lim n ∥Q i:n -µ i:n ∥ = 0. To that eect use the formulas (9)-( 10) with (Q j ) j≥i ∈ K N and the above sequence (a j , ν j

) j≥i ∈ ([0, 1] × P) N . Thus lim n α(Q i:n ) = 1 from Proposition 2.3. Therefore lim n α(K ℓ i :n ) = 1 since (α(K ℓ i :n )) n≥ℓ i
is non decreasing from Lemma 3.1 and contains the subsequence (α(Q i:n )) n≥i . Then we obtain that lim n α(K

k:n ) = 1 since k ≤ ℓ i ≤ n implies that α(K ℓ i :n ) ≤ α(K k:n ) from Lemma 3.1.
We have proved that (b) ⇒ (c). That (c) ⇒ (a) follows from Proposition 2.3. □

The results of Theorem 3.2 easily extends to backward products. By contrast the strong ergodicity property (13) below is specic to backward products. (b) There exists a strictly increasing sequence (ℓ j ) j≥1 of positive integers such that we have

j≥1 α(Q j ) = +∞ with Q j dened by Q j := K ℓ j+1 -1:ℓ j . (c) ∀k ≥ 1, lim n α(K n:k ) = 1.
Moreover, for any sequence (m n:k ) n≥k ∈ E N satisfying Condition (a), the following strong ergodicity property holds true: there exists (π k ) k≥1 ∈ P N such that 

∀k ≥ 1, lim n ∥m n:k -π k ∥ = lim n ∥K n:k -π k ∥ = 0. ( 13 
(π k ) k≥1 ∈ P N such that ∀k ≥ 1, ∀n ≥ k, max ∥m n:k -π k ∥ , 1 2 ∥K n:k -π k ∥ ≤ ∥K n:k -m n:k ∥. (14) 
Proof. Let k ≥ 1 be xed and let q > p ≥ k. Then

∥m q:k -m p:k ∥ ≤ ∥m q:k -K q:k ∥ + ∥K q:k -m p:k ∥ ≤ ∥m q:k -K q:k ∥ + ∥K p:k -m p:k ∥ (15) from K q:k -m p:k = K q • • • K p+1 • (K p:k -m p:k
) and ∥K j ∥ = 1. We deduce from the assumption that (m n:k ) n≥k is a Cauchy's sequence in the Banach space M of nite signed measures on (X, X ) equipped with the total variation norm (e.g. see [DMPS18, App. D]). Consequently the sequence (m n:k ) n≥k converges in M to some π k ∈ M. When q → +∞, (15) gives:

∀p ≥ k, ∥π k -m p:k ∥ ≤ ∥K p:k -m p:k ∥. Then (14) follows from ∥K p:k -π k ∥ ≤ ∥K p:k -m p:k ∥ + ∥m p:k -π k ∥.
That π k ∈ P is obvious since π k is the limit of Markov kernels (thus π k ≥ 0 and π k (X) = 1). □ Remark 3.5 (Finite case and link with Seneta's results) Seneta introduced in [Sen81, Th. 4.8] the notion of proper coecients of ergodicity to obtain a necessary and sucient condition for the forward products of nite stochastic matrices to be weakly ergodic (see ( 16)).

The same holds true in [START_REF] Seneta | Nonnegative matrices and Markov chains[END_REF]Th. 4.18] for the backward products, with the additional wellknown fact that weak and strong ergodicity properties are equivalent in this case. Actually, in the matrix case, Theorems 3.2 and 3.3 corresponds to the statements [Sen81, Th. 4.8 and 4.18] in terms of Doeblin's coecient of ergodicity. Indeed, if K = (K(i, j)) 1≤i,j≤d is a stochastic d × d-matrix, then the real number α(K) dened in (2) reduces to α(K) = d j=1 α j (K) with α j (K) := min i=1,...,d K(i, j). Then Doeblin ergodicity coecient of K in [START_REF] Seneta | Nonnegative matrices and Markov chains[END_REF] corresponds to b(K) = 1 -α(K). Let (K j ) i≥1 be any sequence of stochastic d × d-matrices. According to [START_REF] Seneta | Nonnegative matrices and Markov chains[END_REF]Def. 4.4], the weak ergodicity condition for forward products is

∀k ≥ 1, ∀i, i ′ , j = 1, . . . , d, lim n→+∞ K k:n (i, j) -K k:n (i ′ , j) = 0, (16) 
where K k:n := (K k:n (i, j)) 1≤i,j≤d . This condition is clearly equivalent to Condition This provides a proof of the weak ergodicity characterization given in Doeblin' work [START_REF] Doeblin | Le cas dicontinu des probabilité en chaîne[END_REF] without proof. Our method provides another alternative way to establish [Sen81, Th. 4.8] via Doeblin's coecient, and to prove [START_REF] Seneta | Nonnegative matrices and Markov chains[END_REF]4.18] by the way.

Remark 3.6 Although Theorems 3.2 and 3.3 are extensions of the matrix case, we point out that when X is innite, none of the three equivalent conditions (a) (b) (c) in Theorems 3.2 is known to be equivalent to the following weak ergodicity condition

∀k ≥ 1, lim n→+∞ sup (x,x ′ )∈X 2 sup ∥f ∥∞≤1 (K k:n f )(x) -(K k:n f )(x ′ ) = 0 (17)
which is a natural extension of ( 16). As mentioned in [LC14, p. 178], Condition 17) is proved to be equivalent to the following condition: ∀k ≥ 1, ∃(ν k,n ) n≥k ∈ P N , lim n ∥K k:n -ν k,n ∥ = 0. However this condition is quite dierent from Conditions (a) of Theorems 3.2 since ν k,n is a probability measure which does not satisfy ν k,n ≤ K k:n in general. By the way, nding a probability measure ν k,n satisfying the above hypothesis of [START_REF] Paz | Ergodic theorems for innite probabilistic tables[END_REF][START_REF] Iosifescu | On two recent papers on ergodicity in nonhomogeneous Markov chains[END_REF] is a dicult issue in practice. Mention that other norms can be considered to dene weak ergodicity, for instance L 1 -type norm as in [START_REF] Mukhamedov | On L 1 -weak ergodicity of nonhomogeneous discrete Markov processes and its applications[END_REF].

4 Results on the rate of convergence When the sequences (m k:n ) n≥k ∈ E N or (m n:k ) n≥k ∈ E N in Theorems 3.2 and 3.3 are computed thanks to Formulas (9)-(10), then the norm equality (11) provides an accurate control of ∥K k:n -m k:n ∥. This is illustrated in Proposition 4.1 and Theorem 4.3 below.

Proposition 4.1 Let (K j ) j≥1 ∈ K N be such that α 0 := inf j≥1 α(K j ) > 0. Let c ∈ (0, α 0 ). Then for every k ≥ 1 there exist sequences

(µ k:n ) n≥k ∈ E N and (µ n:k ) n≥k ∈ E N such that ∀n ≥ k, ∥K k:n -µ k:n ∥ ≤ (1 -c) n-k+1 and ∥K n:k -µ n:k ∥ ≤ (1 -c) n-k+1 . (18) 
Moreover the following property holds true for backward products

∀k ≥ 1, ∀n ≥ k, ∥K n:k -π k ∥ ≤ 2(1 -α 0 ) n-k+1 (19) 
where (π k ) k≥1 ∈ P N is the sequence of Theorem 3.3 associated with the µ n:k 's.

Similar results to (18) are obtained in [START_REF] Wolfowitz | Products of indecomposable, aperiodic, stochastic matrices[END_REF] when {K j , j ≥ 1} is a nite set of nite stochastic matrices. The results of [START_REF] Wolfowitz | Products of indecomposable, aperiodic, stochastic matrices[END_REF] are extended in [START_REF] Coppersmith | Conditions for weak ergodicity of inhomogeneous Markov chains[END_REF] to the case when {K j , j ≥ 1} is a compact set of nite stochastic matrices. In the homogeneous case Property ( 19) is a wellknown result (e.g. see [START_REF] Roberts | General state space Markov chains and MCMC algorithms[END_REF] and Remark 4.2). In the non-homogeneous case Property (19) is proved in [START_REF] Steno | Perfect sampling from the limit of deterministic products of stochastic matrices[END_REF] when X is nite. The statement for a complete separable metric space X is stated in [START_REF] Steno | Perfect sampling from the limit of deterministic products of stochastic matrices[END_REF] with the indication that a proof could be provided by using an iterated function system. Note that the properties (18) and ( 19) are obtained here for general state spaces and without any topological assumption on the set {K j , j ≥ 1}.

Proof. To simplify assume that k = 1. For every j ≥ 1 there exist a j ∈ [c, α 0 ] and ν j ∈ P such that K j ≥ a j ν j . Using σ n (j) = j and σ n (j) = n -j + 1 respectively, Formula (10) can be used to dene (µ 1:n ) n≥1 ∈ E N and (µ n:1 ) n≥1 ∈ E N . Inequalities in (18) follow from the norm equality (11) since c ≤ a j . To prove (19), note that the second inequality of (18) and Property (14) applied to the sequence (µ n:1 ) n≥1 give:

∀n ≥ 1, ∥K n:1 -π 1 ∥ ≤ 2(1 -c) n .
Inequality (19) then holds since c is arbitrarily closed to α 0 . □ Remark 4.2 If K ∈ K satises K ≥ α 0 ν for some (α 0 , ν) ∈ (0, 1] × P and if K is assumed to admit an invariant probability measure π, then it is well-known that ∥K n -π∥ ≤ (1 -α 0 ) n , see [START_REF] Roberts | General state space Markov chains and MCMC algorithms[END_REF]Th. 8]. Property (19) in case K j = K and k = 1 provides the same result, up to the factor 2 which is due to the functional denition of the total variation norm. The existence of π is not assumed here (it is a by-product of Theorem 3.3). Obviously, if some iterate K n 0 satises the above minorization condition (in place of K), the same conclusion holds by replacing the rate (1 -α 0 ) n by (1 -α 0 ) ⌊n/n 0 ⌋ where ⌊•⌋ is the integer part function.

As an application of Assertion (a) of Theorem 3.2, the following statement extends to general Markov kernels the result of [START_REF] Huang | The rate of convergence of certain nonhomogeneous Markov chains[END_REF] concerning forward products of stochastic matrices, see Remark 4.5.

Theorem 4.3 Let K ∈ K be strongly ergodic, namely ∃π ∈ P, ∃c ∈ (0, +∞), ∃β ∈ (0, 1), ∀m ≥ 1, ∥K m -π∥ ≤ c β m .

(20)

Let (K n ) n≥1 ∈ K N be such that lim n ∥K n -K∥ = 0 and

∃α 0 ∈ (0, 1), ∃i 0 ≥ 1, ∀i ≥ i 0 , α(K i ) > α 0 . (21) 
Then the following uniform convergence holds:

lim n→+∞ sup k≥1 ∥K k:k+n -π∥ = 0. (22) 
More precisely, setting d i 0 := (1 -α 0 ) 1-i 0 , we have for all k ≥ 1, n ≥ i 0 and m ≥ 1

∥K k:k+n+m -π∥ ≤ 2 d i 0 (1 -α 0 ) n 1 + (1 -α 0 ) m + m γ n + c β m (23)
with γ n := sup j≥n+1 ∥K n -K∥.

Proof. Note that i≥1 α(K j ) = +∞ from Assumption (21). It follows from Assertion (a)

of Theorem 3.2 that, for every k ≥ 1, there exists (µ k,k+n ) n≥1 ∈ E N such that, for every n ≥ 1, µ k,k+n ≤ K k:k+n , and such that lim n→+∞ ∆ k,k+n = 0 where ∆ k,k+n := ∥K k:k+n -µ k,k+n ∥.

Actually the sequence (µ k,k+n ) n≥k ∈ E N is provided by Theorem 2.2, from which we deduce the following inequality by using ( 21)

∀k ≥ 1, ∀n ≥ i 0 , ∆ k,k+n ≤ d i 0 (1 -α 0 ) n with d i 0 := (1 -α 0 ) 1-i 0 . (24) 
Note that µ k,k+n • π = µ k,k+n (1 X ) π. We have for n, m ≥ 1

µ k,k+n+m -µ k,k+n (1 X ) π = (µ k,k+n+m -K k:k+n+m ) + K k:k+n • (K k+n+1:k+n+m -K m ) + (K k:k+n -µ k,k+n ) • K m + µ k,k+n • (K m -π).
Moreover an easy induction based on the triangular inequality gives

∀i ≥ 1, ∀m ≥ 1, ∥K i+1:i+m -K m ∥ ≤ m γ i with γ i := sup j≥i+1 ∥K j -K∥.
Thus: ∀k, n, m ≥ 1, ∥K k+n+1:k+n+m -K m ∥ ≤ m γ n since γ k+n ≤ γ n . From these remarks and from (20) and ( 24) we deduce that for all k ≥ 1, n ≥ i 0 and m ≥ 1

∥µ k,k+n+m -µ k,k+n (1 X ) π∥ ≤ d i 0 (1 -α 0 ) n+m + m γ n + d i 0 (1 -α 0 ) n + c β m . Next observe that ∀k, n ≥ 1, 1 -µ k,k+n (1 X ) = ∥K k:k+n 1 X -µ k,k+n 1 X ∥ ∞ = ∥K k:k+n -µ k,k+n ∥ = ∆ k,k+n since K k:k+n -µ k,k+n ≥ 0. Consequently we have for all k ≥ 1, n ≥ i 0 and m ≥ 1 ∥µ k,k+n+m -π∥ ≤ µ k,k+n+m -µ k,k+n (1 X ) π + µ k,k+n (1 X ) -1 π ≤ ∥µ k,k+n+m -µ k,k+n (1 X ) π∥ + 1 -µ k,k+n (1 X ) ≤ d i 0 (1 -α 0 ) n+m + m γ n + 2 d i 0 (1 -α 0 ) n + c β m
from which we deduce that

∥K k:k+n+m -π∥ ≤ ∥K k:k+n+m -µ k,k+n+m ∥ + ∥µ k,k+n+m -π∥ ≤ 2 d i 0 (1 -α 0 ) n+m + m γ n + 2 d i 0 (1 -α 0 ) n + c β m . (25) 
This proves (23). Now let ε > 0. First x m 0 ≥ 1 such that c β m 0 ≤ ε/2. Then

∃n 0 ≥ i 0 , ∀n ≥ n 0 , 2 d i 0 (1 -α 0 ) n+m 0 + m 0 γ n + 2 d i 0 (1 -α 0 ) n ≤ ε/2
since α 0 ∈ (0, 1] and lim n γ n = 0 by the assumption lim n ∥K n -K∥ = 0. It follows that: 

∀q ≥ m 0 + n 0 , ∀k ≥ 1, ∥K k:k+q -π∥ ≤ ε.
≥ 1, ∃i 0 ≥ 1, inf i≥i 0 α(K is+1 • • • K is+s ) > 0,
then the results of Theorem 4.3 can be extended by considering suitable block-products. More precisely the proof of Theorem 4.3 applies to the sequence (K ′ j ) i≥0 dened by K ′ j := K is+1:is+s since K s is strongly ergodic and lim n ∥K ′ n -K s ∥ = 0.

2. (backward products) the two following statements are equivalent (a) there exists an integer number q ≥ 1 such that P α(K q:1 ) > 0 > 0, (b) There exists a sequence (π k ) k≥1 of P-valued r.v. such that we have P-almost surely:

∀k ≥ 1, lim n ∥K n:k -π k ∥ = 0.
To the best of our knowledge, the results in Theorem 5.1 and in Proposition 5.2 below are new, even in the nite case. When the K j 's are r.v. taking their values in the set K d of stochastic d × d-matrices for some d ≥ 1, Assertion (1b) is a well-known result under the following stronger assumptions, see for instance [START_REF] Chamayou | A transient random walk on stochastic matrices with Dirichlet distributions[END_REF][START_REF] Mckinlay | A characterisation of transient random walks on stochastic matrices with Dirichlet distributed limits[END_REF]: the K j 's are i.i.d and P(K 1 ∈ K * d ) > 0, where K * d denotes the subset of K d composed of matrices with strictly positive entries. Note that the assumption P(K 1 ∈ K * d ) > 0 in [START_REF] Chamayou | A transient random walk on stochastic matrices with Dirichlet distributions[END_REF][START_REF] Mckinlay | A characterisation of transient random walks on stochastic matrices with Dirichlet distributed limits[END_REF] is more restrictive than P(α(K 1 ) > 0) > 0 since K 1 ∈ K * d ⇒ α(K 1 ) > 0.

Proof. Assume that (1a) holds true: for some q ≥ 1, P α(K 1:q ) > 0 > 0. For every j ∈ N * dene: Q j = K q(j-1)+1 : qj . The sequence (Q j ) j≥1 is i.i.d. and we have P α(Q 1 ) > 0 > 0 by hypothesis. From P(α(Q 1 ) > 0) > 0, there exists p ≥ 1 such that P(α(Q 1 ) ≥ 1/p) > 0. Thus j≥1 P(α(Q j ) ≥ 1/p) = +∞ since the Q j 's are i.d.. Let Ω 0 = ∩ n≥1 ∪ j≥n [α(Q j ) ≥ 1/p]. From the independence of the events [α(Q j ) ≥ 1/p], j ≥ 1, the Borel-Cantelli lemma ensures that P(Ω 0 ) = 1 so that j≥1 α(Q j ) = +∞ P-a.s. Then Property (1b) follows from Theorem 3.2. Now assume that ∀q ≥ 1, α(K 1:q ) = 0 P-a.s.. Dene Ω 1 := ∩ q≥1 α(K 1:q ) = 0 . Then P(Ω 1 ) = 1, and ∀ω ∈ Ω 1 , ∀q ≥ 1, α(K 1:q )(ω) = 0. It follows from Assertion (c) of Theorem 3.2 that Assertion (1b) of Theorem 5.1 does not hold (in fact, for every ω ∈ Ω 1 , the expected conclusion for the sequence (K k:n (ω)) n does not hold).

Equivalence (2a) ⇔ (2b) can be proved similarly from Theorem 3.3. □ Let us propose alternative assumptions to obtain that j≥1 α(K j ) = +∞ P-a.s., so that the statements (1b) and (2b) of Theorem 5.1 hold true.

Proposition 5.2 Statements (1b) and (2b) of Theorem 5.1 hold true when any of the two following conditions is fullled:

(i) the r.v. (K j ) j≥1 are pairwise independent and i.d., and P(α(K 1 ) > 0) > 0.

(ii) (K j ) j≥1 is stationary, (α(K j )) j≥1 is ergodic, and P(α(K 1 ) > 0) > 0.

Proof. From Theorems 3.2-3.3 it is sucient to prove that any of the two sets of assumption (i) or (ii) ensures that j≥1 α(K j ) = +∞ P-a.s. Under Assumption (i) such a convergence can be obtained as in the proof of (1a) ⇒ (1b) in Theorem 5.1: replace Q j with K j and apply the Borel-Cantelli lemma for pairwise independent r.v.. Under Assumption (ii) note that the sequence (α(K j )) j≥1 is stationary and ergodic. Then we obtain that j≥1 α(K j ) = +∞ P-a.s. under the assumption P(α(K 1 ) > 0) > 0 from the strong law of large numbers for ergodic stationary sequences. □

  Theorem 3.2 (forward products) The following assertions are equivalent. (a) For every k ≥ 1, there exists (m k:n ) n≥k ∈ E N such that, for every n ≥ k, m k:n ≤ K k:n , and such that lim n ∥K k:n -m k:n ∥ = 0.

  Theorem 3.2 extends the statement[START_REF] Seneta | Nonnegative matrices and Markov chains[END_REF] Th. 4.8] to general Markov kernels. Conditions (b) and (c) have been already proved to be equivalent in[START_REF] Lladser | Approximation of sojourn-times via maximal couplings: motif frequency distributions[END_REF]. That Conditions (b) and (c) are both equivalent to Condition (a) is a new result to the best of our knowledge. Condition (a) then appears as a suitable alternative to the weak ergodicity denition to study the asymptotic behaviour of forward products of general Markov kernels, see Remark 3.6.

  Theorem 3.3 (backward products) The following assertions are equivalent.(a) For every k ≥ 1, there exists (m n:k ) n≥k ∈ E N such that, for every n ≥ k, m n:k ≤ K n:k , and such that lim n ∥K n:k -m n:k ∥ = 0.

)

  Theorem 3.3, which extends the statement [Sen81, Th. 4.18] to general Markov kernels, is new to the best of our knowledge. Note that the possibility of considering block-products in Condition (b) of both Theorems 3.2-3.3 may be relevant. The equivalence between (a), (b) and (c) in Theorem 3.3 can be established exactly as in Theorem 3.2. The strong ergodicity property (13) follows from the next lemma. Lemma 3.4 Let (m n:k ) n≥k ∈ E N satisfying Assertion (a) of Theorem 3.3. Then there exists

  (a) of Theorem 3.2 in the matrix case. The same conclusions hold true for backward products of stochastic d × d-matrices, and the equivalence between weak and strong ergodicity properties is nothing else but the last assertion of Theorem 3.3. A proof of [Sen81, Th. 4.8] only based on the contraction property of the Doeblin ergodicity coecient b(•) is addressed in [CL10].

  (a) of Theorem 3.2 clearly implies that (17) holds. That (17) implies any of the three conditions (a) (b) (c) of Theorem 3.2 is an open question. Let us mention that in [Paz70, Ios72] the weak ergodicity property (

  This proves (22). □

	Remark 4.4 If Assumption (21) of Theorem 4.3 is replaced with the following one
	∃s

Remark 4.5 When (K n ) n≥1 is a sequence of innite stochastic matrices (i.e. X = N), a qualitative control of sup k≥1 ∥K k:k+n -π∥ was obtained in [START_REF] Huang | The rate of convergence of certain nonhomogeneous Markov chains[END_REF]. Theorem 4.3 not only extends this result to general Markov kernels, but Inequality (23) also provides an accurate (uniform in k ≥ 1) control of ∥K k:k+n+m -π∥. In particular, if the Markov kernel K in Theorem 4.3 satises K ≥ a ν for some (a, ν) ∈ (0, 1] × P, then Condition (20) holds with c = 2 and β = 1 -a, see Remark 4.2. In this case, Inequality (23) holds true with explicit constants only depending on the data a, i 0 , α 0 and γ n . Note that Assumption (21) is not assumed in [START_REF] Huang | The rate of convergence of certain nonhomogeneous Markov chains[END_REF] because it is automatically fullled in case X = N. Indeed, in this case, the map α(•) is easily proved to be lower semi-continuous on the metric space (K, d), with d dened by: ∀ 21) holds true for any α 0 ∈ (0, α) from the assumption lim n ∥K n -K∥ = 0 and from the lower semi-continuity of the map α(•) since lim inf n α(K n ) ≥ α(K). If α(K) = 0, the proof of Theorem 4.3 can be adapted by considering suitable block-products of some (xed) length. Indeed it follows from the strong ergodicity of K that lim n α(K n ) = 1. Thus: ∃s ≥ 1, α(K s ) ≥ 1/2. From the assumption lim n ∥K n -K∥ = 0, there exists i 0 ≥ 1 such that, for every

is lower semi-continuous. Then, as already mentioned in the previous remark, the proof of Theorem 4.3 can be applied to the sequence (K ′ j ) i≥0 dened by K ′ j := K is+1:is+s .

Applications to products of random Markov kernels

Let (K j ) j≥1 be a sequence of random variables (r.v.) dened on some probability space (Ω, F, P) and taking their values in K. For the sake of simplicity, if n ≥ k ≥ 1, we still denote by K k:n and K n:k the following K-valued random variables:

If ω ∈ Ω is such that α(K k:n (ω)) > 0, then it follows from the denition of α(K k:n (ω)) that, for every a ∈ (0, α(K k:n (ω)), there exists a k:n (ω) ∈ [a, α(K k:n (ω))] and ν k:n (ω) ∈ P such that K k:n (ω) ≥ a k:n (ω)ν k:n (ω). The previous proofs are compatible with the present random context assuming that a choice may be done so that the maps ω → a k:n (ω) and ω → ν k:n (ω) dene random variables from (Ω, F) to [0, 1] and to P respectively. Note that these assumptions hold in the nite state space case.

The use of Doeblin's coecient seems to be quite relevant in this random context, as shown by the next theorem which provides necessary and sucient conditions for the convergence of the forward/backward random products when the sequence (K j ) j≥1 is assumed to be independent and identically distributed (i.i.d.).

Theorem 5.1 If (K j ) j≥1 is i.i.d. then 1. (forward products) the two following statements are equivalent (a) there exists an integer number q ≥ 1 such that P α(K 1:q ) > 0 > 0 (b) for every k ≥ 1, there exists a sequence (m k:n ) n≥k of E-valued r.v. such that we have P-almost surely: ∀n ≥ k, m k:n ≤ K k:n , and lim n ∥K k:n -m k:n ∥ = 0.