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Abstract

The asymptotic of products of general Markov /transition kernels is investigated using
Doeblin’s coefficient. We propose a general approximating scheme as well as a conver-
gence rate in total variation of such products by a sequence of positive measures. These
approximating measures and the control of convergence are explicit from the two param-
eters in the minorization condition associated with the Doeblin coefficient. This allows
us to extend the well-known forward/backward convergence results for stochastic matri-
ces to general Markov kernels. A new result for forward /backward products of random
Markov kernels is also established.

AMS subject classification : 60J05, 60F99, 60B20

Keywords : Non-homogeneous Markov chains; Doeblin’s coefficient

1 Introduction

There is a large literature on the asymptotic behaviour of non-homogeneous Markov chains. A
main objective is to get convergence properties as well as rate of convergence of stochastic al-
gorithms based on general Markov chains as, for instance, in Markov search for optimization
or in stochastic simulation. Such an issue requires to analyse various products of transi-
tion kernels of the underlying Markov chain. In this paper the asymptotic of products of
Markov/transition kernels is investigated using Doeblin’s coefficient and the total variation
norm. Let us introduce the basic material relevant to this work. Let (X, X’) be a measurable
space. We denote by K the set of all the Markov kernels on (X, X’), and by P the set of all
the probability measures on (X, X). If K € K and if (a,v) € [0,1] x P, we write K > av
when

V(z,A) e Xx X, K(z,A) >av(A). (1)

Obviously every K € K satisfies (1) with a = 0. Doeblin’s coefficient a(K) of any K € K is
defined as in | | by

o(K):=sup{a€0,1]: v e P, K>av}. (2)

*Univ Rennes, INSA Rennes, CNRS, IRMAR-UMR 6625, F-35000, France. Loic.Herve@insa-rennes.fr,
James.Ledoux@insa-rennes.fr



When «(K) € (0,1], K satisfies the so-called minorization property | |. We denote by &
the set of all the positive measures p on (X, X') such that u(X) < 1. Let (B, || - ||s) denote the
space of bounded measurable real-valued functions on (X, X’), equipped with the supremum
norm: Vf € B, |[flloc := supgex|f(z)|. Let (L(B),]| - ||) be the Banach space of all the
bounded linear operators on B where | - || denotes the operator norm on £(B) defined by

VT € L(B), |IT| = sup {ITflsc, I/l <1}

Note that if T" is non-negative (i.e. f > 0= Tf > 0) then ||T|| = ||T1x|locc. Throughout the
paper, K € K is identified with its functional action on B (still denoted by K') defined by

VieB, Ve eX, (Kf)(x) ::/Xf(y)K(:c,dy).

Similarly any element pu € £ acts on B according to:

VieB, uf=p(f)lx where we shortly set p(f):= /Xf(y)u(dy).

Obviously the maps f — Kf and f + uf are in £(B). Finally, if (A, B) € K? then A - B
denotes the Markov kernel on (X, X') defined by the product of A by B, which is identified
with its action A o B on B (to simplify we only use the notation A - B).

The following key statement (Theorem 2.2) is proved in Section 2. Let (K;);>1 € K" and,
for every j > 1, let (aj,v;) € [0,1] x P be chosen for K satisfying Inequality (1). For every

n > 1 let 0, be a permutation on the finite set {1,...,n}, and introduce
n n
Kcrn = HKUn(j) and Ho,, ‘= Kgn — H (Ka (j) — agn(j)uan(j)). (3)
j=1 j=1

Then, for all n > 1, we have p,, € &, s, < K,,, and the following assertions are equivalent:

(a) Z a; = +00.

i>1
(b) 3(on)nz1, limy Ko, — pio, || = 0.
(©) Y(on)nz1, limy Ko, — pio,, || = 0.
As a result, Seneta’s statements | | for the convergence of forward/backward products

of finite stochastic matrices are extended in Section 3 to general Markov kernels via a condition
of type (a) for some block-kernels. When X is finite, this condition is necessary and sufficient

for the so-called weak ergodicity, see | |. Using Notation (3) with some fixed (op,)n>1,
the weak ergodicity property writes as follows:
lim  sup  sup [(Ko,,f)(z) — (Ko, f)(2')] =0 (4)

" H0 (2 ) eX? || flloo <1

When X is infinite, condition of type (a) (for block-kernels) seems to be only sufficient for (4)
to hold, as mentioned in | | in the context of forward products (see Remark 3.6 for details
and further comparisons with | ). The novelty in our work is that the weak ergodicity
condition (4) is replaced with the condition lim,, |K,, — fis, || = 0 which implies that

(K7€) 1= n sup K, (2.) = () — 0 when 11 o0, 5)
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where [|8]|rv := sup| <1 ‘ Jx f(x) ﬁ(dx)‘ denotes the total variation norm of any signed mea-
sure 5 on (X, X). The weak ergodicity property (4) directly implies that lim,, dry (Kan, P) =
0. However the possibility in (5) of considering the distance with respect to the set £ (in place
of P) provides much more flexibility in the proofs, knowing that the above positive measure
o, satisfies limy, drv (i, ,P) = 0. The first interest of our approach is that the property
lim, ||Ks, — ts,|] = 0 is more explicit than weak ergodicity, since the sequence (uq,, )n is
simply defined from the kernels K; and from the elements of the associated minorization con-
ditions. The second interest is that Condition (b) is equivalent to Condition (a), contrarily
to weak ergodicity (excepted in matrix case). The third interest is that the norm equality of
Lemma 2.1 gives an accurate control of Ko, — fig, ||, thus of drv (Ko, ,E).

This new approach allows us to extend some classical results on products of stochastic
matrices to general Markov kernels via very simple proofs. For instance, Corollary 4.1 and
Theorem 4.2 extend the results of | ) , | and of | |.

Our approach is also relevant to study the products of random Markov kernels. In particu-
lar simple criteria are presented in Theorem 5.1 for the convergence of forward /backward prod-
ucts when (Kj);>1 is a sequence of independent and identically distributed random Markov
kernels. To the best of our knowledge the results obtained in Section 5 in the random context
are new too, even in matrix case.

The paper is organized as follows. General results concerning the convergence of products
of Markov kernels in link with Doeblin’s coefficient defined in (2) are presented in Section 2.
The specific cases of backward and forward products are studied in Section 3. Complemen-
tary statements on the rate of convergence of forward/backward products are presented in
Section 4. Applications to products of random Markov kernels are proposed in Section 5.

2 Convergence of products of Markov kernels

Let us consider any p € N* and any family (7})i<j<p € KP. For every 1 < j < p, let

aj € [0,a(T})] and v; € P such that T; > ajv;. Set
P p
T,:=[[7 and pp:=T,-[[ (T —av). (6)
j=1 j=1
Lemma 2.1 The element p, given in (6) belongs to £ and we have p, < T,. Moreover
P

1T — | = [J (1 = ay). (7)
j=1
Proof. Let us prove by induction on the in%eger p that pu, € € and p, < Tp. If p=1,
then p1 = aqv1, so that pp € £ and py < Tq. Now assume that the conclusions p, € £ and
tp < T, holds true for some p > 1. Let (T})1<j<pt+1 € KCPT! and, for every 1 < j < p+1, let
aj € [0,a(Tj)] and v; € P be such that T; > a;v;. Let T, and p), be given in (6). Introduce
Tp+1 = Tp . Tp+1 and

p+1
pp+1 = Tpp1 — H (TJ - ajVj) =Tpr1 — (Tp — pp) - (Tp+1 - ap+1Vp+1)- (8)

j=1

Then we get Tpi1 — ppr1 = (Tp — pp) - (Tp+1 — ap+11/p+1) so that Tpy1 — ppy1 > 0 since
T, — pp > 0 by induction assumption and Tpy1 > apt1Vp+1 > 0. Moreover (8) gives

fp+1 = apr1Vpi1 + fip - (Tpr1 — apy1vps1)



and we know from the induction assumption that p, € € with Vf € B, ppf = pp(f)1x. Thus

tip1f = ppa1 (f)Ix wWith pp1(f) = apprvpr1 (F) + pip (Tpsr f — apr1vpra(f))

so that ju,41(-) is defined as a signed measure on (X, X'). But p,11(+) is a positive measure on
X such that p,41(X) < 1 since apr1Vpt1 < Tpt1, (Tp+1 — apt1vp+1)(1x) = (1 — ap+1)1x and
pp(X) < 1. We have proved that pp,41 € €, and the first part of Lemma 2.1 is established.

Finally, to obtain (7), note that

P
HTp - MpH = H( — fip) 1XH = H H —a;v;) - Ix| = H(l — aj)
j=1
since we have T) — p, > 0, and |7} — a;v;|| = H( — a;v;) - 1x||eo from T — ajvj > 0 and
(Tj = ajvj) - 1x = (1 — a;)1x. O

Let X be the set of all the sequences 0 := (0p)n>1, where o, is a permutation on the finite
set {1,...,n}. For any (K;);j>1 € KN and 0 € 3, let (Ko, )n>1 € KN be defined by

vn Z ]‘7 Un : H Ko'n(] (9)
For every j > 1, let a; € [0, (k)] and let v; € P be such that K; > a;v;. Finally define
=1 e, =Ko, = [ (Koug) = 00,00 Ve)- (10)
j=1

The following theorem, which has its own interest, is crucial for the study of the forward and
backward products in the next section.

Theorem 2.2 For every o € X and for every n > 1, we have p,, € E, iy, < Ky, and
n

Vn>1, |[Ke, = o, || = [](1 - a)). (11)
j=1
Moreover the following assertions are equivalent:

(a) Zaj = +o0

jz1
(b) o €%, lim [|Ko, — pto, || =0
n
(C) VO' € E7 llm HKU” - uo’n” = O
n

Proof. The first part follows from Lemma 2.1. Since Condition (a ) does not depend on
o € %, the equivalences hold true if we show that, for any (K;);>1 € K and o € X,

Jj=1
The following equivalences hold true from (11)

117ILH ||K0'n - IU’O'nH = lim Zln 1-— CL] = —00 <=~ Zln(l — CL]) = —00.

n—>+oo -
Jj=1

Moreover the last condition is equlvalent to > ;51 a; = +oo. Indeed, we have Vz € [0,1),
—z/(1 —z) < In(l —2) < —z from Taylor’s formula. Thus },5;a; = +oo implies that

>_j>1 (1 — aj) = —oco. Conversely assume that }_ -, a; < +00, and set 7; = a;j/(1 — a;).
We have lim; a; = 0, thus 7; ~ a; when j— +o00, so that ijl 7j < +o0o. Therefore the
series ) .~ In(1 — a;) converges. The proof of (12) is complete. O
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Let us complete Thereom 2.2 with the following statement.

Proposition 2.3 Let (Kj)j>1 € KN and let o € ©. The following assertions are equivalent.
(a) There exists (my)n>1 € EY such that Vn > 1, m, <K, , and lim, |K,, —m,| = 0.

(b) lim, a(K, ) =1.

Proof. Assume that Assertion (a) holds true. Write m,, = b, 8, with (b, 8) € [0, 1] X P.
Then b, 3, < K,, implies that b, < a(K,, ). Moreover lim,, b, = 1 from

1=bn = [[(Ke,, = mp)lx[loo = Ko, —my].

This gives lim,, «(K,, ) = 1. Conversely assume that lim,, «(K,, ) = 1. For every n > 1 there
exists (ap,vy,) € [0,1] x P such that

from the definition of (K, ). Moreover we have a,v, € £ and
1Ko, — antnll = (Ko, — antn)lxllc =1 —an

with lim,, a,, = 1 since lim,, a(K,, ) = 1. This gives (a) with m,, = apv,. O

3 Convergence of forward and backward products

Through this section we consider any sequence (K;);>1 € KCN. For every 1 < k < n, set
o K;.\, = H;‘:k, Kj; note that K1 = Kjp - Kpg1 (forward products).
e K, ... = H;C:n Kj; note that K4 1., = Kp41 - Ky (backward products).

In the next statements, the integer k£ > 1 is fixed, and the sequence of interest is then,
either (K., )n>k for forward products (Theorem 3.2), or (K,.x)n>k for backward products
(Theorem 3.3). The sequences (K. )n>k and (K., )n>k are both of the generic form (9) since
we have K., =[]} Ko, () with 0,,(j) = j, while K1 = [[i_; Ko, (j) with 0n(j) =n—j+1
(setting & = 1 to simplify). The common basic property of both backward and forward
products with respect to Doeblin’s coefficient is the following.

Lemma 3.1 For any k > 1, the sequences (a(K.i))i>r and ((K;.x))i>k are non-decreasing.
Proof. These sequences are both non-decreasing provided that:
Y(K,K') € K?, o(K) <min (a(K - K'), (K" - K)).
Let (a,v) € [0,1] x P be such that av < K. Then (av) - K' = a(v- K') < K - K. Thus

a < oK -K')since v- K" € P. Hence a(K) < (K - K'). Similarly we deduce from K > av
that K'- K > K' - (av) = av, thus a < o(K' - K). Hence o(K) < o(K' - K). O

Ot



Theorem 3.2 (forward products) The following assertions are equivalent.

(a) For every k > 1, there exists (WM. )n>k € EN such that, for every n > k, My < Kpm,
and such that lim,, || K., — my.,[ = 0.

b) There exists a strictly increasing sequence (£;);>1 of positive integers such that we have
3liz
2]21 a(Qj) = +oo with Q; defined by Qj := Ky, 1.

(c) Yk > 1, lim, a(Kg.,) = 1.

Theorem 3.2 extends the statement | , Th. 4.8] to general Markov kernels. Conditions (b)
and (c) have been already proved to be equivalent in | |. That Conditions (b) and (c) are
both equivalent to Condition (a) is a new result to the best of our knowledge. Condition (a)
then appears as a suitable alternative to the weak ergodicity definition to study the asymptotic
behaviour of forward products of general Markov kernels, see Remark 3.6.

Proof. Assume that Assertion (a) holds. Set ¢; := 1. From Proposition 2.3 we know that
lim,, a(K1.,) = 1. Thus there exists fo > 1 such that «(Kj.g,—1) > 1/2. Similarly it follows
from (a) that there exists ¢35 > ¢ such that o(Ky,.p,—1) > 1/2. Iterating this fact shows that
there exists an increasing sequence (¢;);>1 of positive integers such that, for every j > 1,
a(Q;) > 1/2 with Q; := Ky, -1, so that 3, a(Q;) = +oo. Assume that Assertion (b)
holds. Let k£ > 1, and let ¢ > 1 such that ¢; > k. For every j > i, it follows from the definition
of a(Q;) that there exists (a;,v;) € [0,1] x P such that

Oé(Qj) — ]12 S a; S Oé(Qj) and Qj 2 ajlj.

Then _,;a; = +o0o. Thus, by applying Theorem 2.2 to (Q;);>;, we can define an explicit

sequence (fim)n>i € EN such that g < Qi and limy, | Qi — fisn|| = 0. To that effect use
the formulas (9)-(10) with (Q;);>; € K" and the above sequence (a;,v;);>i € ([0,1] x P)N.
Thus lim, a(Qs:r,) = 1 from Proposition 2.3. Therefore lim,, o(Ky,.,,) = 1 since (a(Ky,:n))n>,
is non decreasing from Lemma 3.1 and contains the subsequence ((Qj:n))n>i- Then we obtain
that lim, a(Kg.,) = 1 since £ < ¢; < n implies that a(Ky,.,) < a(Kg.y,) from Lemma 3.1.
We have proved that (b) = (¢). That (¢) = (a) follows from Proposition 2.3. O

The results of Theorem 3.2 easily extends to backward products. By contrast the strong
ergodicity property (13) below is specific to backward products.

Theorem 3.3 (backward products) The following assertions are equivalent.

(a) For every k > 1, there exists (WMp.)n>k € EN such that, for every n > k, mpp < Ko,
and such that limy, | K,.x — mp.k|| = 0.

(b) There exists a strictly increasing sequence ({);>1 of positive integers such that we have
2]21 a(Qj) = +oo with Q; defined by Q; := Ky, ,, 1.,

(c) Yk > 1, lim, a(K,x) = 1.

Moreover, for any sequence (Wy.k)n>k € EN satisfying Condition (a), the following strong
ergodicity property holds true: there exists (m)k>1 € PN such that

Vk > 1, lim Hmn;k — 7Tk|| = lim ||Knk — 7TkH =0. (13)
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Theorem 3.3, which extends the statement | , Th. 4.18] to general Markov kernels, is
new to the best of our knowledge. Note that the possibility of considering block-products in
Condition (b) of both Theorems 3.2-3.3 may be relevant. The equivalence between (a), (b)
and (¢) in Theorem 3.3 can be established exactly as in Theorem 3.2. The strong ergodicity
property (13) follows from the next lemma.

Lemma 3.4 Let (My.5)n>k € EN satisfying Assertion (a) of Theorem 3.3. Then there exists
(Th)k>1 € PN such that

1
Vk > 1, vn > k‘, max (||mnk, — 7Tk|| y §||Knk — 7Tk||) < ||Knk: — mnkH (14)

Proof. Let k > 1 be fixed and let ¢ > p > k. Then
Mg — Mpul| < lmga — K|l + [ Kgie — mpuel| < [[mge — Koapl| + [1Kpe — mpue| (15)

from Kg.p —myp = K- Kp1 - (Kpy —mp) and || K| = 1. We deduce from the assumption
that (mp.x)n>k is a Cauchy’s sequence in the Banach space M of finite signed measures
on (X, X) equipped with the total variation norm. Consequently the sequence (my.x)n>k
converges in M to some 1, € M. When ¢— +oo, (15) gives: Vp > k, |7 — mpy| <
|Kpx — mpi|. Then (14) follows from || K,k — 7kl < [|[Kpk — mpk]| + [|mps — il That
T, € P is obvious since my, is the limit of Markov kernels (thus 7 > 0 and m,(X) =1). O

Remark 3.5 (Finite case and link with Seneta’s results) Seneta introduced in [ ,
Th. 4.8] the notion of proper coefficients of ergodicity to obtain a necessary and sufficient
condition for the forward products of finite stochastic matrices to be weakly ergodic (see (16)).
The same holds true in [ , Th. 4.18] for the backward products, with the additional well-
known fact that weak and strong ergodicity properties are equivalent in this case. Actually, in
the matriz case, Theorems 3.2 and 3.3 corresponds to the statements |[. , Th. 4.8 and 4.18]/
in terms of Doeblin’s coefficient of ergodicity. Indeed, if K = (K (i,7))1<i,j<d 15 a stochastic
d x d—matriz, then the real number a(K) defined in (2) reduces to a(K) = Z?:1 a;(K) with
a;(K) :=minj—1 4 K(i,7). Then Doeblin ergodicity coefficient of K in [ | corresponds
to b(K) =1—«a(K). Let (Kj)i>1 be any sequence of stochastic d x d—matrices. According to
/ , Def. 4.4], the weak ergodicity condition for forward products is

VEk>1, Vi, j=1,....d, lim |Kpn(i,j) — Kpn(i',j)| =0, (16)
n — +o0o
where Ky, := (Kpn(4,5))1<ij<d- This condition is clearly equivalent to Condition (a) of

Theorem 8.2 in the matriz case. The same conclusions hold true for backward products of
stochastic d X d—matrices, and the equivalence between weak and strong ergodicity properties
is nothing else but the last assertion of Theorem 3.3. A proof of [. , Th. 4.8] only based
on the contraction property of the Doeblin ergodicity coefficient b(-) is addressed in [ .
This provides a proof of the weak ergodicily characterization given in Doeblin’ work [ |
without proof (see [ /). Our method provides another alternative way to establish | ,
Th. 4.8] via Doeblin’s coefficient, and to prove [ , 4.18] by the way.

Remark 3.6 Although Theorems 8.2 and 3.8 are extensions of the matriz case, we point out
that when X is infinite, none of the three equivalent conditions (a) (b) (c) in Theorems 3.2 is
known to be equivalent to the following weak ergodicity condition

Vk > 1, lim sup sup ‘(Kknf)(x) — (Kk;nf)(:z:/)} =0 (17)
7 (@) €X? || flloo <1
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which is a natural extension of (16). As mentioned in |[. , p. 178], Condition (a) of
Theorem 8.2 clearly implies that (17) holds. That (17) implies any of the three conditions
(a) (b) (¢) of Theorem 3.2 is an open question. Let us mention that in [ , | the
weak ergodicity property (17) is proved to be equivalent to the following condition: Vk >
1, I n)n>k € PN lim,, | Kk:n — Vil = 0. However this condition is quite different from
Conditions (a) of Theorems 3.2 since vy is a probability measure which does not satisfy
Vi < Ky @n general. By the way finding a probability measure vy, satisfying the above
hypothesis of [ , | is a difficult issue in practice.

4 Complementary results on the rate of convergence

When the sequences (M., )n>k € EN or (Myp)n>k € Y in Theorems 3.2 and 3.3 are computed
thanks to Formulas (9)-(10), then the norm equality (11) provides an accurate control of
Kk, — Mp.p||.- This is illustrated in Proposition 4.1 and Theorem 4.2 below.

Proposition 4.1 Let (K;)j>1 € KV be such that ag = inf;>; a(K;) > 0. Let ¢ € (0,ap).
Then for every k > 1 there exist sequences (fgn)n>k € EN and (Hn:k )n>k € EN such that

Vn >k K = il < (1= )" and [ Ko — gl < (1= )" (18)
Moreover the following property holds true for backward products
Vk > 1, Vn >k, K — mel < 201 — ag)" ! (19)
where (T)k>1 € PN is the sequence of Theorem 8.3 associated with the pi,.;’s.

Similar results to (18) are obtained in | | when {Kj, j > 1} is a finite set of finite
stochastic matrices. The results of | | are extended in | | to the case when {Kj, j >
1} is a compact set of finite stochastic matrices. In the homogeneous case Property (19) is
a well-known result (e.g. see | ). In the non-homogeneous case Property (19) is proved
in | | when X is finite. The statement for a complete separable metric space X is stated
in | | with the indication that a proof could be provided by using an iterated function
system. Note that the properties (18) and (19) are obtained for general state spaces and
without any topological assumption on the set {K;, j > 1}.

Proof. To simplify assume that k = 1. For every j > 1 there exist a; € [¢, ] and v; € P
such that K; > ajv;. Using 0,(j) = j and o,(j) = n — j + 1 respectively, Formula (10)
can be used to define (p1.m)n>1 € EN and (Hn:1)n>1 € EN. Inequalities in (18) follow from
the norm equality (11) since ¢ < aj. To prove (19), note that the second inequality of (18)
and Property (14) applied to the sequence (pn:1)n>1 give: V& > 1, || Ky — w1 < 2(1 —¢)™
Inequality (19) then holds since c is arbitrarily closed to «p. U

As an application of Assertion (a) of Theorem 3.2, the following statement extends to gen-
eral Markov kernels the result of | | concerning forward products of stochastic matrices,
see Remark 4.4.

Theorem 4.2 Let K € K be strongly ergodic, namely

dr e P, dc € (0,+), 36 € (0,1), Vm>1, ||K™ —7| <cp™. (20)



Let (K,)p>1 € KN be such that lim,, | K, — K|| =0 and
dag € (0, 1), dig > 1, Vi > 1y, Oz(KZ) > Q. (21)
Then the following uniform convergence holds:

li Ko, — 7| = 0. 29
ngrgwigrfll kiktn — 7| (22)

More precisely there exists d € (0,4+00) such that for all k > 1, n > ig and m > 1
1K kiktntm — 7 < d(1+ (1 —ag)™) (1 —ap)" +my, +cf™, (23)
with 7y := SUpPj>p4q [Kn — K]

Proof. Note that ), a(Kj) = +oo from Assumption (21). It follows from Assertion (a)

of Theorem 3.2 that, for every k > 1, there exists (ftk k+n)n>1 € EN such that, for every n > 1,
Mk k+n < Kk’:k’-l-na and such that

lim Appin =0 where Appin = |Kpkin — ik ptnll-
n — +0o

Actually the sequence (fik kyn)n>k € EN is provided by Theorem 2.2, from which we deduce
the following inequality by using (21)

VE > 1, ¥n>ig, Apgin <dip (1—ag)" with di = (1 —ag)' 7. (24)
Note that pig gyn - T = fk ptn(1x) 7. We have for n,m > 1

Mk k+n+m — Mk,k—i—n(lX) I (th—i—n—‘rm - Kk::k—i—n—i—m) + Kk:k-l—n : (Kk:—i—n—i-l:k’—i-n—i-m - Km)
+ (Kk:k+n - ,uk,k—i-n) K™+ i, k+n (Km - 77)-

Moreover an easy induction based on the triangular inequality gives

Vi>1, Vm>1, ||Kijrigm — K™ <m~y with v := sup [|K; — K.
Jj>i+1

Thus: Vk,n,m > 1, || Kitnttkintm — K™ < m~y, since ygin < v,. From these remarks
and from (20) and (24) we deduce that for all kK > 1, n > ig and m > 1

bk otntm — B orn (1) 7| < dig (1= )™ +myn + diy (1— )" + ¢ 8™
Next observe that
VeE,n>1, 1= pigpan(1x) = [ Kikgnlx = e knlxlloo = |Krken — i ptnl = Drksn
since Kp.p+n — ik k+n = 0. Consequently we have for all £ > 1, n > ip and m > 1
[ttt tnm = Hiegorn (L) 7| 4[] (e (130) — 1) |

| e o-tmtm — He ot (1) | + 1 — g oy (1)
di, (1— ag)n+m +my, +2d;, (1—ap)" +cp™

H:ulc,k—I—n-‘rm - 77”
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from which we deduce that

HKk’Zk’—i-n-i—m - Nl@k—l—n—l—m” + ||,Uk;,k;+n+m — 7I‘||
2d;, (1— o)™ ™ +myn +2d;, (1—0ag)" +c¢f™  (25)

1 Kk:ktngm — 7| <
<

This proves (23). Now let € > 0. First fix mg > 1 such that ¢5™0 < /2. Then
dng > ig, Yn >mng, 2d;, (1 — Oéo)nerO +moyn +2di, (1— ap)" <e/2

since ap € (0,1] and lim, 7y, = 0 by the assumption lim, |K,, — K| = 0. It follows that:
Vg > mo +no, Yk > 1, ||Kpptq — || < . This proves (22). O

Remark 4.3 If Assumption (21) of Theorem 4.2 is replaced with the following one

ds > 1, dig > 1, lilf a(Ki3+1 .- 'Kiers) > 0,
i>ig

then the results of Theorem 4.2 can be extended by considering suitable block-products. More
precisely the proof of Theorem 4.2 applies to the sequence (Kjl-)izo defined by K]' = Kist1lists
since K* is strongly ergodic and lim,, || K], — K*|| = 0.

Remark 4.4 When (Ky)n>1 15 a sequence of infinite stochastic matrices (i.e. X =N), Theo-
rem 4.2 is proved in [ | without condition (21). Assumption (21) is not required in that
case because the map «(-) is easily proved to be lower semi-continuous on the metric space
(K, d), with d defined by: V(K,K') € K?, d(K,K') = |K — K'||. Therefore if a:= a(K) > 0,
then Assumption (21) holds true for any ag € (0, ) from the assumption lim, || K, — K| =0
and from the lower semi-continuity of the map a(-) since liminf, a(K,) > a(K). Ifa(K) =0,
the proof of Theorem 4.2 can be adapted by considering suitable block-products of some (fized)
length. Indeed it follows from the strong ergodicity of K that lim, a(K™) = 1. Thus:
ds > 1, «(K?®) > 1/2. From the assumption lim, ||K, — K|| = 0, there exists iyx > 1 such
that, for every i > iy, a(Kisy1 - Kisys) > 1/4 since lim; || Kis41 -+ Kis+s — K*|| = 0 and
a(-) is lower semi-continuous. Then, as already mentioned in the previous remark, the proof
of Theorem 4.2 can be applied to the sequence (KJ'-)Z-ZO defined by K} = Kist1ists-

5 Applications to products of random Markov kernels

Let (Kj)j>1 be a sequence of random variables (r.v.) defined on some probability space
(Q, F,P) and taking their values in K. For the sake of simplicity, if n > k > 1, we still denote
by K., and K,,.; the following /C-valued random variables:

n k
Vw e Q, Kpp(w) = H Kj(w) and Kpp(w)= H Kj(w).
j=k j=n

If we Qis such that a(Kg.,(w)) > 0, then it follows from the definition of a(Kj.,(w))
that, for every a € (0, a(Kg.,(w)), there exists ag.,(w) € [a, @(Kg.pn(w))] and v, (w) € P
such that K., (w) > agp(w)vkn(w). The previous proofs are compatible with the present
random context assuming that a choice may be done so that the maps w — ag.,(w) and
W — Vpp(w) define random variables from (£2, F) to [0, 1] and to P respectively. Note that
these assumptions hold in the finite state space case.
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Actually the use of Doeblin’s coefficient seems to be quite relevant in this random context
since, as shown by the next theorem which provides necessary and sufficient conditions for
the convergence of the forward/backward random products when the sequence (Kj);j>1 is
assumed to be independent and identically distributed (i.i.d.).

Theorem 5.1 If (K;)j>1 is .i.d. then

1. (forward products) the two following statements are equivalent

(a) there exists an integer number ¢ > 1 such that P(a(Kl:q) > O) >0

(b) for every k > 1, there exists a sequence (WM., )n>k of E-valued r.v. such that we have
P—almost surely: ¥Yn > k, mg., < K., and lim, ||Kg., — mg.,|| = 0.

2. (backward products) the two following statements are equivalent

(a) there exists an integer number ¢ > 1 such that P(a(Kgq1) > 0) > 0,

(b) There exists a sequence (m)k>1 of P-valued r.v. such that we have P—almost surely:
Vk 2 1, hmn HKnk - 7TkH = 0.

To the best of our knowledge, the results in Theorem 5.1 and in Proposition 5.2 below are new,
even in the finite case. When the K’s are r.v. taking their values in the set X; of stochastic
d x d—matrices for some d > 1, Assertion (1b) is a well-known result under the following
stronger assumptions, see for instance [ |: the Kj’s are i.i.d and P(K; € K;) > 0, where
KC; denotes the subset of K4 composed of matrices with strictly positive entries. Note that
the assumption P(K; € £)) > 0in | | is more restrictive than P(a(K7) > 0) > 0 since
K, e /C:; = Oé(Kl) > 0.

Proof. Assume that (1a) holds true: for some g > 1, P(a(Klzq) > 0) > 0. For every j € N*
define: Q; = Ky(j_1)41.4;- The sequence (Q;);j>1 is i.i.d. and we have P(a(Q1) > 0) > 0 by
hypothesis. From P(a(Q1) > 0) > 0, there exists p > 1 such that P(a(Q1) > 1/p) > 0. Thus
> j>1 P(a(Qj)) = 1/p) = +oo since the Q;’s are i.d.. Let Qo = Myp>1Uj>n[a(Q;) > 1/p]. From
the independence of the events [a(Q;) > 1/p], j > 1, the Borel-Cantelli lemma ensures that
P(Q0) = 1 so that }_,~; a(Q;) = +oo P—a.s. Then Property (1b) follows from Theorem 3.2.

Now assume that Vg > 1, a(Kiy) = 0 P—a.s.. Define QO := ﬁqzl[a(Klzq) = O]. Then
P(2y) =1, and Vw € 4, Vg > 1, a(Ki.4)(w) = 0. It follows from Assertion (c) of Theorem 3.2
that Assertion (1) of Theorem 5.1 does not hold (in fact, for every w € €, the expected
conclusion for the sequence (Ky.,(w)), does not hold).

Equivalence (2a) < (2b) can be proved similarly from Theorem 3.3. O

Let us propose alternative assumptions to obtain that Zj21 a(K;) = +oo P—ass., so that
the statements (1b) and (2b) of Theorem 5.1 hold true.

Proposition 5.2 Statements (1b) and (2b) of Theorem 5.1 hold true when any of the two
following conditions is fulfilled:
(i) the r.v. (Kj)j>1 are pairwise independent and i.d., and P(o (K1) > 0) > 0.

(i1) (K;)j>1 is stationary, (a(K;))j>1 is ergodic, and P(a (K1) > 0) > 0.

11



Proof. From Theorems 3.2-3.3 it is sufficient to prove that any of the two sets of assumption
(@) or (ii) ensures that >~ a(Kj) = +oo P—a.s. Under Assumption (i) such a convergence
can be obtained as in the proof of (1a) = (1b) in Theorem 5.1: replace @); with K; and apply
the Borel-Cantelli lemma for pairwise independent r.v.. Under Assumption (i) note that
the sequence (a(;));>1 is stationary and ergodic. Then we obtain that .-, a(Kj;) = +oo
P—a.s. under the assumption P(a(K1) > 0) > 0 from the strong law of large numbers for

ergodic stationary sequences. O
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