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Abstract

The asymptotic of products of general Markov/transition kernels is investigated using
Doeblin's coe�cient. We propose a very general approximating scheme as well as a
convergence rate in total variation of such products by a sequence of positive measures.
These approximating measures and the control of convergence are explicitly de�ned from
the two parameters in the minorization condition associated with the Doeblin coe�cient.
This allows us to extend various standard convergence results to general Markov chains
and to propose a new result on forward/backward products of random Markov kernels.

AMS subject classi�cation : 60J05, 60F99, 60B20

Keywords : Non-homogeneous Markov chains, Doeblin's coe�cient

1 Introduction

There is a large literature on the asymptotic behaviour of non-homogeneous Markov chains.
A main objective is to get convergence properties as well as rate of convergence of stochas-
tic algorithms based on general Markov chains as, for instance, in Markov search for opti-
mization or in stochastic simulation. Such an issue require to analyse various products of
transition kernels of the underlying Markov chain. In this paper the asymptotic of products
of Markov/transition kernels is investigated using Doeblin's coe�cient. Let us introduce the
basic material relevant to the description of the main result of this paper (Theorem 3.1). Let
(X,X ) be a measurable space. We denote by K the set of all the Markov kernels on (X,X ),
and by P the set of all the probability measures on (X,X ). If K ∈ K and if (a, ν) ∈ [0, 1]×P,
we write K ≥ a ν when the following condition holds:

∀(x,A) ∈ X×X , K(x,A) ≥ a ν(A). (1)

Obviously every K ∈ K satis�es (1) with a = 0. Doeblin's coe�cient α(K) of any K ∈ K is
de�ned as in [LC14]

α(K) := sup
{
a ∈ [0, 1] : ∃ν ∈ P, K ≥ a ν

}
. (2)
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When α(K) ∈ (0, 1], K is said to satisfy the so-called minorization property [RR04]. We
denote by E the set of all the positive measures µ on (X,X ) such that µ(X) ≤ 1. In other
words µ ∈ E if there exists (b, β) ∈ [0, 1]×P such that µ = bβ. Let (B, ‖·‖∞) denote the space
of bounded measurable real-valued functions on (X,X ), equipped with its usual supremum
norm: ∀f ∈ B, ‖f‖∞ := supx∈X |f(x)|. Let (L(B), ‖ · ‖) be the Banach space of all the
bounded linear operators on B where ‖ · ‖ denotes the operator norm on L(B) de�ned by

∀T ∈ L(B), ‖T‖ := sup
{
‖Tf‖∞, ‖f‖∞ ≤ 1

}
.

Note that if T is non-negative (i.e. f ≥ 0 ⇒ Tf ≥ 0) then ‖T‖ = ‖T1X‖∞. Throughout the
paper K ∈ K is identi�ed with its functional action on B (still denoted by K) de�ned by

∀f ∈ B, ∀x ∈ X, (Kf)(x) :=

∫
X
f(y)K(x, dy).

Similarly any element µ ∈ E acts on B according to:

∀f ∈ B, µf = µ(f)1X where we shortly set µ(f) :=

∫
X
f dµ.

Obviously the maps f 7→ Kf and f 7→ µf are in L(B). Finally, if (A,B) ∈ K2 then A · B
denotes the Markov kernel on (X,X ) de�ned by the product of A by B, which is identi�ed
with its action A ◦B on B (to simplify we only use the notation A ·B).

The main contribution of this paper is the following result (Theorem 3.1). Let (Kj)j≥1 ∈
KN and, for every j ≥ 1, let (aj , νj) ∈ [0, 1] × P be chosen for Kj satisfying Inequality (1).
For every n ≥ 1 let σn be a permutation on the �nite set {1, . . . , n}, and introduce

Kσn :=

n∏
j=1

Kσn(j) and µσn := Kσn −
n∏
j=1

(
Kσn(j) − aσn(j)νσn(j)

)
. (3)

Then, for every n ≥ 1, we have µσn ∈ E , µσn ≤ Kσn and the following assertions are equivalent:

(a)
∑
i≥1

ai = +∞.

(b) ∃(σn)n≥1, limn ‖Kσn − µσn‖ = 0.

(c) ∀(σn)n≥1, limn ‖Kσn − µσn‖ = 0.

The basic norm equality ‖Kσn − µσn‖ =
∏n
i=1(1 − ai) from Lemma 2.1 is central to derive

such statements (speci�cally, that statement (b) implies statement (c)). As a result, the stan-
dard cases of forward/backward products are investigated in Theorem 4.1 and Theorem 4.2
respectively. Actually, when X is �nite (i.e. each Ki is a d × d−stochastic matrix for some
d ≥ 1), condition of type (a) applied to some block-matrices is known to be a necessary
and su�cient condition for the forward/backward products to be weakly ergodic, see [Sen81].
Mention that Seneta's proof involves several proper ergodicity coe�cients, and that a proof
only based on Doeblin's coe�cient is addressed in [CL10]. When X is a general measurable
space, Condition (a) seems to be just su�cient for the weak ergodicity of forward products
to hold true, see [LC14]. Actually, with the above notations, the weak ergodicity condition
writes as follows

lim
n→+∞

sup
(x,x′)∈X2

sup
‖f‖∞≤1

∣∣(Kσnf)(x)− (Kσnf)(x′)
∣∣ = 0.
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In our work this condition is replaced with Condition (b), which implies that

dTV
(
Kσn , E

)
:= inf

µ∈E
sup
x∈X
‖Kσn(x, ·)− µ(·)‖TV −→ 0 when n→+∞, (4)

where for any signed measure β on (X,X ) we denote by ‖β‖TV := sup|f |≤1
∣∣ ∫

X f dβ
∣∣ its total

variation norm. The weak ergodicity property directly implies that limn dTV
(
Kσn ,P

)
= 0.

However the possibility in (4) of considering as a �rst step the distance with respect to the
set E (in place of P) seems to provide much more �exibility in the proofs, knowing that
as a second step the positive measure µσn in the above properties (b)-(c) clearly satis�es
limn dTV(µσn ,P) = 0. More speci�cally, the �rst interest of our approach is that Condition (b)
is more explicit than the weak ergodicity condition, since the above sequence (µσn)n ∈ EN
is simply de�ned from the kernels Kj and from the elements of the associated minorization
conditions. The second interest is that Condition (b) can be proved to be equivalent to
Condition (a), contrarily to weak ergodicity (excepted in �nite case). The third interest is
that the above norm equality gives an accurate control of ‖Kσn − µσn‖, and consequently of
dTV
(
Kσn , E

)
.

This new approach allows us to extend some classical results on products of stochastic
matrices to general Markov kernels via very simple proofs (even simpler than most of the
former ones known in the �nite case). For instance, Corollaries 2.1 and 2.2 simply extend
the results of [Ste08]. Similarly Corollary 4.1 generalizes the result of [HIV76] to the case of
general state spaces. Our approach is also relevant to study the products of random Markov
kernels. In particular simple criteria are presented in Corollary 5.2 for the convergence of
the forward/backward products in the case when (Kj)j≥1 is an independent and identically
distributed sequence of random Markov kernels. To the best of our knowledge the results
obtained in this random context (Section 5) are new too, even in the �nite state space case.

The paper is organized as follows. The basic Lemma 2.1 for analysing the products of
Markov kernels as well as some direct consequences are presented in Section 2. The main
contribution of the paper on the convergence of products of Markov kernels (Theorem 3.1)
is proved in Section 3. The speci�c cases of backward and forward products are studied in
Section 4. Applications to products of random Markov kernels are addressed in Section 5.

2 A key lemma

Let us consider any p ∈ N∗ and any family (Tj)1≤j≤p ∈ Kp. For every 1 ≤ j ≤ p, let
aj ∈ [0, α(Tj)] and νj ∈ P such that Tj ≥ ajνj . Set

Tp :=
n∏
j=1

Tj and µp := Tp −
n∏
j=1

(
Tj − ajνj

)
(5)

(here µp is de�ned as a real-valued kernel on (X,X), or as an element of L(B)). Note that

‖Tp − µp‖ ≤
p∏
j=1

‖Tj − ajνj‖ =

p∏
j=1

(1− aj)

since ‖Tj − ajνj‖ = ‖(Tj − ajνj) · 1X‖∞ from Tj − ajνj ≥ 0 and (Tj − ajνj) · 1X = (1− aj)1X.
Since any �nite product of nonnegative kernels is a nonnegative kernel, this inequality is
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actually an equality∥∥Tp − µp
∥∥ =

∥∥(Tp − µp) · 1X
∥∥ =

∥∥ p∏
j=1

(Tj − ajνj) · 1X‖ =

p∏
j=1

(1− aj) (6)

and this will be crucial to get Theorem 3.1, the main result of this paper.

Lemma 2.1 The element µp given in (5) belongs to E (i.e. ∃(b, β) ∈ [0, 1]×P, µp = bβ) and
we have µp ≤ Tp. Moreover Equality (6) holds true, that is ‖Tp − µp‖ =

∏p
j=1(1− aj).

Proof. First consider µp in (5) as an element of L(B), and note that 0 ≤ µp ≤ Tp. Indeed

Tp − µp =

p∏
j=1

(Tj − ajνj) ≥ 0 and
p∏
j=1

(Tj − ajνj) ≤ Tp

since, for every j = 1, . . . , p, we have 0 ≤ Tj − ajνj ≤ Tj . Next, in order to prove that µp ∈ E
holds true, let us proceed by induction on the integer p. If p = 1, then µ1 = a1ν1, so that
µ1 ∈ E . Now assume that the conclusion µp ∈ E in Lemma 2.1 holds true for some p ≥ 1. Let
(Tj)1≤j≤p+1 ∈ Kp+1 and, for every 1 ≤ j ≤ p + 1, let aj ∈ [0, α(Tj)] and νj ∈ P such that
Tj ≥ ajνj . Let Tp and µp be given in (5) and introduce

Tp+1 = Tp · Tp+1 µp+1 = Tp+1 −
p+1∏
j=1

(
Tj − ajνj

)
.

We know that 0 ≤ µp+1 ≤ Tp+1 from the above remark. Now note that

µp+1 = Tp+1 − (Tp − µp) ·
(
Tp+1 − ap+1νp+1

)
so that

µp+1 = ap+1νp+1 + µp · Tp+1 − ap+1µp · νp+1. (7)

By induction assumption we know that there exists µp ∈ E such that ∀f ∈ B, µpf = µp(f)1X.
Then Equality (7) rewrites as

µp+1f = µp+1(f)1X with µp+1(f) = ap+1νp+1(f) + µp(Tp+1f)− ap+1µp(1X)νp+1(f). (8)

Here µp+1(·) is de�ned as a signed measure on (X,X ). However it follows from 0 ≤ µp+1 ≤
Tp+1 that µp+1(·) is in fact a positive measure on X such that µp+1(X) ≤ 1, so that µp+1 ∈ E .

�

Remark 2.1 The statements of Lemma 2.1 are new in the framework of non-homogeneous
products of Markov kernels to the the best of our knowledge (even if X is �nite). They can
be thought of as a generalization of a speci�c decomposition of the �nite product of a kernel
satisfying Doeblin's condition. A detailed discussion is postponed to Remark 2.4.

Let us provide a �rst simple application of Lemma 2.1. Let N be any subset of K such
that α0 := infK∈N α(K) > 0. For every n ≥ 1, let (Kn,j)1≤j≤n ∈ N n. Let c ∈ (0, α0) be
�xed. Then, for every n ≥ 1 and for every 1 ≤ j ≤ n, there exists an,j ∈ [c, α0] and νn,j ∈ P
such that Kn,j ≥ an,jνn,j . De�ne

∀n ≥ 1, Tn :=
n∏
j=1

Kn,j and µn := Tn −
n∏
j=1

(
Kn,j − an,jνn,j

)
.
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Corollary 2.1 Under the previous assumptions, we have µn ∈ E, µn ≤ Tn. Moreover
limn ‖Tn − µn‖ = 0 with ∀n ≥ 1, ‖Tn − µn‖ =

∏p
j=1(1− an,j) ≤ (1− c)n.

Let us give an application to the convergence of backward products of Markov kernels.

Corollary 2.2 Let (Kj)j≥1 ∈ KN be such that α0 := infj≥1 α(Kj) > 0, and for every n ≥ 1
let us introduce the backward product Tn :=

∏1
j=pKj. Then there exists π ∈ P such that

limn ‖Tn − π‖ = 0 with moreover ∀n ≥ 1, ‖Tn − π‖ ≤ 2(1− α0)
n.

Proof. Let c ∈ (0, α0) be �xed, and for every j ≥ 1, let aj ∈ [c, α0] and νj ∈ P such that
Kj ≥ ajνj . De�ne

∀n ≥ 1, µn = Tn −
1∏
j=p

(
Kj − ajνj

)
.

From Corollary 2.1 applied to N = {Kj , j ≥ 1} it follows that ‖Tn − µn‖ ≤ (1 − c)n. Let
q > p ≥ 1. Then

‖µq − µp‖ ≤ ‖µq −Tq‖+ ‖Tq − µp‖ ≤ ‖µq −Tq‖+ ‖Tp − µp‖ (9)

from Tq − µp = Kq · · ·Kp+1(Tp − µp) and ‖Kj‖ = 1. Then (µn)n≥1 is a Cauchy's sequence
in the Banach spaceM of �nite signed measures on (X,X ) equipped with the total variation
norm. Consequently the sequence (µn)n≥1 converges inM to some π ∈M. From ‖Tn−π‖ ≤
‖Tn − µn‖+ ‖µn − π‖, we deduce that limn ‖Tn − π‖ = 0. That π ∈ P is then obvious since
π is the limit of Markov kernels (thus π ≥ 0 and π(X) = 1). Finally it follows from (9) and
from limq µq = π that ∀p ≥ 1, ‖π − µp‖ ≤ (1 − c)p. Hence ‖Tn − π‖ ≤ 2(1 − c)n. The last
inequality of Corollary 2.2 then holds since c is arbitrarily closed to α0.

�

Remark 2.2 Let N = {K1, . . . ,Kp} be a �nite set of stochastic d × d−matrices for some
d ≥ 1. The following statement is proved in [Wol63]: if any stochastic matrix A obtained
as a �nite product of matrices in N (repetitions permitted) is aperiodic and irreducible, then
for every ε > 0, there exists an integer number nε ≥ 1 such that for all n ≥ nε every
stochastic matrix B = (bi,j)1≤i,j≤d obtained as a product of n matrices in N (repetitions
permitted) satis�es : maxj maxi1,i2 |bi1,j − bi2,j | < ε. Corollary 2.1 provides this conclusion
when the above aperiodicity/irreducibility hypothesis of [Wol63] is replaced with the following
one : ∀i = 1, . . . , p, α(Ki) > 0. Note that this assumption cannot be compared with that of
[Wol63] since an aperiodic and irreducible stochastic matrix A may satisfy α(A) = 0, while
a stochastic matrix A satisfying α(A) > 0 is not necessarily aperiodic and irreducible. The
result of [Wol63] is extended in [CW08] to the case when N is a compact set of stochastic
d × d−matrices. Note that no topological assumption on N is required in Corollary 2.1 and
that the state space may be general.

Remark 2.3 Corollary 2.2 is proved in [Ste08] when X is �nite. The statement for a complete
separable metric space X is stated in [Ste08]. It is mentioned in [Ste08] that a proof could
be provided by using an iterated function system. Note that our proof via Lemma 2.1 is
quite simple and is valid for general state spaces. The convergence of backward products is
investigated in Theorem 4.1 in a more general setting by relaxing assumption infj≥1 α(Kj) > 0.
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Remark 2.4 (The case of �nite products of a Markov kernel) In the homogeneous case
Corollary 2.2 is a well-known result (e.g. see [RR04]). Actually it can be directly proved us-
ing an explicit computation of µn from the iterates of K − a ν. Indeed let K ∈ K such that
α(K) ∈ (0, 1]. Let a ∈ (0, α(K)] and ν ∈ P such that K ≥ aν. De�ne

∀n ≥ 1, µn := Kn − (K − aν
)n
.

It follows from Lemma 2.1 that µn ∈ E, µn ≤ Kn and that

∀n ≥ 1,
∥∥Kn − µn

∥∥ = (1− a)n. (10)

Since p · µn = µn for any p ∈ P, it follows that π is a K-invariant probability i� π is a
stochastic solution to equation π · (I − (K − µ1)) = µ1. Since

∥∥K − µ1∥∥ = 1 − a ∈ (0, 1)
from (10), we know that the last equation has a unique solution. Let π be the invariant
distribution of K. We deduce from 0 ≤ µn ≤ Kn and from π ·K = π and π · µn = µn that

∀n ≥ 1, 0 ≤ µn ≤ π, that is: ∀f ∈ B, f ≥ 0, 0 ≤
∫
f dµn ≤

∫
f dπ.

Moreover it follows from (10) that

∀n ≥ 1,
∥∥π − µn∥∥ ≤ (1− a)n. (11)

We know from Formula (7) that µ1 = aν and µi+1 = aν + µi.(K − aν) for any i ≥ 1. Then
we obtain by induction that for any i ≥ 1, µi = aν

∑i−1
j=0(K − aν)j. Thus the sequence

(µi)i≥1 is non-decreasing, that is ∀i ≥ 1, µi ≤ µi+1. Note that we have obtained the following
decomposition of the Markov kernel Kn

Kn = aν
n−1∑
j=0

(K − aν)j + (K − aν)n = aν
n−1∑
j=0

(1− a)jSj + (1− a)nSn

where S := (1/(1 − a))(K − aν) is a Markov kernel. Such a decomposition is known for a
Markov kernel K satisfying the Doeblin condition with α(K) ∈ (0, 1] and any a ∈ (0, α(K)]
(e.g. see [LC14]).

3 Convergence of products of Markov kernels

Let Σ be the set of all the sequences σ := (σn)n≥1, where σn is a permutation on the �nite
set {1, . . . , n}. For any (Kj)j≥1 ∈ KN and σ ∈ Σ, let (Kσn)n≥1 ∈ KN be de�ned by

∀n ≥ 1, Kσn :=

n∏
j=1

Kσn(j). (12)

Proposition 3.1 Let (Kj)j≥1 ∈ KN and let σ ∈ Σ. The following assertions are equivalent.

(a) There exists (mn)n≥1 ∈ EN such that ∀n ≥ 1, mn ≤ Kσn, and limn ‖Kσn −mn‖ = 0.

(b) limn α(Kσn) = 1.
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Proof. Assume that Assertion (a) holds true. Write mn = bnβn with (bn, βn) ∈ [0, 1] × P.
Then bnβn ≤ Kσn implies that bn ≤ α(Kσn). Moreover limn bn = 1 from

1− bn = ‖(Kσn −mn)1X‖∞ = ‖Kσn −mn‖.

This gives limn α(Kσn) = 1. Conversely assume that limn α(Kσn) = 1. For every n ≥ 1 there
exists (an, νn) ∈ [0, 1]× P such that

α(Kσn)− 1

n
≤ an ≤ α(Kσn) and anνn ≤ Kσn

from the de�nition of α(Kσn). Moreover we have anνn ∈ E and

‖Kσn − anνn‖ = ‖(Kσn − anνn)1X‖∞ = 1− an

with limn an = 1 since limn α(Kσn) = 1. This gives (a) with mn = anνn. �

In the next statement we consider any (Kj)j≥1 ∈ KN. For every j ≥ 1, let aj ∈ [0, α(Kj)]
and let νj ∈ P be such that Kj ≥ ajνj . If σ ∈ Σ, let (Kσn)n≥1 ∈ KN be given by (12), and
(µσn)n≥1 ∈ EN be de�ned by

µσn := Kσn −
n∏
j=1

(
Kσn(j) − aσn(j)νσn(j)

)
. (13)

Theorem 3.1 For every σ ∈ Σ and for every n ≥ 1, we have µσn ∈ E and µσn ≤ Kσn.
Moreover the following assertions are equivalent:

(a)
∑
j≥1

aj = +∞.

(b) ∃σ ∈ Σ, lim
n
‖Kσn − µσn‖ = 0.

(c) ∀σ ∈ Σ, lim
n
‖Kσn − µσn‖ = 0.

Finally, under any of these three conditions, the following norm equality holds:

∀n ≥ 1,
∥∥Kσn − µσn

∥∥ =

n∏
j=1

(1− aj). (14)

Proof. That µσn ∈ E and µσn ≤ Kσn follow from Lemma 2.1. The equivalences in Theorem 3.1
follow from the next lemma. Note that the condition

∑
j≥1 aj = +∞ does not depend on

σ ∈ Σ. �

Lemma 3.2 Let (Kj)j≥1 ∈ KN and σ ∈ Σ. Then: lim
n
‖Kσn − µσn‖ = 0 ⇔

∑
j≥1

aj = +∞.

Proof. From the norm equality (6) it follows that

∀n ≥ 1,
∥∥Kσn − µσn

∥∥ =

n∏
j=1

(1− aσn(j)),

7



from which we deduce (14). Then the following equivalences hold true

lim
n
‖Kσn − µσn‖ = 0⇐⇒ lim

n→+∞

n∑
j=1

ln(1− aj) = −∞⇐⇒
∑
j≥1

ln(1− aj) = −∞.

Now let us prove that the last condition is equivalent to
∑

j≥1 aj = +∞. Note that

∀x ∈ [0, 1),
−x

1− x
≤ ln(1− x) ≤ −x

from Taylor's formula. Thus
∑

j≥1 aj = +∞ implies that
∑

j≥1 ln(1−aj) = −∞. Conversely
assume that

∑
j≥1 aj < +∞, and set τj = aj/(1 − aj). We have limj aj = 0, thus τj ∼ aj

when j→+∞, so that
∑

j≥1 τj < +∞. Therefore the series
∑

j≥1 ln(1− aj) converges. This
proves Lemma 3.2. �

4 Convergence of forward and backward products

Through this section we consider any sequence (Kj)j≥1 ∈ KN. For every 1 ≤ k ≤ n, set

• Kk:n :=
∏n
j=kKj ; note that Kk:n+1 = Kk:n ·Kn+1 (forward products).

• Kn:k =
∏k
j=nKj ; note that Kn+1:k = Kn+1 ·Kn:k (backward products).

In the next statements, the integer k ≥ 1 has to be seen as �xed, and the sequence of interest
is then, either (Kk:n)n≥k for forward products (Theorem 4.1), or (Kn:k)n≥k for backward
products (Theorem 4.2). The sequences (Kk:n)n≥k and (Kn:k)n≥k are both of the form given
in (12). More precisely, considering k = 1 to simplify, we have K1:n =

∏n
j=1Kσn(j) with

σn(j) = j, while Kn:1 =
∏n
j=1Kσn(j) with σn(j) = n− j + 1. The common basic property of

both backward and forward products with respect to Doeblin's coe�cient is the following.

Proposition 4.1 For every j ≥ 1, the sequences (α(Kj:i))i≥j and (α(Ki:j))i≥j are both non
decreasing.

This proposition easily follows from the next lemma.

Lemma 4.2 Let (K,K ′) ∈ K2. We have α(K) ≤ min
(
α(K ·K ′), α(K ′ ·K)

)
.

Proof. Let (a, ν) ∈ [0, 1] × P be such that aν ≤ K. Then (aν) · K ′ = a(ν · K ′) ≤ K · K ′.
Thus a ≤ α(K ·K ′) since ν ·K ′ ∈ P. Hence α(K) ≤ α(K ·K ′). Similarly we deduce from
K ≥ aν that K ′ ·K ≥ K ′ · (aν) = aν, thus a ≤ α(K ′ ·K). Hence α(K) ≤ α(K ′ ·K). �

Theorem 4.1 (forward products) The following assertions are equivalent.

(a) For every k ≥ 1, there exists (mk:n)n≥k ∈ EN such that, for every n ≥ k, mk:n ≤ Kk:n,
and such that limn ‖Kk:n −mk:n‖ = 0.

(b) There exists an increasing sequence (`j)j≥1 of positive integers such that
∑

j≥1 α(Qj) =
+∞ with Qj de�ned by Qj := K`j :`j+1−1.

(c) ∀k ≥ 1, limn α(Kk:n) = 1.
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In [LC14], Conditions (b) and (c) have been already proved to be equivalent, and to be a
su�cient condition for the weak ergodicity of the sequence (Kj)j≥1 ∈ KN, see Remarks 4.3
and 4.5. That Conditions (b) and (c) are both equivalent to Condition (a) is a new result
to the best of our knowledge. Condition (a) then appears as a suitable alternative to the
weak ergodicity de�nition to study the asymptotic behaviour of forward products of general
Markov kernels. That any of the three conditions of Theorem 4.1 implies the weak ergodicity
property is straightforward by using Condition (a), see Remark 4.3. Moreover note that,
under the assumption

∑
j≥1 α(Kj) = +∞, the sequence (mk:n)n≥k ∈ EN in Theorem 4.1 can

be computed by using the formulas (12)-(13) and that the norm equality (14) provides an
accurate control of ‖Kk:n − mk:n‖. This remark is applied in the forthcoming Corollary 4.1.
Under the more general condition (b) in Theorem 4.1, the same facts hold by considering
suitable block-products (see the proof below). The previous comments obviously extend to
the backward products in Theorem 4.2.

Proof of Theorem 4.1. Assume that Assertion (a) holds. Set `1 = 1. From Proposition 3.1 we
know that limn α(K1:n) = 1. Thus there exists `2 > 1 such that α(K1:`2−1) ≥ 1/2. Similarly
it follows from (a) that there exists `3 > `2 such that α(K`2:`3−1) ≥ 1/2. Iterating this fact
shows that there exists a strictly increasing sequence (`j)j≥1 of positive integers such that,
for every j ≥ 1, α(Qj) ≥ 1/2 with Qj := K`j :`j+1−1, so that

∑
j≥1 α(Qj) = +∞. Conversely

assume that Assertion b) holds. Let k ≥ 1, and let i ≥ 1 such that `i ≥ k. For every j ≥ i, it
follows from the de�nition of α(Qj) that there exists (aj , νj) ∈ [0, 1]× P such that

α(Qj)−
1

j2
≤ aj ≤ α(Qj) and Qj ≥ ajνj .

Then
∑

j≥i aj = +∞. Consequently, by applying Theorem 3.1 to the sequence (Qj)j≥i, we

can de�ne an explicit sequence (µi:n)n≥i ∈ EN such that µi:n ≤ Qi:n and limn ‖Qi:n−µi:n‖ = 0,
where Qi:n = Qi · · ·Qn. To that e�ect use the formulas (12)-(13) in case σn(j) = j with the
sequence (Qj)j≥i ∈ KN and the above sequence (aj , νj)j≥i ∈ ([0, 1]×P)N. Thus limn α(Qi:n) =
1 from Proposition 3.1. Therefore limn α(K`i:n) = 1 since the sequence (α(K`i:n))n≥`i is non
decreasing from Proposition 4.1 and contains the subsequence (α(Qi:n))n≥i. Then we obtain
that limn α(Kk:n) = 1 since k ≤ `i ≤ n implies that α(K`i:n) ≤ α(Kk:n) from Proposition 4.1.
Then Assertion (a) follows from Proposition 3.1 applied to (Kj)j≥k. We have proved that
Conditions (a) and (b) are equivalent. The equivalence between (a) and (c) follows from
Proposition 3.1. �

The results of Theorem 4.1 easily extends to backward products. By contrast the strong
ergodicity property (15) below is speci�c to backward products.

Theorem 4.2 (backward products) The following assertions are equivalent.

(a) For every k ≥ 1, there exists (mn:k)n≥k ∈ EN such that, for every n ≥ k, mn:k ≤ Kn:k,
and such that limn ‖Kn:k −mn:k‖ = 0.

(b) There exists a strictly increasing sequence (`j)j≥1 of positive integers such that
∑

j≥1 α(Qj) =
+∞ with Qj de�ned by Qj := K`j+1−1:`j .

(c) ∀k ≥ 1, limn α(Kn:k) = 1.

Moreover any of these three conditions implies that the following strong ergodicity property
holds: there exists (πk)k≥1 ∈ PN such that

∀k ≥ 1, lim
n
‖Kn:k − πk‖ = 0. (15)
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Proof. The equivalence between (a), (b) and (c) can be established exactly as in Theorem 4.1.
The last assertion of Theorem 4.2 can be proved as in Corollary 2.2: more precisely, for any
�xed k ≥ 1 �xed, prove that (mn:k)n≥k is a Cauchy sequence (proceed as in Corollary 2.2 with
Kn:k, mn:k and πk in place of Tn, µn and π respectively). �

Remark 4.1 (Finite case and link with Seneta's results) Seneta in [Sen81, Th. 4.8.]
introduced the notion of proper coe�cients of ergodicity to obtain a necessary and su�cient
condition for the forward products of stochastic matrices to be weakly ergodic. The same holds
true in [Sen81, Th. 4.18.] for the backward products of stochastic matrices, with the additional
well-known fact that weak and strong ergodicity properties are equivalent in this case. Actually,
in the matrix case, Theorems 4.1 and 4.2 corresponds to the statements [Sen81, Th. 4.8. and
4.18.] when they are stated using Doeblin's coe�cient of ergodicity. More precisely, note that,
if K = (K(i, j))1≤i,j≤d is a stochastic d × d−matrix, then the real number α(K) de�ned in
(2) is given by

α(K) :=
d∑
j=1

αj(K) with ∀j = 1, . . . , d, αj(K) := min
i=1,...,d

K(i, j).

Indeed we clearly have

K ≥ A(K) :=

 α1(K) · · · αd(K)
... · · ·

...
α1(K) · · · αd(K)

 (16)

and any d × d−matrix L having d identical non-negative rows and satisfying L ≤ K is such
that L ≤ A(K). This gives the claimed statement. Recall that Doeblin's ergodicity coe�cient
of K is de�ned in [Sen81] by b(K) = 1−α(K), and that b(·) is a proper coe�cient of ergodicity
according to [Sen81, Chap. 4]. Now let (Kj)i≥1 be any sequence of stochastic d× d−matrices.
The weak ergodicity condition for forward products writes as (see [Sen81, Def. 4.4.])

∀k ≥ 1, ∀i, i′, j = 1, . . . , d, lim
n→+∞

∣∣Kk:n(i, j)−Kk:n(i′, j)
∣∣ = 0, (17)

where Kk:n := (Kk:n(i, j))1≤i,j≤d. Obviously (17) implies that limn ‖Kk:n −A(Kk:n)‖ = 0, so
that the weak ergodicity condition (17) is equivalent to Condition (a) of Theorem 4.1 in the
matrix case. The same holds true for backward products of stochastic d×d−matrices, and the
equivalence between weak and strong ergodicity properties is nothing else but the last assertion
of Theorem 4.2.

Remark 4.2 The possibility of considering block-products in Condition (b) of Theorems 4.1
and 4.2 may be relevant. For instance we can easily �nd stochastic 3×3−matrices A1 and A2

such that α(Ai) = 0 for i = 1, 2, α(A1A2) > 0, and such that the product A1A2 is aperiodic
and irreducible (thus there exists π ∈ P such that limn ‖(A1A2)

n − π‖ = 0). Let (Kj)j≥1 be
de�ned by Kj = A1 if j is odd and Kj = A2 if j is even. Then Condition (a) of Theorem 4.1
is ful�lled since limn ‖Kk:n −mk:n‖ = 0 with mk:n = π if n is even, and mk:n = π · A1 if n is
odd. Note that

∑
j≥1 α(Kj) = 0, but

∑
j≥1 α(K2`−1K2`) = +∞.

Remark 4.3 Theorems 4.1 and 4.2 are extensions of the matrix case, up to the following
fact: none of the three (equivalent) conditions (a) (b) (c) in Theorems 4.1 or 4.2 is known
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to be equivalent to the weak ergodicity condition (excepted in �nite case). More precisely, as
a natural extension of (17), the forward products associated with any sequence (Kj)i≥1 ∈ KN

are said to be weakly ergodic if (see [Ios72])

∀k ≥ 1, lim
n→+∞

sup
(x,x′)∈X2

sup
‖f‖∞≤1

∣∣(Kk:nf)(x)− (Kk:nf)(x′)
∣∣ = 0. (18)

Any of the three conditions (a) (b) (c) of Theorem 4.1 implies that (18) holds true. Indeed, if
Condition (a) of Theorem 4.1 is ful�lled, then it follows from the triangular inequality that,
for every (x, x′) ∈ X2 and for every f ∈ B such that ‖f‖∞ ≤ 1∣∣(Kk:nf)(x)− (Kk:nf)(x′)

∣∣ ≤ 2‖Kk:n −mk:n‖

from which we deduce (18). That the weak ergodicity property implies any of the three condi-
tions (a) (b) (c) of Theorem 4.1 is an open question. In this regard note that Property (18)
stated with any �xed x′ = a ∈ X implies that limn ‖Kk:n−mk:n‖ = 0 with mk:nf = (Kk:nf)(a).
However, since such a mk:n is a probability measure, the condition mk:n ≤ Kk:n is rather re-
strictive (i.e. in general there is no a ∈ X such that (Kk:nf)(a) ≤ Kk:n). The same remarks
hold for backward products.

Remark 4.4 In [Paz70] (countable state space) and [Ios72] (general state space) it is proved
that the weak ergodicity property (18) is equivalent to the analog of Condition (b) of Theo-
rem 4.1, where α(·) is replaced with β(·) de�ned by

∀K ∈ K, β(K) := 1− δ(K) with δ(K) = sup
(x,x′)∈X2

sup
‖f‖∞≤1

∣∣(Kf)(x)− (Kf)(x′)
∣∣.

In [Paz70, Ios72] the weak ergodicity property (18) is also proved to be equivalent to the
following condition :

∀k ≥ 1, ∃(νk,n)n≥k ∈ PN, lim
n
‖Kk:n − νk,n‖ = 0. (19)

The equivalence between (18) and (19) is straightforward. Indeed, if (18) holds (i.e. ∀k ≥
1, limn δ(Kk:n) = 0), then (19) is satis�ed with νk,n(f) = (Kk:nf)(a) for any �xed a ∈ X.
That (19) implies (18) is obvious from the triangular inequality. However it is worth noticing
that Condition (19) is much less relevant than Condition (a) of Theorem 4.1 since the νk,n's in
(19) are probability measures (�nding νk,n satisfying (19) is a di�cult issue), while the mk:n's
in Condition (a) of Theorem 4.1 are provided by Theorem 3.1, with moreover an explicit
estimate of ‖Kk:n −mk:n‖ due to (14).

Remark 4.5 If (K,K ′) ∈ K2 then α(K · K ′) ≥ α(K)α(K ′). Indeed let (a, ν) ∈ [0, 1] × P
and (a′, ν ′) ∈ [0, 1]×P be such that aν ≤ K and a′ν ′ ≤ K ′. Then (aν) · (a′ν ′) ≤ K ·K ′. This
gives aa′ν ′ ≤ K ·K ′ since (aν) · (a′ν ′) = aa′ν ′. Hence aa′ ≤ α(K ·K ′), from which we deduce
the desired inequality. Setting b(K) = 1−α(K) as a natural extension of Doeblin's ergodicity
coe�cient (see Remark 4.1), we obtain that:

∀(K,K ′) ∈ K2, b(K ·K ′) ≤ b(K) b(K ′). (20)

Surprisingly the contraction property (20) is not used in our work, contrarily to the papers
[CL10, LC14] where (20) plays an important role. More precisely, in the �nite case, Property
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(20) is used in [CL10] to propose a new proof of [Sen81, Th. 4.8.] in the speci�c case of
Doeblin's coe�cient. This corresponds to Doeblin's characterization of weak ergodicity which
has been stated without proof in [Doe37], see [Sen73, pages 509-510] for details about Doeblin's
paper. Note that, in the �nite case, the proof of Theorems 4.1, completed by the straightforward
arguments of Remark 4.1 giving the equivalence with the weak ergodicity property, also provides
a simple alternative way to establish [Sen81, Th. 4.8.] via Doeblin's coe�cient.

As an application of Assertion (a) of Theorem 4.1, the following statement extends to
general Markov kernels the result of [HIV76] concerning forward products (the in�nite matrix
case considered in [HIV76] is discussed in Remark 4.7).

Corollary 4.1 Let K ∈ K be strongly ergodic, namely

∃π ∈ P, ∃c ∈ (0,+∞), ∃β ∈ (0, 1), ∀m ≥ 1, ‖Km − π‖ ≤ c βm. (21)

Let (Kn)n≥1 ∈ KN be such that limn ‖Kn −K‖ = 0 and

∃α0 ∈ (0, 1), ∃i0 ≥ 1, ∀i ≥ i0, α(Ki) > α0. (22)

Then the following uniform (in k ≥ 1) convergence holds:

lim
n→+∞

sup
k≥1
‖Kk:k+n − π‖ = 0. (23)

More precisely there exists d ∈ (0,+∞) such that for all k ≥ 1, n ≥ i0 and m ≥ 1

‖Kk:k+n+m − π‖ ≤ d
(
1 + (1− α0)

m ) (1− α0)
n +mγn + c βm, (24)

with γn := supj≥n+1 ‖Kn −K‖.

Proof. Note that
∑

i≥1 α(Kj) = +∞ from Assumption (22). It follows from Assertion (a) of

Theorem 4.1 that, for every k ≥ 1, there exists (µk,k+n)n≥1 ∈ EN such that, for every n ≥ 1,
µk,k+n ≤ Kk:k+n, and such that

lim
n→+∞

∆k,n = 0 where ∆k,n := ‖Kk:k+n − µk,k+n‖.

Actually the sequence (µk,k+n)n≥k ∈ EN is provided by Theorem 3.1, from which we deduce
the following inequality by using (22)

∀k ≥ 1, ∀n ≥ i0, ∆k,n ≤ di0 (1− α0)
n with di0 := (1− α0)

−i0 . (25)

Note that µk,k+n · π = µk,k+n(1X)π. We have for n,m ≥ 1

µk,k+n+m − µk,k+n(1X)π = (µk,k+n+m −Kk:k+n+m) + Kk:k+n · (Kk+n+1:k+n+m −Km)

+ (Kk:k+n − µk,k+n) ·Km + µk,k+n · (Km − π).

Moreover an easy induction based on the triangular inequality gives

∀i ≥ 1, ∀m ≥ 1, ‖Ki+1:i+m −Km‖ ≤ mγi with γi := sup
j≥i+1

‖Kj −K‖.
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Thus: ∀k, n,m ≥ 1, ‖Kk+n+1:k+n+m −Km‖ ≤ mγn since γk+n ≤ γn. From these remarks
and from (21) and (25) we deduce that for all k ≥ 1, n ≥ i0 and m ≥ 1

‖µk,k+n+m − µk,k+n(1X)π‖ ≤ di0 (1− α0)
n+m +mγn + di0 (1− α0)

n + c βm.

Finally observe that

∀k, n ≥ 1, 1− µk,k+n(1X) = ‖Kk:k+n1X − µk,k+n1X‖∞ = ‖Kk:k+n − µk,k+n‖ = ∆k,n

since Kk:k+n − µk,k+n ≥ 0. Consequently we have for all k ≥ 1, n ≥ i0 and m ≥ 1

‖µk,k+n+m − π‖ ≤
∥∥µk,k+n+m − µk,k+n(1X)π

∥∥+
∥∥(µk,k+n(1X)− 1

)
π
∥∥

≤ ‖µk,k+n+m − µk,k+n(1X)π‖+ 1− µk,k+n(1X)

≤ di0 (1− α0)
n+m +mγn + 2 di0 (1− α0)

n + c βm

from which we deduce that

‖Kk:k+n+m − π‖ ≤ ‖Kk:k+n+m − µk,k+n+m‖+ ‖µk,k+n+m − π‖
≤ 2 di0 (1− α0)

n+m +mγn + 2 di0 (1− α0)
n + c βm. (26)

This proves (24). Now let ε > 0. First �x m0 ≥ 1 such that c βm0 ≤ ε/2. Then

∃n0 ≥ i0, ∀n ≥ n0, 2 di0 (1− α0)
n+m0 +m0 γn + 2 di0 (1− α0)

n ≤ ε/2

since α0 ∈ (0, 1] and limn γn = 0 by the assumption limn ‖Kn − K‖ = 0. It follows that:
∀k ≥ 1, ∀q ≥ m0 + n0, ‖Kk:k+q − π‖ ≤ ε. This proves (23). �

Remark 4.6 If Assumption (22) of Corollary 4.1 is replaced with the following one

∃s ≥ 1, ∃i0 ≥ 1, sup
i≥i0

α(Kis+1 · · ·Kis+s) > 0,

then the results of Corollary 4.1 can be extended by considering suitable block-products. More
precisely the proof of Corollary 4.1 applies to the sequence (K ′j)i≥0 de�ned by K

′
j := Kis+1:is+s

since Ks is strongly ergodic and limn ‖K ′n −Ks‖ = 0.

Remark 4.7 When (Kn)n≥1 is a sequence of in�nite stochastic matrices (i.e. X = N), Corol-
lary 4.1 is proved in [HIV76] without assuming (22). The reason why Assumption (22) is not
necessary in the case X = N comes from the fact that the map α(·) is lower semi-continuous
on the metric space (K, d), with: ∀(K,K ′) ∈ K2, d(K,K ′) = ‖K −K ′‖. First assume that
this property holds and let us explain why Assumption (22) is useless. If α := α(K) > 0, then
Assumption (22) holds true for any α0 ∈ (0, α) from the assumption limn ‖Kn −K‖ = 0 and
from the lower semi-continuity of the map α(·) since lim infn α(Kn) ≥ α(K). If α(K) = 0,
the proof of Corollary 4.1 can be adapted by considering suitable block-products of some
(�xed) length. Indeed it follows from the strong ergodicity of K that limn α(Kn) = 1. Thus:
∃s ≥ 1, α(Ks) ≥ 1/2. From the assumption limn ‖Kn − K‖ = 0, there exists i0 ≥ 1 such
that, for every i ≥ i0, α(Kis+1 · · ·Kis+s) ≥ 1/4 since limi ‖Kis+1 · · ·Kis+s − Ks‖ = 0 and
α(·) is lower semi-continuous. Then, as already mentioned in the previous remark, the proof
of Corollary 4.1 can be applied to the sequence (K ′j)i≥0 de�ned by K ′j := Kis+1:is+s.
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Finally prove that K 7→ α(K) is lower semi-continuous on (K, d) when X = N. Let
K = (k(i, j)(i,j)∈N2 and K ′ = (k′(i, j)(i,j)∈N2. For every (i, j) ∈ N2 we have |k(i, j)−k′(i, j)| ≤
‖K −K ′‖. Thus, for every �xed j ∈ N, we obtained that

| inf
i∈N

k(i, j)− inf
i∈N

k′(i, j)| ≤ ‖K −K ′‖.

It follows that, for every j ∈ N, the function φj : K 7→ infi∈N k(i, j) is continuous on (K, d).
We obtain that α(·) is lower semi-continuous on (K, d) since

α(K) :=
∑
j≥0

φj(K) = sup
n≥0

n∑
j=0

φj(K)

and since, for every n ≥ 0, the function
∑n

j=0 φj is continuous on (K, d).

5 Applications to products of random Markov kernels

Let (Kj)j≥1 be a sequence of random variables (r.v.) de�ned on some probability space
(Ω,F ,P) and taking their values in K. For the sake of simplicity, if n ≥ k ≥ 1, we still denote
by Kk:n and Kn:k the following K-valued random variables:

∀ω ∈ Ω, Kk:n(ω) :=

n∏
j=k

Kj(ω) and Kn:k(ω) =

k∏
j=n

Kj(ω).

If ω ∈ Ω is such that α(Kk:n(ω)) > 0, then it follows from the de�nition of α(Kk:n(ω)) that,
for every a ∈ (0, α(Kk:n(ω)), there exists ak:n(ω) ∈ [a, α(Kk:n(ω))] and νk:n(ω) ∈ P such that
Kk:n(ω) ≥ ak:n(ω)νk:n(ω) . In order for the previous proofs to be compatible with the present
random context, we assume that such a choice may be done so that the maps ω 7→ ak:n(ω)
and ω 7→ νk:n(ω) de�ne random variables from (Ω,F) to [0, 1] and to P respectively. The
same is assumed for backward products.

Note that these assumptions hold in the �nite state space case since every stochastic
matrix K such that α(K) > 0 satis�es K ≥ α(K) Ã(K), where Ã(K) is the stochastic matrix
with identical rows de�ned by Ã(K) = α(K)−1A(K) (see (16)). Consequently the above
mentioned choices may be ak:n := α(Kk:n) and νk:n = α(Kk:n)−1A(Kk:n), which clearly both
de�ne random variables. To the best of our knowledge, the next results in Corollaries 5.1 and
5.2 are new, even in the �nite case.

Corollary 5.1 If the r.v. Kj, j ≥ 1, are pairwise independent and identically distributed,
and if P(α(K1) > 0) > 0, then the following assertions hold true.

(a) (forward products) For every k ≥ 1, there exists a sequence (mk:n)n≥k of E-valued
r.v. such that we have P−almost surely: ∀n ≥ k, mk:n ≤ Kk:n, and limn ‖Kk:n−mk:n‖ = 0.

(b) (backward products) There exists a sequence (πk)k≥1 of P-valued r.v. such that we
have P−almost surely: ∀k ≥ 1, limn ‖Kn:k − πk‖ = 0.

In the �nite state space case, that is when the Kj 's are r.v. taking their values in the set
Kd of stochastic d × d−matrices for some d ≥ 1, Assertion (b) is a well-known result under
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the following stronger assumptions, see for instance [CL94]: the r.v. Kj 's are independent
and identically distributed (i.i.d) and P(K1 ∈ K∗d) > 0, where K∗d denotes the subset of Kd
composed of matrices with strictly positive entries. Note that the r.v. Kj 's are just assumed
to be pairwise independent in Corollary 5.1, and that the assumption P(K1 ∈ K∗d) > 0 is more
restrictive than our assumption P(α(K1) > 0) > 0 (since K1 ∈ K∗d ⇒ α(K1) > 0).

Corollary 5.1 follows from Theorems 4.1-4.2 and from the following lemma.

Lemma 5.1 Under the assumptions of Corollary 5.1, we have
∑

j≥1 α(Kj) = +∞ P−a.s..

Proof. From P(α(K1) > 0) > 0 there exists p ≥ 1 such that P(α(K1) ≥ 1/p) > 0. Thus∑
j≥1 P(α(Kj) ≥ 1/p) = +∞ since the Kj 's are i.d.. Let Ω0 = ∩n≥1 ∪j≥n [α(Kj) ≥ 1/p].

Since the events [α(Kj) ≥ 1/p], j ≥ 1, are pairwise independent, the second Borel-Cantelli
lemma ensures that P(Ω0) = 1. Finally we have: ∀ω ∈ Ω0,

∑
j≥1 α(Kj(ω)) = +∞. �

Alternative assumptions may be proposed to obtain that
∑

j≥1 α(Kj) = +∞ P−a.s.. For
instance, if the sequence (Kj)j≥1 is stationary, then so is (α(Kj))j≥1. If moreover the se-
quence (α(Kj))j≥1 is ergodic and if P(α(K1) > 0) > 0, then the conclusions (a) and (b)
of Corollary 5.1 hold true. This follows from the strong law of large numbers for ergodic
stationary sequences, which implies that

∑
j≥1 α(Kj) = +∞ P−a.s. under the assumption

P(α(K1) > 0) > 0. Actually the use of Doebin's coe�cient seems to be quite relevant in this
random context since, as shown in the next corollary, it provides necessary and su�cient con-
ditions for the convergence (as previously stated) of the forward/backward random products
when the sequence (Kj)j≥1 is assumed to be independent and identically distributed (i.i.d.).

Corollary 5.2 If (Kj)j≥1 is i.i.d., then the two following assertions are ful�lled:

(i) Property (a) of Corollary 5.1 holds if, and only if, there exists an integer number q ≥ 1
such that P

(
α(K1:q) > 0

)
> 0,

(ii) Property (b) of Corollary 5.1 holds true if, and only if, there exists an integer number
q ≥ 1 such that P

(
α(Kq:1) > 0

)
> 0,

Proof. Assume that, for some q ≥ 1, we have P
(
α(K1:q) > 0

)
> 0. For every j ∈ N∗ de�ne:

Qj = Kq(j−1)+1 : qj . Since the sequence (Qj)j≥1 is i.i.d. and since P
(
α(Q1) > 0

)
> 0 by

hypothesis, we deduce from Lemma 5.1 that
∑

j≥1 α(Qj) = +∞ P−a.s.. Then Property (a)
of Corollary 5.1 follows from Theorem 4.1. Now assume that ∀q ≥ 1, α(K1:q) = 0 P−a.s..
De�ne Ω0 := ∩q≥1

[
α(K1:q) = 0

]
. Then P(Ω0) = 1, and ∀ω ∈ Ω0, ∀q ≥ 1, α(K1:q)(ω) = 0.

From Assertion (c) of Theorem 4.1 it follows that Property (a) of Corollary 5.1 does not hold
(in fact, for every ω ∈ Ω0, the expected conclusion for the sequence (Kk:n(ω))n does not hold).
Assertion (ii) can be proved similarly. �
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