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Abstract 
The scheduling problem under study may be viewed as an extension of the standard Multi-mode Resource-
Constrained Project Scheduling Problem (MRCPSP) including Multi-Skilled Labor and will be called as 
MRCPSP-MS. This problem requires an integration of resource limitation, labor skills, and multiple possible 
execution modes for each task, and the objective is to minimize the overall project duration. This paper 
present a new tabu search (TS) algorithm using a powerful neighborhood function based on a flow graph 
representation in order to implement various search strategies. The search of the solution space is carried 
out via two types of moves. Furthermore, the TS algorithm is embedded in a decomposition based heuristic 
(DBH) which serve to reduce the solution space. The effectiveness of the new Tabu Search is demonstrated 
through extensive experimentation on different standard benchmark problem instances and proves that our 
results are competitive. 
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1 INTRODUCTION 
The scheduling problem under study may be viewed as an 
extension of the standard Resource-Constrained Project 
Scheduling Problem [1] and will be called as Multi-mode 
Resource-Constrained Scheduling Problem with Multi-
Skilled Labor (MRCPSP-MS). In this problem, a project 
composed by a set of activities has to be performed by a 
limited number of labors with a certain mix of skills. A 
laborer may have one or more skill profiles (ex: assembler, 
electrician...) with a particular skill level. Activities can be 
performed only by workers who have the appropriate skill 
profile and at least the skill level needed. Hence labor 
versatility is directly tied to its skill profile and level. To 
keep the problem general, each activity is associated to a 
set of labor with the appropriate skill and level. Also, 
activities can be performed in one of several execution 
modes. The relationship between the processing time and 
the execution mode is a simple non-linear relation that 
decreases with increasing assigned labor intensity. 
Moreover, each activity can use simultaneously several 
work centers with different resource consumption 
according to the selected execution mode. Each work 
center has a limited capacity; i.e., the maximum number of 
labor it can get. The decision making process has to 
include the execution modes of activities, resources 
assignment, sequence of operations on the resources and 
work centers regarding both precedence relations and 
resource limits in order to shorten production cycle 
(makespan). Obviously, the problem above fits the 
characteristics of both Multi-mode RCPSP (see, [2], [3] and 
[4]) and Assignment problem [5] with resource flexibility. 
From computational point of view, as an extension of the 
standard RCPSP, this problem is clearly NP-hard in the 
strong sense [6]. In spite of all the ongoing research on the 
RCPSP, little has been carried out on the Multi-mode 
RCPSP with resource flexibility and skill consideration, not 
even the simpler jobshop scheduling problem with resource 
flexibility [5]. The flexible jobshop problem (FJSP) is an 
extension of the classical jobshop scheduling problem 
which allows an operation to be performed by one machine 
out of a set. The problem is to assign each operation to a 
machine (routing problem) and to sort the operations on 
the machines (sequencing problem). Being an extension of 

the standard jobshop scheduling, this problem is clearly 
NP-hard. Dauzère Pérès et al. [7] were the first to present 
a local search algorithm to solve multi-resource shop 
scheduling with resource flexibility (or MJSPF for short). 
This problem is an extension of the flexible jobshop 
problem which allows an activity to utilize several kinds of 
resources simultaneously, each of which is selected in a 
given set. Dauzère Pérès et al. [8] also proposed an 
extension of MJSPF which allows a resource (often 
human) to be released before the end of the operation and 
prevents a set of incompatible resources from being 
selected. The case of resource allocation has been dealt 
with in the literature in a number of papers. In particular, a 
resource allocation in multimodal activity networks is 
examined by Tereso et al. by applying a Dynamic 
Programming [9] and Electromagnetism Algorithm 
approach [10]. In their model, the resources are disjunctive 
and activities can be processed in different modes where 
the activity duration depends in its work content and on the 
amount of resource allocated. The resources required to 
complete the project are supposed completely polyvalent. 
Although our problem can be viewed as an RCPSP, it is 
actually more complex. Clearly, the introduction of flexibility 
considerations and skill constraints complicates the already 
difficult Multi-mode RCPSP. However, to our knowledge, 
the literature does not contain any dedicated exact or 
heuristic procedures for solving the MRCPSP-MS as 
defined in this paper. The remainder of this article is 
organized as follows: Section 2 clarifies the terminology 
and the project representation used below. In Section 3, a 
lower bound of the problem is presented. We then give a 
detailed description of our TS algorithm is Section 4. In 
Section 5 we evaluate the effectiveness of the algorithms 
by applying the compiler to a number of standard 
benchmarks. Finally, Section 6 presents our conclusions 
and suggests several directions for future research. 
 
2 PROBLRM DESCRIPTION AND FLOW NETWORK 

REPRESENTATION 
The MRCPSP-MS can be stated as follows. Assume a 
project defined by an acyclic directed graph G: = (A, E), 
with vertex set A (0, 1, 2,…, n, n+1) corresponds to the set 



of non-preemptable activities to be scheduled where the 
dummy activities 0 and n+1 mark the beginning and the 
end of the project; respectively. The set of arcs E: = {(i, j): i, 
j∈A, i ≠ j} represents precedence constraints between 
activities. Let’s A −

i (A +
i ) denote; respectively, the set of 

direct predecessor (successor) of activity i (denote the size 
of Ai by |Ai|). Specifically, an activity can only start after all 
its predecessor activities have been completed. To be 
processed, the activities require a set of labors K = {1,…,K} 
and a set of work centers W = {1,…,W}. Each work center 
w∈ W has a limited capacity. Let’s Zw denotes the work 
center capacity which is maximum number of labors the 
work center w can receive to process a subset of activities 
simultaneously. Various resources such as machines, 
tooling, fixtures, with similar processing characteristics are 
grouped together in a work center and labors also must be 
available to perform activities. Each labor k∈ K can 
perform a pool of activities and cannot be assigned to more 
than one activity at the same time. Lets Ak ⊆ A denotes the 
set of activities that labor k can process and let Ki denotes 
the set of labors (labors with the required skill profile and 
level) able to perform activity i. For each activity i∈A a set 
Mi = {1,…,Mi} of (execution) modes is available. Each 
activity has to be performed in exactly one mode. The 
processing time of activity i being executed in mode m is 
denoted by di,m. Thus, when processed in mode m∈ Mi, 
activity i requires the reservation of w

miz , units of work center 

w∈ W and the allocation of m
wia , workers among the set of 

labor Ki during di,m units of time. We assume that the 
amount of work center units engaged to process activity i is 
equal to the number of allocated workers; i.e., w

miz , = w
mia , . 

One immediately deduces that the total number of 
assigned workers denoted mia , for the execute activity i in 
mode m is given by 

∑∑
∈∈

==
WW w

w
mi

w

w
mimi zaa ,,,  (1) 

The processing time value is based on a speed rate αm 
that is mode dependent, but independent of the resource 
allocation. The time to process an activity i in mode m is 
the multiplication of the processing time in mode 1 by the 
speed rate of mode m, αm∈]0, 1]. In what follows, we set 
the speed rate such as for two different modes ,mm ′′>′  we 
have mm ′′′ < αα . For the sake of simplicity an execution 

mode m of activity i is defined by >< H
mimimi zzd ,

1
,, ,... where 

di,m its duration and >< H
mimi zz ,

1
, ,... the work centers units 

required for its execution. 

Table 1: An example of a project scheduling problem 

Activity Mode1 Mode2 Mode3 Labor 
1 15 |<0,1> 13|<0,3>  1, 3, 5 
2 10 | <1,1 > 7 | <1,2 > 6 | <2,3 > 1,2, 3, 4, 5
3 10 | <1,1 > 7 | <2,1 > 5 | <2,2 > 1, 2, 4, 5 
4 7 | <1,1 > 5 | <1,2 > 2 | <2,3 > 1, 2, 4, 5 
5 5 | <1,1 > 4 | <1,2 >  2, 3, 5 
6 13 | <1,1 > 6 | <1,2 >  1, 2, 3, 4 

Work center capacity : (1, 2); (2, 3) 
 
We shall assume in this paper that no preemption and no 
overlapping between two consecutive activities, setup 
times are negligible or are included in the fixed duration 
and no ready times or due dates are imposed on any of the 
project activities. Consider as example the project given in 
table 1, composed by six activities, five laborers and two 
work centers which can receive individually at most two 
and three laborers; respectively. Let us consider the case 
in which activity 3 is performed in mode 2 described by the 
vertex 7|<2, 1>: The corresponding processing time d12 
equals seven units of time. Two units of work center 
1, 21

3,2 =z  and one unit of work center 2, 12
2,3 =z , are used 

at each point in time at which activity 3 is being executed. 
Furthermore, two workers and one worker must be 
assigned to work center 1 and 2, respectively. These 
laborers have to be selected from the set of labors K1 = {1, 
2, 4, 5} able to perform activity 3. The acyclic directed 
graph G (A, E) shown in Figure 1 (a) gives the precedence 
relation between activities. The duration used in the CPM 
graph correspond to the duration when the shortest mode, 
m = Mi, is used. The length of the longest weighted path 
from 0 to any operation is referred to as the head of the 
operation ri,m and equals the earliest start time of i. The tail 
qi,m of the operation i is the length of the longest path from i 
to n+1 minus the processing time of i (di,m). The head and 
the tail of each activity can be computed easily using 
backward and forward recursion on the graph. Obviously, 
the Cmax when relaxing resources constraints (labors, work 
center) represents a simple lower bound on the project 
completion time (length of the critical path). Figure 1 (b) 
gives an optimal solution of our scheduling problem 
example computed using Xpress-MP with a makespan 
equal to 21 time units. The Gantt chart of Figure 1 (b) 
displays activities and labor assignment over time. Each 
block represents an activity on the vertical axis the number 
of labors assigned, where the laborers allocated to each 
task are indicated inside the block and the length of a block 
denotes the duration of the activity.  
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Figure 1: Project example and Gantt chart representation
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Every instance of MRCPSP-MS can be represented by the 
flow graph G (A, E, K, W). The graph G can be 
decomposed into three sub-graphs GA, GE, GW where 
GE(A, E) represents the set of conjunctive (directed) arcs 
connecting operations subject to precedence constraints. 
GK(A, K) is the set of conjunctive arcs connecting 
operations to be processed by the same laborers and 
GW(A, W) the flow network representing the way in which 
work center units are passed on between the various 
project activities. A schedule on a disjunctive graph G(A, E 
,K) consists in finding a set of orientations that minimizes 
the length of the longest path (critical path) such that the 
resulting solution directed graph is acyclic (there are no 
precedence conflicts between operations). The sub-
problem G (A, E, W), is an extension of the known RCPSP 
where each activity has multiple execution modes. Since 
work centers are cumulative resources, it’s difficult to 
model disjunction between activities requiring the same 
work center to be scheduled simultaneously. This difficulty 
can be deal with if each work center w is defined as a set 
of identical disjunctive resources Tw (denote the size of Tw 
by |Tw|), such that Zw = |Tw| and each elementary resource 
z, z ∈ Tw can be assigned at most one activity and the 
disjunctive arc (i, j) ∈ W can be seen as an union of  Zw  
disjunctive arcs. The way in which work center units are 
passed on between the various project activities can be 
represented by a resource flow network. To illustrate 
disjunction related to conflicting demand of work centers, 
we use the resource flow network presented by [xx], in 
which rather than considering the disjunction on each 
resource unit of work center, the amount of work center 
units transferred between two activities is grouped on the 
same edge since all units of the same work center are 
equivalent same (identical parallel machines). Hence, the 
set of arcs GW(A, W) is constructed in such a way that the 
partial graph GW(A, W) is a transportation network where 
each arc u= (i, j) ∈ GW is associated with a vector 
capacity >=<Ψ H

jijiji ff ,
1
,, ,... , w

jif ,  representing the number 

units of work center w∈W that are directly transferred from 
activity i (when it finishes) to activity j (when it starts). In 
order to reduce the number of transportation arcs and 
simplify the flow network representation, all resources 
transferred between two activities can be grouped on the 
same resource flow arc >ΨΩ=< jijimiji df ,,,, , where mid ,  
is the duration of activity i when processed in mode m. 

ji,Ω and ji,Ψ are the set of labors and work centers units 
transferred from i to j, respectively. Considering again our 
example, Figure 2 gives a feasible solution of the 
scheduling problem and illustrates the associated flow 
network based on the new model-building. The conjunctive 
arcs (thin arrows) of E = {(3,4), (2,5), (1, 6)} represent 
precedence constraints between activities and resource 
transportation arcs (bolded arrows) of K ∪ W  correspond 
to the labors and work center units transferred  between 
activities.  
 
 
 
 
 
 
 
 
 
 

Figure 2: Flow network representation 

3 LOWER BOUND 
In this section, three makespan lower bounds are 
presented, which can be realized efficiently with small 
computational effort. The following three lower bounds 
exploit the problem structure of MRCPSP-MS. 
Critical Path Bound (LB1): The project duration when 
relaxing resource constraints and assigning shortest 
modes to the activities represents a simple lower bound on 
the project completion time. In the previous example, LB1 
is equal to 15. 
Resource Capacity Bound (LB2): MRCPSP-MS can be 
relaxed by discarding precedence constraints skill 
requirement and work center capacity constraints. A bound 
value is computed as the total workload divided by the 
amount of available labor. For our example LB2 = 22. 

         { }∑
∈

∈ ⎥⎦
⎤

⎢⎣
⎡=

Ai
mimim

KdaLB
i

,,2 min
M

 (2) 

Work Center Capacity Bound (LB3): For each work center 
w ∈ W we compute a lower bound based on the same 
principle used in the computation of LB2. Let’s Aw be the 
set of activities which have to be processed by the work 
center w. For our example LB3 = 15. LB3 can be 
expressed as follow: 

         
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥⎦
⎤

⎢⎣
⎡= ∑

∈
∈∈

w
Ai

mi
w
mimw

ZdzMaxLB
w

i
/)(min ,,3 MW

   (3) 

The makespan lower bound is then the maximum between 
these three bounds:  

         ),,()( 321max LBLBLBMAXCLB =  (4) 

 
4 TABU SEARCH ALGORITHM 
Tabu search algorithm uses a neighborhood search 
procedure to iteratively move from a solution x to a solution 
x' ∈ N(x) in the neighborhood of x, until some stopping 
criterion has been satisfied. At each iteration, TS examines 
all the solutions close to the current solution by performing 
a set of candidate moves as defined by the neighborhood 
structure. In order to escape from a local optimum and 
avoid cycling, moves that would bring back to a recently 
visited solution are kept in tabu list, and forbidden or 
declared tabu for a certain number of iterations If all the 
candidate moves are tabu, then the oldest element on the 
tabu list is removed until a permissible move can be 
selected. Recently, the theory and the practice of tabu 
search were extensively improved by Glover & Laguna [11] 
and by Hertz, Taillard & De Werra [12] by aspiration criteria 
and intensification and diversification schemes.  

4.1 The Neighborhood structure 
The majority of the local methods, applied to MRCPSP, the 
assignment and the sequencing of operations on the 
resources are treated separately. Either directly, i.e. 
assignment and sequencing are considered independently 
or indirectly in a local search algorithm where reassignment 
and resequencing are two different types of transitions. The 
proposed Tabu Search algorithm is distinguished mainly by 
two aspects. Firstly, the proposed neighborhood function is 
based on the flow network representation described above, 
where the decisions of resequencing activities and re-
assignment resources and execution modes are not 
differentiated. Secondly, the TS algorithm uses a 
sophisticated set of moves for neighborhood exploration 
and evaluates the performance of each visited solution 
without making the move. Since our objective is to 
minimize the duration of the project, these movements are 

5 t 

10 

0 
0 

0 

10 

15 

7 

5 

6 

<10|2,5|1,1> 

<0|2,5|1,1> 
<10|2,5|1,1> 

<7|1,4|1,1>

<6|3,4|1,2><0|3|1,0> 

<10|1,4 |1,1> 

s 

4 

6 

[10, 0] 

[21, 0]

[15, 0] 

[10, 6] 

[0, 7] 

[0, 11] 

[0, 6] 

[0, 21] 

2 

3 

1 

<0|1,4|1,1> 

<15|3|0,1>



applied only on the set of critical activities. An activity is 
defined to be a critical activity if and only if: 

1,,, +=++ nmimimi rqdr  (5) 

The neighborhood N(x) of a visited solution x is explored by 
applying one of the following two types of moves: 
Change_Alloc(i): Change the resource allocation of the 
activity i by replacing the critical incoming and outgoing 
resource arcs of activity i by another eligible resource arcs. 
Such reinsertion has to be performed only by making some 
of the resource units initially transferred from an activity u 
to an activity v to be transferred from u to i and then from i 
to v. This move is applied only on the set of critical 
activities verifying:  

)(max, pp
Ap

mi drr +>
−∈

or )(max, ss
As

mi dqq +>
+∈

 (6) 

Change_mod(i, m, m’): Change the current execution 
mode m of the activity i by m’∈ Mi, satisfies m’ ≠ m. 
Performing this movement imply removing and adding the 
following flow units : 

',,',,supsupsup, mimimimii WWKKWKf −−==  (7) 

mimimimiaddaddaddi WWKKWKf ,',,',, −−==  (8) 

∅=∩ addii ff ,sup,  (9) 

These two flows are disjoined, because the amount of the 
consumed resources can only increase or decrease while 
passing from a mode to another. An arc (s, t) ∈ iΓ is 
feasible for the insertion of activity i, if the resulting graph is 
acyclic, and the following necessary and sufficient 
feasibility conditions are satisfied: 

Proposition 1: An arc (s, t) such that { }+++∉ iii WKAs ,,  and 

{ }−−−∉ iii WKAt ,,  is feasible for the insertion of activity i if : 

{ }∅≠∩ addts ff ,  (10) 

( )jj
Vj

s drMinr
i

+′<
+′∈

 (11) 

( )j
Vj

tt rMaxdr
i
−′∈

<+  (12) 

Indeed, condition (11) checks that the flow of the arc (s, t) 
may satisfy at least part of the resource requirement of 
activity i while condition 11 and 12 ensure the acyclic 
property of the new generated flow graph G’ after the 
insertion of activity i. 
The procedures used to perform these two movements 
employ similar mechanisms, which substitute all the critical 
incoming resource arcs of the considered activity by new 
feasible set of arc iΓ  which minimizes or degrades less the 
makespan of the project. The REINSERT algorithm is as 
follows: 
Algorithm REINSERT (i, supf , addf ) 

1. Decide on which incoming and outgoing set of arcs of 
activity i the flow supf must be removed. 

2. Create a new routing arcs between the predecessor 
and successor of activity i that minimize the project 
makespan. 

3. Define the set of eligible arcs for the activity insertion  

4. For each feasible insertion arc compute a lower bound 
of the project makespan increase.  

5. Select a subset of eligible arcs that satisfy capacity 
constraints and flow conservation such as the resulting 
makespan is minimal. 

For that, it would be necessary to be able to evaluate all 
the eligible insertion arcs. However, a complete evaluation, 
i.e. calculation of the starting/finishing times of all the tasks, 
takes a considerable time. This led us to define a lower 
bound which can evaluate the quality of a move without 
actually making it. The lower bound of the makespan after 
selecting the feasible arc (s, t) is defined as follows: 

imii qprCLb ′++′= ′,max )(  (13) 

⎟
⎠
⎞

⎜
⎝
⎛ ++=′

−′∈
′ msmsmpmp

Vp
mi prprr

i
,,,,, ),(maxmax  (14) 
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⎞

⎜
⎝
⎛ ++=′

+′∈
mtmtmpmf

Vf
i qpqpq

i
,,,, ),(maxmax  (15) 

Where { }+−+−+−+− ′∪′∪=′ ////
iiii WKAV the set of incoming / 

outgoing is arcs of activity i after deleting the flow supf . 

 

4.2 Starting solution 
An initial solution is generated by a very simple heuristic 
using a serial scheduling scheme and the SLK-SFM priority 
rule. The serial schedule generation scheme (SSGS) 
consists of g = 1… n stages, in each of which one activity 
is selected and scheduled. Each stage is made up of three 
steps. Step (1) at each decision point the activity from the 
set of eligible activities (all their predecessors have been 
scheduled) with the smallest slack is selected, slack 
calculation being based on the shortest possible duration 
for the not-yet-scheduled activities and the selected 
duration for already-scheduled activities. Step (2) SFM rule 
chooses the mode with the shortest feasible duration and 
the selected activity during step 1 is scheduled at the 
earliest precedence and resource feasible starting time. 
Step (3) states that the workers must be assigned to the 
activities in order to balance the workload on the 
resources.  

4.3 Tabu search mechanisms 
The aspiration criterion used was that a tabu move would 
be accepted if it produced a solution that was better than 
the best solution found to date. If a move that is set tabu 
would lead to the better solution better than the best 
solution found to date, the tabu status is revoked, and the 
corresponding move is selected. This aspiration criterion is 
known as global aspiration by objective. 
The long and intermediate term memory components were 
supplied by using frequency-based memory. Essentially, 
frequency-based memory stores information about the 
frequency that a move with a specific attribute has 
occurred. After a specified amount of time, the long term 
memory is called to ensure that the search process 
examines solutions throughout the entire solution space 
(diversification). After the same amount of time the 
intermediate term memory was then called to intensify 
(intensification) the search by finding a new starting point 
which tended to share common features solutions 
examined. 
The diversification and Intensification can accomplished 
during the insertion process by selecting the arcs which 
lead to the more or less encountered situation. This can be 
done by modifying the lower bound of the feasible insertion 
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arcs which makes arcs containing less (diversification) or 
more (Intensification) frequently encountered attributes 
more attractive.  
 
4.4 Restricting the solution space 
It was shown by [13] that nearly 90% of the time of 
resolution is taken by the evaluation of the neighborhood. 
Consequently, it is interesting to constrain the 
neighborhood as possible in order to decrease the 
complexity of resolution. Hence, we investigate the impact 
of a solution space restriction by iteratively solving 
decomposed sub-problems of the main problem under 
study. A decomposition approach for RCPSP has been 
proposed by [14]. This approach consists of splitting each 
problem instance into smaller sub-problems. The search is 
then continued on the sub-problems, and the resulting sub-
schedules are reincorporated in the schedule of the main 
problem. The decomposition-based heuristic (DBH) used in 
the TS presented above consist of making moves only on a 
set of activities overlapping a predetermined time interval 
[ts, tf]. In this way, the set of eligible moves is reduced and 
only activities belonging to the space interval are explored.   
 
5 COMPUTATIONAL EXPERIMENTS 
To evaluate the performance of the TS algorithm proposed 
in this study, we apply the algorithm to several established 
benchmark instances taken from literature.  The problem 
tackled in this paper can be seen as an extension the 
standard flexible job-shop scheduling problem (FJSP) [15], 
the basic RCPSP and its multi-mode version [16, 17, 18]. 
The search is stopped when the number of sequences 
evaluated reaches a given maximal value nMax = 2000. All 
numerical experiments are also conducted with a unique 
parameter setting for all problem sets. The computational 
experiments have been performed on the following 
benchmarks: 
1. Brandimarte Instances [15] : The data set of FJSP 

which consists of ten problems with number of jobs 
ranging from 10 to 20, number of machines ranging 
from 4 to 15, and number of operation for each job 
ranging from 5 to 15. 

2. Patterson and Alvarez instances : 110 “easy” Patterson 
instance [16] (from 6 to 51 activities) and the 48 Alvarez 
instances with 103 activities [17]. 

3. Kadrou and Najid (ND) instances [18]: The data set of 
MRCPSP-SL with 50, 100, 150 and 200 activities. Each 
instance set was divided into three subsets (100 
instances per subset) differing by graph complexity, 
resource profile, and execution mode flexibility (easy, 
medium, and hard subsets), which are 1200 instance in 
total. 

Table 2 compares the proposed TS to the best results of 
the tabu search of Mastrolilli and Gambardella [5] and with 
the different genetic algorithms proposed by Pezzella et al. 
[19] and  Chen et al. [20]. The first column reports the 
instance name; the second column reports the best known 
lower bound. The third and fourth column report our best 
makespan and the average and maximum computational 
times required for each run (i.e., 2000 iterations). The 
remaining columns report the best results of the three 
algorithms we compared with, together with the relative 
deviation with respect to our TS. The relative deviation is 
defined as: 

( )[ ] %100/ maxmaxmax ×−= compTScomp CCCdev  (16) 

Where TSCmax the makespan is obtained by our algorithm, 

and compCmax  is the makespan of algorithm we compare to. 
The values of LB within parenthesis are optimal and the 
makespan associated with asterisk is the best known upper 
bound by far. The results show that our algorithm 
outperforms the other two Genetic Algorithms and have 
comparable performance as M.G.  
The results on Patterson and Alvarez instances are 
displayed in table 3. For each problem set, we display in 
the first two columns the average/maximal deviation from 
the optimum or from the best known upper bound, the 
average/maximal CPU time required and the number of 
improved solutions are indicated in the next two columns. 
We have solved to optimality all the PAT instances and 
found five new best solutions on ALV sets. 
In table 4, we compare our algorithm with the MMSH 
(Multi-mode Multi-skill Heuristic) heuristic proposed by 
kadrou et al. [18]. The results reveal that our TS is capable 
to report consistently good results and outperform MMSH 
heuristic on all tested instances. The deviation of 
computational time seems quite large. This is because the 
size of neighborhood varies from instance to instance. In 
closing, we emphasize that our code is designed for the 
MRCPSP-MS. In fact, among the tested algorithms, only 
our code can be applied to different extension of RCPSP 
problem and achieve reasonable solution quality. We 
believe that the computational value of our TS procedure 
can be considerably improved by an extensive test which 
allows finding an adequate parameters setting of the TS. 

Table 3: The computational results of RCPSP instances 

Prob. av.(max) 
∆LB 

# best av. (max) 
CPU 

#new 
best 

PAT 0 (0) 110/110 1.24 (16) - 
ALV -1.36 (4.13) 43/48 215.14 5 

Table 2: The computational results of the FJSP instances 

Prob. LB TS CPU(s) M.G. dev(%) Pezzella dev(%) Chen dev(%) 
Mk01 36 40* 2.34 40 0 40 0 40 0 
Mk02 24 26* 1.27 26 0 26 0 29 +10.34 
Mk03 (204) 204* 0.58 204 0 204 0 204 0 
Mk04 48 60* 10.93 60 0 63 +4.76 63 +4.76 
Mk05 168 173* 0.45 173 0 173 0 181 +4.41 
Mk06 33 59 17.67 58* -1.72 63 +6.34 60 +1.66 
Mk07 133 141 15.4 144 +2.08 139* -1.44 148 +4.72 
Mk08 (523) 523* 0.02 523 0 523 0 523 0 
Mk09 299 307* 8.85 307 0 311 +1.28 308 +0.32 
Mk10 165 205 73.78 198* -3.5 212 -7.07 212 +3.30 



Table 4: Summary of computational results of the KN instances 

Prob. 
TS MMSH 

av.(max) ∆LB # best av. (max) CPU(s) av.(max) ∆LB # best(%) av. (max) CPU(s) 
n = 50 13.73 (17) 300/300 0.44 (17) 26.93 (33) 216/300 0.7 
n = 100 19.64(25) 300/300 10 (80) 28.79 (39) 143/300 3.3 
n = 150 27.42(46) 300/300 30(200) 28.79 (39) 137/300 8.33 
n = 200 33.14 (43) 300/300 156(540) 28.79 (39) 83/300 16.33 

 
6 CONCLUSION AND FUTURE RESEARCH 
In this paper, a tabu search algorithm for solving the multi-
mode resource constrained project scheduling problem 
with multi-skilled laborers is presented. It should be clear 
that this problem is a very difficult problem to solve (NP-
hard). Moreover, to our knowledge, this problem has never 
been completely dealt with in literature, however, it can be 
encountered in many manufacturing area such as 
assembly systems. The neighborhood used in the 
proposed Tabu Search algorithm is based on reinserting 
critical activities on possibly different resource sets that 
minimize the makespan such that feasibility is maintained. 
It is shown that a neighbor can be computed quite 
efficiently and that a move can be evaluated without 
making it by computing a lower bound on the makespan 
after the move which speed up considerably the search 
process.  
Although our procedure was implemented to resolve a very 
general scheduling problem, the results obtained seem to 
indicate that the performance of the proposed TS remains 
correct when applied to the standard RCPSP and 
outperforms the algorithms dedicated to FJSP. We believe 
that the computational value of our TS procedure can be 
considerably improved by an extensive test which allows 
finding an adequate parameters setting of the TS. Such 
experiments, however, are beyond the intended scope of 
this paper. Finally, the development of tight lower bounds 
for the MRCPSP-MS problem will undoubtedly constitute a 
promising area of future research. 
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