
HAL Id: hal-02354582
https://hal.science/hal-02354582

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TABU SEARCH FOR THE MULTI-MODE
RESOURCE CONSTARINED PROJECT

SCHEDULING PROBLEM WHITH RESOURCE
FLEXIBILITY

Y Kadrou, N M Najid

To cite this version:
Y Kadrou, N M Najid. TABU SEARCH FOR THE MULTI-MODE RESOURCE CONSTARINED
PROJECT SCHEDULING PROBLEM WHITH RESOURCE FLEXIBILITY. 19th International
Conference on Production Research, Jul 2007, Valparaiso, Chile. �hal-02354582�

https://hal.science/hal-02354582
https://hal.archives-ouvertes.fr

19th International Conference on Production Research

TABU SEARCH FOR THE MULTI-MODE RESOURCE CONSTARINED
PROJECT SCHEDULING PROBLEM WHITH RESOURCE FLEXIBILITY

Y. KADROU1, N.M. NAJID2

1 IRCCyN, Université de Nantes, 1 rue de la Noë, BP 92101, Nantes F-44000 France
2 IUT de Nantes, Dept. GMP, 2 avenue du pr. Jean Rouxel 44475 Carquefou Cedex

Abstract
The scheduling problem under study may be viewed as an extension of the standard Multi-mode Resource-
Constrained Project Scheduling Problem (MRCPSP) including Multi-Skilled Labor and will be called as
MRCPSP-MS. This problem requires an integration of resource limitation, labor skills, and multiple possible
execution modes for each task, and the objective is to minimize the overall project duration. This paper
present a new tabu search (TS) algorithm using a powerful neighborhood function based on a flow graph
representation in order to implement various search strategies. The search of the solution space is carried
out via two types of moves. Furthermore, the TS algorithm is embedded in a decomposition based heuristic
(DBH) which serve to reduce the solution space. The effectiveness of the new Tabu Search is demonstrated
through extensive experimentation on different standard benchmark problem instances and proves that our
results are competitive.

Keywords:
Project scheduling, Heuristics, Tabu Search, Human resources.

1 INTRODUCTION
The scheduling problem under study may be viewed as an
extension of the standard Resource-Constrained Project
Scheduling Problem [1] and will be called as Multi-mode
Resource-Constrained Scheduling Problem with Multi-
Skilled Labor (MRCPSP-MS). In this problem, a project
composed by a set of activities has to be performed by a
limited number of labors with a certain mix of skills. A
laborer may have one or more skill profiles (ex: assembler,
electrician...) with a particular skill level. Activities can be
performed only by workers who have the appropriate skill
profile and at least the skill level needed. Hence labor
versatility is directly tied to its skill profile and level. To
keep the problem general, each activity is associated to a
set of labor with the appropriate skill and level. Also,
activities can be performed in one of several execution
modes. The relationship between the processing time and
the execution mode is a simple non-linear relation that
decreases with increasing assigned labor intensity.
Moreover, each activity can use simultaneously several
work centers with different resource consumption
according to the selected execution mode. Each work
center has a limited capacity; i.e., the maximum number of
labor it can get. The decision making process has to
include the execution modes of activities, resources
assignment, sequence of operations on the resources and
work centers regarding both precedence relations and
resource limits in order to shorten production cycle
(makespan). Obviously, the problem above fits the
characteristics of both Multi-mode RCPSP (see, [2], [3] and
[4]) and Assignment problem [5] with resource flexibility.
From computational point of view, as an extension of the
standard RCPSP, this problem is clearly NP-hard in the
strong sense [6]. In spite of all the ongoing research on the
RCPSP, little has been carried out on the Multi-mode
RCPSP with resource flexibility and skill consideration, not
even the simpler jobshop scheduling problem with resource
flexibility [5]. The flexible jobshop problem (FJSP) is an
extension of the classical jobshop scheduling problem
which allows an operation to be performed by one machine
out of a set. The problem is to assign each operation to a
machine (routing problem) and to sort the operations on
the machines (sequencing problem). Being an extension of

the standard jobshop scheduling, this problem is clearly
NP-hard. Dauzère Pérès et al. [7] were the first to present
a local search algorithm to solve multi-resource shop
scheduling with resource flexibility (or MJSPF for short).
This problem is an extension of the flexible jobshop
problem which allows an activity to utilize several kinds of
resources simultaneously, each of which is selected in a
given set. Dauzère Pérès et al. [8] also proposed an
extension of MJSPF which allows a resource (often
human) to be released before the end of the operation and
prevents a set of incompatible resources from being
selected. The case of resource allocation has been dealt
with in the literature in a number of papers. In particular, a
resource allocation in multimodal activity networks is
examined by Tereso et al. by applying a Dynamic
Programming [9] and Electromagnetism Algorithm
approach [10]. In their model, the resources are disjunctive
and activities can be processed in different modes where
the activity duration depends in its work content and on the
amount of resource allocated. The resources required to
complete the project are supposed completely polyvalent.
Although our problem can be viewed as an RCPSP, it is
actually more complex. Clearly, the introduction of flexibility
considerations and skill constraints complicates the already
difficult Multi-mode RCPSP. However, to our knowledge,
the literature does not contain any dedicated exact or
heuristic procedures for solving the MRCPSP-MS as
defined in this paper. The remainder of this article is
organized as follows: Section 2 clarifies the terminology
and the project representation used below. In Section 3, a
lower bound of the problem is presented. We then give a
detailed description of our TS algorithm is Section 4. In
Section 5 we evaluate the effectiveness of the algorithms
by applying the compiler to a number of standard
benchmarks. Finally, Section 6 presents our conclusions
and suggests several directions for future research.

2 PROBLRM DESCRIPTION AND FLOW NETWORK

REPRESENTATION
The MRCPSP-MS can be stated as follows. Assume a
project defined by an acyclic directed graph G: = (A, E),
with vertex set A (0, 1, 2,…, n, n+1) corresponds to the set

of non-preemptable activities to be scheduled where the
dummy activities 0 and n+1 mark the beginning and the
end of the project; respectively. The set of arcs E: = {(i, j): i,
j∈A, i ≠ j} represents precedence constraints between
activities. Let’s A −

i (A +
i) denote; respectively, the set of

direct predecessor (successor) of activity i (denote the size
of Ai by |Ai|). Specifically, an activity can only start after all
its predecessor activities have been completed. To be
processed, the activities require a set of labors K = {1,…,K}
and a set of work centers W = {1,…,W}. Each work center
w∈ W has a limited capacity. Let’s Zw denotes the work
center capacity which is maximum number of labors the
work center w can receive to process a subset of activities
simultaneously. Various resources such as machines,
tooling, fixtures, with similar processing characteristics are
grouped together in a work center and labors also must be
available to perform activities. Each labor k∈ K can
perform a pool of activities and cannot be assigned to more
than one activity at the same time. Lets Ak ⊆ A denotes the
set of activities that labor k can process and let Ki denotes
the set of labors (labors with the required skill profile and
level) able to perform activity i. For each activity i∈A a set
Mi = {1,…,Mi} of (execution) modes is available. Each
activity has to be performed in exactly one mode. The
processing time of activity i being executed in mode m is
denoted by di,m. Thus, when processed in mode m∈ Mi,
activity i requires the reservation of w

miz , units of work center

w∈ W and the allocation of m
wia , workers among the set of

labor Ki during di,m units of time. We assume that the
amount of work center units engaged to process activity i is
equal to the number of allocated workers; i.e., w

miz , = w
mia , .

One immediately deduces that the total number of
assigned workers denoted mia , for the execute activity i in
mode m is given by

∑∑
∈∈

==
WW w

w
mi

w

w
mimi zaa ,,, (1)

The processing time value is based on a speed rate αm
that is mode dependent, but independent of the resource
allocation. The time to process an activity i in mode m is
the multiplication of the processing time in mode 1 by the
speed rate of mode m, αm∈]0, 1]. In what follows, we set
the speed rate such as for two different modes ,mm ′′>′ we
have mm ′′′ < αα . For the sake of simplicity an execution

mode m of activity i is defined by >< H
mimimi zzd ,

1
,, ,... where

di,m its duration and >< H
mimi zz ,

1
, ,... the work centers units

required for its execution.

Table 1: An example of a project scheduling problem

Activity Mode1 Mode2 Mode3 Labor
1 15 |<0,1> 13|<0,3> 1, 3, 5
2 10 | <1,1 > 7 | <1,2 > 6 | <2,3 > 1,2, 3, 4, 5
3 10 | <1,1 > 7 | <2,1 > 5 | <2,2 > 1, 2, 4, 5
4 7 | <1,1 > 5 | <1,2 > 2 | <2,3 > 1, 2, 4, 5
5 5 | <1,1 > 4 | <1,2 > 2, 3, 5
6 13 | <1,1 > 6 | <1,2 > 1, 2, 3, 4

Work center capacity : (1, 2); (2, 3)

We shall assume in this paper that no preemption and no
overlapping between two consecutive activities, setup
times are negligible or are included in the fixed duration
and no ready times or due dates are imposed on any of the
project activities. Consider as example the project given in
table 1, composed by six activities, five laborers and two
work centers which can receive individually at most two
and three laborers; respectively. Let us consider the case
in which activity 3 is performed in mode 2 described by the
vertex 7|<2, 1>: The corresponding processing time d12
equals seven units of time. Two units of work center
1, 21

3,2 =z and one unit of work center 2, 12
2,3 =z , are used

at each point in time at which activity 3 is being executed.
Furthermore, two workers and one worker must be
assigned to work center 1 and 2, respectively. These
laborers have to be selected from the set of labors K1 = {1,
2, 4, 5} able to perform activity 3. The acyclic directed
graph G (A, E) shown in Figure 1 (a) gives the precedence
relation between activities. The duration used in the CPM
graph correspond to the duration when the shortest mode,
m = Mi, is used. The length of the longest weighted path
from 0 to any operation is referred to as the head of the
operation ri,m and equals the earliest start time of i. The tail
qi,m of the operation i is the length of the longest path from i
to n+1 minus the processing time of i (di,m). The head and
the tail of each activity can be computed easily using
backward and forward recursion on the graph. Obviously,
the Cmax when relaxing resources constraints (labors, work
center) represents a simple lower bound on the project
completion time (length of the critical path). Figure 1 (b)
gives an optimal solution of our scheduling problem
example computed using Xpress-MP with a makespan
equal to 21 time units. The Gantt chart of Figure 1 (b)
displays activities and labor assignment over time. Each
block represents an activity on the vertical axis the number
of labors assigned, where the laborers allocated to each
task are indicated inside the block and the length of a block
denotes the duration of the activity.

 (a) (b)

Figure 1: Project example and Gantt chart representation

2

1 6

5

3

70

13

2

[0, 13]

[0, 2] [2, 0]

[0, 4]

[0, 6]

[6, 0] [19, 0]

[5, 0]

i

[r, q]

4

6

0

4

5

60

0

 1|3

 2|2,5

3|1,4

Labor usage

time

21 15 10

 4|1,4

6|2,3,5
5|2,5

17

19th International Conference on Production Research

Every instance of MRCPSP-MS can be represented by the
flow graph G (A, E, K, W). The graph G can be
decomposed into three sub-graphs GA, GE, GW where
GE(A, E) represents the set of conjunctive (directed) arcs
connecting operations subject to precedence constraints.
GK(A, K) is the set of conjunctive arcs connecting
operations to be processed by the same laborers and
GW(A, W) the flow network representing the way in which
work center units are passed on between the various
project activities. A schedule on a disjunctive graph G(A, E
,K) consists in finding a set of orientations that minimizes
the length of the longest path (critical path) such that the
resulting solution directed graph is acyclic (there are no
precedence conflicts between operations). The sub-
problem G (A, E, W), is an extension of the known RCPSP
where each activity has multiple execution modes. Since
work centers are cumulative resources, it’s difficult to
model disjunction between activities requiring the same
work center to be scheduled simultaneously. This difficulty
can be deal with if each work center w is defined as a set
of identical disjunctive resources Tw (denote the size of Tw
by |Tw|), such that Zw = |Tw| and each elementary resource
z, z ∈ Tw can be assigned at most one activity and the
disjunctive arc (i, j) ∈ W can be seen as an union of Zw
disjunctive arcs. The way in which work center units are
passed on between the various project activities can be
represented by a resource flow network. To illustrate
disjunction related to conflicting demand of work centers,
we use the resource flow network presented by [xx], in
which rather than considering the disjunction on each
resource unit of work center, the amount of work center
units transferred between two activities is grouped on the
same edge since all units of the same work center are
equivalent same (identical parallel machines). Hence, the
set of arcs GW(A, W) is constructed in such a way that the
partial graph GW(A, W) is a transportation network where
each arc u= (i, j) ∈ GW is associated with a vector
capacity >=<Ψ H

jijiji ff ,
1
,, ,... , w

jif , representing the number

units of work center w∈W that are directly transferred from
activity i (when it finishes) to activity j (when it starts). In
order to reduce the number of transportation arcs and
simplify the flow network representation, all resources
transferred between two activities can be grouped on the
same resource flow arc >ΨΩ=< jijimiji df ,,,, , where mid ,
is the duration of activity i when processed in mode m.

ji,Ω and ji,Ψ are the set of labors and work centers units
transferred from i to j, respectively. Considering again our
example, Figure 2 gives a feasible solution of the
scheduling problem and illustrates the associated flow
network based on the new model-building. The conjunctive
arcs (thin arrows) of E = {(3,4), (2,5), (1, 6)} represent
precedence constraints between activities and resource
transportation arcs (bolded arrows) of K ∪ W correspond
to the labors and work center units transferred between
activities.

Figure 2: Flow network representation

3 LOWER BOUND
In this section, three makespan lower bounds are
presented, which can be realized efficiently with small
computational effort. The following three lower bounds
exploit the problem structure of MRCPSP-MS.
Critical Path Bound (LB1): The project duration when
relaxing resource constraints and assigning shortest
modes to the activities represents a simple lower bound on
the project completion time. In the previous example, LB1
is equal to 15.
Resource Capacity Bound (LB2): MRCPSP-MS can be
relaxed by discarding precedence constraints skill
requirement and work center capacity constraints. A bound
value is computed as the total workload divided by the
amount of available labor. For our example LB2 = 22.

 { }∑
∈

∈ ⎥⎦
⎤

⎢⎣
⎡=

Ai
mimim

KdaLB
i

,,2 min
M

 (2)

Work Center Capacity Bound (LB3): For each work center
w ∈ W we compute a lower bound based on the same
principle used in the computation of LB2. Let’s Aw be the
set of activities which have to be processed by the work
center w. For our example LB3 = 15. LB3 can be
expressed as follow:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥⎦
⎤

⎢⎣
⎡= ∑

∈
∈∈

w
Ai

mi
w
mimw

ZdzMaxLB
w

i
/)(min ,,3 MW

 (3)

The makespan lower bound is then the maximum between
these three bounds:

),,()(321max LBLBLBMAXCLB = (4)

4 TABU SEARCH ALGORITHM
Tabu search algorithm uses a neighborhood search
procedure to iteratively move from a solution x to a solution
x' ∈ N(x) in the neighborhood of x, until some stopping
criterion has been satisfied. At each iteration, TS examines
all the solutions close to the current solution by performing
a set of candidate moves as defined by the neighborhood
structure. In order to escape from a local optimum and
avoid cycling, moves that would bring back to a recently
visited solution are kept in tabu list, and forbidden or
declared tabu for a certain number of iterations If all the
candidate moves are tabu, then the oldest element on the
tabu list is removed until a permissible move can be
selected. Recently, the theory and the practice of tabu
search were extensively improved by Glover & Laguna [11]
and by Hertz, Taillard & De Werra [12] by aspiration criteria
and intensification and diversification schemes.

4.1 The Neighborhood structure
The majority of the local methods, applied to MRCPSP, the
assignment and the sequencing of operations on the
resources are treated separately. Either directly, i.e.
assignment and sequencing are considered independently
or indirectly in a local search algorithm where reassignment
and resequencing are two different types of transitions. The
proposed Tabu Search algorithm is distinguished mainly by
two aspects. Firstly, the proposed neighborhood function is
based on the flow network representation described above,
where the decisions of resequencing activities and re-
assignment resources and execution modes are not
differentiated. Secondly, the TS algorithm uses a
sophisticated set of moves for neighborhood exploration
and evaluates the performance of each visited solution
without making the move. Since our objective is to
minimize the duration of the project, these movements are

5 t

10

0
0

0

10

15

7

5

6

<10|2,5|1,1>

<0|2,5|1,1>
<10|2,5|1,1>

<7|1,4|1,1>

<6|3,4|1,2><0|3|1,0>

<10|1,4 |1,1>

s

4

6

[10, 0]

[21, 0]

[15, 0]

[10, 6]

[0, 7]

[0, 11]

[0, 6]

[0, 21]

2

3

1

<0|1,4|1,1>

<15|3|0,1>

applied only on the set of critical activities. An activity is
defined to be a critical activity if and only if:

1,,, +=++ nmimimi rqdr (5)

The neighborhood N(x) of a visited solution x is explored by
applying one of the following two types of moves:
Change_Alloc(i): Change the resource allocation of the
activity i by replacing the critical incoming and outgoing
resource arcs of activity i by another eligible resource arcs.
Such reinsertion has to be performed only by making some
of the resource units initially transferred from an activity u
to an activity v to be transferred from u to i and then from i
to v. This move is applied only on the set of critical
activities verifying:

)(max, pp
Ap

mi drr +>
−∈

or)(max, ss
As

mi dqq +>
+∈

 (6)

Change_mod(i, m, m’): Change the current execution
mode m of the activity i by m’∈ Mi, satisfies m’ ≠ m.
Performing this movement imply removing and adding the
following flow units :

',,',,supsupsup, mimimimii WWKKWKf −−== (7)

mimimimiaddaddaddi WWKKWKf ,',,',, −−== (8)

∅=∩ addii ff ,sup, (9)

These two flows are disjoined, because the amount of the
consumed resources can only increase or decrease while
passing from a mode to another. An arc (s, t) ∈ iΓ is
feasible for the insertion of activity i, if the resulting graph is
acyclic, and the following necessary and sufficient
feasibility conditions are satisfied:

Proposition 1: An arc (s, t) such that { }+++∉ iii WKAs ,, and

{ }−−−∉ iii WKAt ,, is feasible for the insertion of activity i if :

{ }∅≠∩ addts ff , (10)

()jj
Vj

s drMinr
i

+′<
+′∈

 (11)

()j
Vj

tt rMaxdr
i
−′∈

<+ (12)

Indeed, condition (11) checks that the flow of the arc (s, t)
may satisfy at least part of the resource requirement of
activity i while condition 11 and 12 ensure the acyclic
property of the new generated flow graph G’ after the
insertion of activity i.
The procedures used to perform these two movements
employ similar mechanisms, which substitute all the critical
incoming resource arcs of the considered activity by new
feasible set of arc iΓ which minimizes or degrades less the
makespan of the project. The REINSERT algorithm is as
follows:
Algorithm REINSERT (i, supf , addf)

1. Decide on which incoming and outgoing set of arcs of
activity i the flow supf must be removed.

2. Create a new routing arcs between the predecessor
and successor of activity i that minimize the project
makespan.

3. Define the set of eligible arcs for the activity insertion

4. For each feasible insertion arc compute a lower bound
of the project makespan increase.

5. Select a subset of eligible arcs that satisfy capacity
constraints and flow conservation such as the resulting
makespan is minimal.

For that, it would be necessary to be able to evaluate all
the eligible insertion arcs. However, a complete evaluation,
i.e. calculation of the starting/finishing times of all the tasks,
takes a considerable time. This led us to define a lower
bound which can evaluate the quality of a move without
actually making it. The lower bound of the makespan after
selecting the feasible arc (s, t) is defined as follows:

imii qprCLb ′++′= ′,max)((13)

⎟
⎠
⎞

⎜
⎝
⎛ ++=′

−′∈
′ msmsmpmp

Vp
mi prprr

i
,,,,,),(maxmax (14)

⎟
⎠
⎞

⎜
⎝
⎛ ++=′

+′∈
mtmtmpmf

Vf
i qpqpq

i
,,,,),(maxmax (15)

Where { }+−+−+−+− ′∪′∪=′ ////
iiii WKAV the set of incoming /

outgoing is arcs of activity i after deleting the flow supf .

4.2 Starting solution
An initial solution is generated by a very simple heuristic
using a serial scheduling scheme and the SLK-SFM priority
rule. The serial schedule generation scheme (SSGS)
consists of g = 1… n stages, in each of which one activity
is selected and scheduled. Each stage is made up of three
steps. Step (1) at each decision point the activity from the
set of eligible activities (all their predecessors have been
scheduled) with the smallest slack is selected, slack
calculation being based on the shortest possible duration
for the not-yet-scheduled activities and the selected
duration for already-scheduled activities. Step (2) SFM rule
chooses the mode with the shortest feasible duration and
the selected activity during step 1 is scheduled at the
earliest precedence and resource feasible starting time.
Step (3) states that the workers must be assigned to the
activities in order to balance the workload on the
resources.

4.3 Tabu search mechanisms
The aspiration criterion used was that a tabu move would
be accepted if it produced a solution that was better than
the best solution found to date. If a move that is set tabu
would lead to the better solution better than the best
solution found to date, the tabu status is revoked, and the
corresponding move is selected. This aspiration criterion is
known as global aspiration by objective.
The long and intermediate term memory components were
supplied by using frequency-based memory. Essentially,
frequency-based memory stores information about the
frequency that a move with a specific attribute has
occurred. After a specified amount of time, the long term
memory is called to ensure that the search process
examines solutions throughout the entire solution space
(diversification). After the same amount of time the
intermediate term memory was then called to intensify
(intensification) the search by finding a new starting point
which tended to share common features solutions
examined.
The diversification and Intensification can accomplished
during the insertion process by selecting the arcs which
lead to the more or less encountered situation. This can be
done by modifying the lower bound of the feasible insertion

19th International Conference on Production Research

arcs which makes arcs containing less (diversification) or
more (Intensification) frequently encountered attributes
more attractive.

4.4 Restricting the solution space
It was shown by [13] that nearly 90% of the time of
resolution is taken by the evaluation of the neighborhood.
Consequently, it is interesting to constrain the
neighborhood as possible in order to decrease the
complexity of resolution. Hence, we investigate the impact
of a solution space restriction by iteratively solving
decomposed sub-problems of the main problem under
study. A decomposition approach for RCPSP has been
proposed by [14]. This approach consists of splitting each
problem instance into smaller sub-problems. The search is
then continued on the sub-problems, and the resulting sub-
schedules are reincorporated in the schedule of the main
problem. The decomposition-based heuristic (DBH) used in
the TS presented above consist of making moves only on a
set of activities overlapping a predetermined time interval
[ts, tf]. In this way, the set of eligible moves is reduced and
only activities belonging to the space interval are explored.

5 COMPUTATIONAL EXPERIMENTS
To evaluate the performance of the TS algorithm proposed
in this study, we apply the algorithm to several established
benchmark instances taken from literature. The problem
tackled in this paper can be seen as an extension the
standard flexible job-shop scheduling problem (FJSP) [15],
the basic RCPSP and its multi-mode version [16, 17, 18].
The search is stopped when the number of sequences
evaluated reaches a given maximal value nMax = 2000. All
numerical experiments are also conducted with a unique
parameter setting for all problem sets. The computational
experiments have been performed on the following
benchmarks:
1. Brandimarte Instances [15] : The data set of FJSP

which consists of ten problems with number of jobs
ranging from 10 to 20, number of machines ranging
from 4 to 15, and number of operation for each job
ranging from 5 to 15.

2. Patterson and Alvarez instances : 110 “easy” Patterson
instance [16] (from 6 to 51 activities) and the 48 Alvarez
instances with 103 activities [17].

3. Kadrou and Najid (ND) instances [18]: The data set of
MRCPSP-SL with 50, 100, 150 and 200 activities. Each
instance set was divided into three subsets (100
instances per subset) differing by graph complexity,
resource profile, and execution mode flexibility (easy,
medium, and hard subsets), which are 1200 instance in
total.

Table 2 compares the proposed TS to the best results of
the tabu search of Mastrolilli and Gambardella [5] and with
the different genetic algorithms proposed by Pezzella et al.
[19] and Chen et al. [20]. The first column reports the
instance name; the second column reports the best known
lower bound. The third and fourth column report our best
makespan and the average and maximum computational
times required for each run (i.e., 2000 iterations). The
remaining columns report the best results of the three
algorithms we compared with, together with the relative
deviation with respect to our TS. The relative deviation is
defined as:

()[] %100/ maxmaxmax ×−= compTScomp CCCdev (16)

Where TSCmax the makespan is obtained by our algorithm,

and compCmax is the makespan of algorithm we compare to.
The values of LB within parenthesis are optimal and the
makespan associated with asterisk is the best known upper
bound by far. The results show that our algorithm
outperforms the other two Genetic Algorithms and have
comparable performance as M.G.
The results on Patterson and Alvarez instances are
displayed in table 3. For each problem set, we display in
the first two columns the average/maximal deviation from
the optimum or from the best known upper bound, the
average/maximal CPU time required and the number of
improved solutions are indicated in the next two columns.
We have solved to optimality all the PAT instances and
found five new best solutions on ALV sets.
In table 4, we compare our algorithm with the MMSH
(Multi-mode Multi-skill Heuristic) heuristic proposed by
kadrou et al. [18]. The results reveal that our TS is capable
to report consistently good results and outperform MMSH
heuristic on all tested instances. The deviation of
computational time seems quite large. This is because the
size of neighborhood varies from instance to instance. In
closing, we emphasize that our code is designed for the
MRCPSP-MS. In fact, among the tested algorithms, only
our code can be applied to different extension of RCPSP
problem and achieve reasonable solution quality. We
believe that the computational value of our TS procedure
can be considerably improved by an extensive test which
allows finding an adequate parameters setting of the TS.

Table 3: The computational results of RCPSP instances

Prob. av.(max)
∆LB

best av. (max)
CPU

#new
best

PAT 0 (0) 110/110 1.24 (16) -
ALV -1.36 (4.13) 43/48 215.14 5

Table 2: The computational results of the FJSP instances

Prob. LB TS CPU(s) M.G. dev(%) Pezzella dev(%) Chen dev(%)
Mk01 36 40* 2.34 40 0 40 0 40 0
Mk02 24 26* 1.27 26 0 26 0 29 +10.34
Mk03 (204) 204* 0.58 204 0 204 0 204 0
Mk04 48 60* 10.93 60 0 63 +4.76 63 +4.76
Mk05 168 173* 0.45 173 0 173 0 181 +4.41
Mk06 33 59 17.67 58* -1.72 63 +6.34 60 +1.66
Mk07 133 141 15.4 144 +2.08 139* -1.44 148 +4.72
Mk08 (523) 523* 0.02 523 0 523 0 523 0
Mk09 299 307* 8.85 307 0 311 +1.28 308 +0.32
Mk10 165 205 73.78 198* -3.5 212 -7.07 212 +3.30

Table 4: Summary of computational results of the KN instances

Prob.
TS MMSH

av.(max) ∆LB # best av. (max) CPU(s) av.(max) ∆LB # best(%) av. (max) CPU(s)
n = 50 13.73 (17) 300/300 0.44 (17) 26.93 (33) 216/300 0.7
n = 100 19.64(25) 300/300 10 (80) 28.79 (39) 143/300 3.3
n = 150 27.42(46) 300/300 30(200) 28.79 (39) 137/300 8.33
n = 200 33.14 (43) 300/300 156(540) 28.79 (39) 83/300 16.33

6 CONCLUSION AND FUTURE RESEARCH
In this paper, a tabu search algorithm for solving the multi-
mode resource constrained project scheduling problem
with multi-skilled laborers is presented. It should be clear
that this problem is a very difficult problem to solve (NP-
hard). Moreover, to our knowledge, this problem has never
been completely dealt with in literature, however, it can be
encountered in many manufacturing area such as
assembly systems. The neighborhood used in the
proposed Tabu Search algorithm is based on reinserting
critical activities on possibly different resource sets that
minimize the makespan such that feasibility is maintained.
It is shown that a neighbor can be computed quite
efficiently and that a move can be evaluated without
making it by computing a lower bound on the makespan
after the move which speed up considerably the search
process.
Although our procedure was implemented to resolve a very
general scheduling problem, the results obtained seem to
indicate that the performance of the proposed TS remains
correct when applied to the standard RCPSP and
outperforms the algorithms dedicated to FJSP. We believe
that the computational value of our TS procedure can be
considerably improved by an extensive test which allows
finding an adequate parameters setting of the TS. Such
experiments, however, are beyond the intended scope of
this paper. Finally, the development of tight lower bounds
for the MRCPSP-MS problem will undoubtedly constitute a
promising area of future research.

7 REFERENCES
 [1] Herroelen W., De Reyck B. and Demeulemeester E.,

1998, Resource-Constrained Project Scheduling: A
survey of recent developments, Computer Ops Res.,
25, 279–302.

[2] Buddhakulsomsiri J., Kim D. S., 2006, Priority rule-
based heuristic for multi-mode resource-constrained
project scheduling problems with resource vacations
and activity splitting, EJOR.

[3] Lorenzoni L.L, Ahonen H., De Alvarenga A.G., 2006,
A multi-mode resource-constrained scheduling
problem in the context of port operations. Computers
and Industrial Engineering, 50, 55 - 65.

[4] Mori M., Tseng C.C, 1996, A genetic algorithm for
multi-mode resource constrained project scheduling
problem, European Journal of Operational Research,
100, 134–141.

[5] Mastrolilli M., Gambardella L.M., 2000, Effective
Neighborhood Functions for the Flexible Job Shop
Problem, Journal of Scheduling, 3, 3–20.

[6] Blazewicz, J., Lenstra, J.K. and Rinnooy Kan, A. H.
G., 1959, Scheduling projects to resource constraints:
Classification and complexity, Discrete Applied
Mathematics, 5, 11–24.

[7] Dauzere-Peres S., Roux J., Lasserre J.B., 1998,
Multi-resource shop scheduling with resource
flexibility, EJOR, 107, 289-305.

[8] Dauzere-Peres S., Pavageau C., 2003, Extensions of

an integrated approach for multi-resource shop
scheduling, IEEE Transactions, 33, 207–213.

[9] Tereso A. P., Mota J.R. and Lameiro R.J., 2005,
Adaptive Resource Allocation Technique to
Stochastic Multimodal Projects: a distributed platform
implementation in Java, Dynamic Programming
Special Issue of the Journal of Control and
Cybernetics, June 2005.

[10] Tereso A. P., Araújo M. M. and Elmaghraby S.
E.,2004, The Optimal Allocation in Stochastic Activity
Networks via the Electromagnetism Approach,
Proceedings of the Project Management and
Scheduling ’04, Nancy - France.

[11] Glover, F., and Laguna, M., 1993, ‘‘Tabu Search,’’ in
C. Reeves (Ed.), Modern Heuristic Techniques for
Combinatorial Problems, Blackwell Scientific, Oxford,.

[12] Hertz A., de Werra D., 1990, The Tabu Search
Metaheuristic: how we used it, Annals of Mathematics
and Artificial Intelligence 1, 111-121.

[13] Eikelder T. HMM., Aarts, B.J.M., Verhoeven, M.G.A.,
Aarts, EHL., 1997, Sequential and Parallel Local
Search Algorithms for Job Shop Scheduling,
Proceedings of the 2nd International Conference on
Meta-heuristics, 75-80.

[14] Mausser, H.E., Lawrence, S.R., 1997, Exploiting
block structure to improve resource-constrained
project schedules. In: Glover, F., Osman, I. and
Kelley, J. (Eds.), Metaheuristics 1995: State of the
art, Kluwer, Maryland.

[15] Brandimarte, P., 1993, Routing and scheduling in
flexible job shop by tabu search, Annals of Operation
Research, 41, 157-183.

 [16] Patterson, J., 1984, A Comparison of Exact
Approaches for Solving the Multiple Constrained
Resource Project Scheduling Problem, Management
Science 30(7), 854–867.

[17] Alvarez-Valdés, R. and Tamarit, J.M., 1989, Heuristic
Algorithms for Resource-Constrained Project
Scheduling: A Review and an Empirical Analysis, In
R. Słowiński and J. Weglarz (eds.), Advances in
Projet Scheduling. Amsterdam: Elsevier, pp. 113–
134.

[18] Kadrou Y., Najid M.N, 2006, A new heuristic to solve
RCPSP with multiple execution modes and multi-
Skilled Labor, IMACS Multiconference on Conference
on Computational Engineering in Systems
Applications.

[19] F. Pezzella, G. Morganti, G. Ciaschetti, 2007, A
genetic algorithm for flexible job-shop scheduling
problem, Computer & Operations Research, To
appear.

[20] Chen, H., Ihlow, J. and Lehmann, C., 1999, A Genetic
Algorithm for Flexible Job-Shop Scheduling, IEEE
International Conference on Robotics and
Automation, 1120-1125, Detroit.

