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Abstra
t

This work deals with the problem of the least-weight design of a 
omposite sti�ened panel

subje
t to 
onstraints of di�erent nature (me
hani
al, geometri
al and manufa
turability

requirements). To fa
e this problem, a multi-s
ale two-level (MS2L) design methodology

is proposed. This approa
h aims at optimising simultaneously both geometri
al and me-


hani
al parameters for skin and sti�eners at ea
h 
hara
teristi
 s
ale (mesos
opi
 and

ma
ros
opi
 ones). In this ba
kground, at the �rst level (ma
ros
opi
 s
ale) the goal is to

�nd the optimum value of geometri
 and me
hani
al design variables of the panel minimis-

ing its mass and meeting the set of imposed 
onstraints. The se
ond-level problem fo
uses

on the laminate mesos
opi
 s
ale and aims at �nding at least one sta
king sequen
e (for

ea
h laminate 
omposing the panel) meeting the geometri
al and material parameters pro-

vided by the �rst-level problem. The MS2L optimisation approa
h is based on the polar

formalism to des
ribe the ma
ros
opi
 behaviour of the 
omposites and on a spe
ial geneti


algorithm to perform optimisation 
al
ulations. The quality of the optimum 
on�gurations

is investigated, a posteriori, through a re�ned �nite element model of the sti�ened panel

making use of elements with di�erent kinemati
s and a

ura
y in the framework of the

Carrera's Uni�ed Formulation (CUF).
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1. Introdu
tion

Anisotropi
 materials, su
h as �bres-reinfor
ed 
omposites, are extensively used in

many industrial �elds thanks to their pe
uliar features: high sti�ness-to-weight and strength-

to-weight ratios that lead to a substantial weight saving when 
ompared to metalli
 alloys.

The problem of designing a 
omposite stru
ture is quite 
umbersome and 
an be 
on-

sidered as a multi-s
ale optimisation problem. The 
omplexity of the design pro
ess is

a
tually due to two intrinsi
 properties of 
omposite materials, i.e., heterogeneity and

anisotropy. Heterogeneity gets involved mainly at the mi
ros
opi
 s
ale (i.e., that of 
on-

stitutive phases), whilst anisotropy intervenes at both mesos
opi
 s
ale (that of the 
on-

stitutive lamina) and ma
ros
opi
 one (that of the laminate).

To illustrate the di�
ulty of properly design/optimise at ea
h relevant s
ale a 
ompos-

ite stru
ture the study presented in this work fo
uses on a real-world engineering problem

that 
an be 
onsidered as paradigmati
: the multi-s
ale design of a least-weight 
ompos-

ite sti�ened panel subje
t to a given set of 
onstraints of di�erent nature (geometri
al,

me
hani
al, te
hnologi
al, et
.).

Sti�ened panels are widely used in many stru
tural appli
ations, mostly be
ause they

allow for a substantial weight saving. Of 
ourse, this point is of paramount importan
e

espe
ially in air
raft design, where an important redu
tion of the stru
tural mass 
an be

a
hieved if 
omposite laminates are used in pla
e of aluminium alloys. A drawba
k of su
h a


hoi
e is that the design pro
ess be
omes more 
umbersome than that of a 
lassi
al metalli


stru
ture. In fa
t, though the use of laminated stru
tures is not a re
ent a
hievement in

stru
tural me
hani
s, up to now no general methods exist for their optimum design. In

pra
ti
al appli
ations, engineers always use some simplifying rules to take into a

ount for

some relevant properties (whi
h are very di�
ult to be formalised otherwise).

Several works on the optimum design of 
omposite sti�ened panels 
an be found in

literature. Nagendra et al. [1℄ made use of a standard geneti
 algorithm (GA) to �nd a

solution for the problem of minimising the mass of a 
omposite sti�ened panel subje
t to


onstraints on the �rst bu
kling load, on maximum allowable strains and �te
hnologi
al�


onstraints on ply orientation angles. In [2℄ Bisagni and Lanzi de�ned a single-step post-

bu
kling optimisation pro
edure for the design of 
omposite sti�ened panels subje
ted to


ompression load. The pro
edure was based on a global approximation strategy, where the

stru
ture response is given by an arti�
ial neural network (ANN) trained by means of �nite

element (FE) analyses, while the optimisation tool 
onsisted in a standard GA. Lanzi and

Giavotto [3℄ proposed a multi-obje
tive optimisation pro
edure for the design of 
omposite

sti�ened panels 
apable to take into a

ount the post-bu
kling behaviour. The pro
edure

made use of a standard GA and three di�erent methods for surrogate modelling: ANN,

Radial Basis Fun
tions and Kriging approximation. In [4℄ Barkanov et al. dealt with the

problem of the optimum design of lateral wing upper 
overs by 
onsidering di�erent kinds of

sti�eners and loading 
onditions. Liu et al. [5℄ utilised the smeared sti�ness-based method

for �nding the best sta
king sequen
es of 
omposite wings with blending and manufa
turing


onstraints by 
onsidering a set of pre-de�ned �bre angles, i.e., 0◦, 90◦ and ±45◦. In [6℄

López et al. proposed a deterministi
 and reliability-based design optimisation of 
omposite

sti�ened panels 
onsidering post-bu
kling regime and a progressive failure analysis. Further

works on this topi
 
an be found in literature. For example, and without any ambition

of exhaustiveness, the studies of Lilli
o et al. [7℄, Butler and Williams [8℄, Wiggenraad et

al. [9℄, Kaletta and Wolf [10℄ 
an be 
ited too.

A 
ommon limitation of the previous works is the utilisation of simplifying hypothe-

ses and rules in the formulation of the sti�ened panel design problem. These restri
tions

mainly fo
us on the nature of the sta
king sequen
e of the laminates 
onstituting the panel.
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These assumptions are used on the one hand to obtain a short-
ut to a possible solution,

i.e., to eliminate from the true problem some parti
ularly di�
ult points or properties to be

obtained. On the other hand, some of su
h rules are 
onsidered to prevent the �nal stru
-

ture from some undesired phenomena, though this is never 
learly and rigorously stated

and proved. Unfortunately, the use of these simple rules has a main drawba
k: the de-

sign spa
e is extremely shrunk, thus their utilisation automati
ally drives the optimisation

algorithm only towards suboptimal solutions.

Two examples are the use of symmetri
 sta
king sequen
es, a su�
ient but not ne
es-

sary 
ondition for membrane-bending un
oupling and the use of balan
ed sta
ks to obtain

orthotropi
 laminates. When symmetri
 sta
ks are utilised, the design is done using half

of the layers, whi
h means also half of the design variables. This kind of sta
k impli
itly

implies a redu
tion of the design spa
e: it is very di�
ult to obtain the lightest stru
-

ture under this hypothesis. Conversely, the use of balan
ed sta
ks, a su�
ient 
ondition

for membrane orthotropy, leads systemati
ally to misleading solutions: whenever su
h a

rule is used, bending orthotropy, a rather di�
ult property to be obtained [11℄, is simply

understated, assumed, but not really obtained, as in [12�15℄.

In air
raft stru
tural design, some other rules are imposed to the design of 
omposite

sti�ened panels, although some of them are not me
hani
ally well justi�ed, see for in-

stan
e [12, 15℄. Among these rules, the most signi�
ant restri
tion is represented by the

utilisation of a limited set of values for the layers orientation angles whi
h are often limited

to the 
anoni
al values of 0◦, 90◦ and ±45◦.
To over
ome the previous restri
tions, in the present study the multi-s
ale two-level

(MS2L) optimisation approa
h for designing anisotropi
 
omplex stru
tures [16�18℄ is

utilised in the framework of the multi-s
ale optimisation of 
omposite sti�ened panels. The

proposed MS2L approa
h aims at proposing a very general formulation of design problem

without introdu
ing simplifying hypotheses and by 
onsidering, as design variables, the full

set of geometri
 and me
hani
al parameters de�ning the behaviour of the panel at ea
h


hara
teristi
 s
ale (mesos
opi
 and ma
ros
opi
).

In the 
ontext of the MS2L methodology, the optimisation problem is split in two

distin
t (but related) sub-problems. At the �rst level (ma
ros
opi
 s
ale) the goal is to �nd

the optimum value of geometri
 and me
hani
al design variables of the panel minimising its

mass and meeting the set of imposed 
onstraints. The se
ond-level problem fo
uses on the

laminate mesos
opi
 s
ale (i.e., the ply-level) and aims at �nding at least one optimum sta
k

(for ea
h laminate 
omposing the panel) meeting the geometri
al and material parameters

resulting from the �rst-level problem. The MS2L approa
h is based on the utilisation of

the polar formalism [19℄ as well as on a GA previously developed by the �rst author [20℄.

The quality of the optimum 
on�gurations is investigated, a posteriori, through a re�ned

�nite element model of the sti�ened panel making use of elements with di�erent kinemati
s

and a

ura
y (in a global-lo
al sense) in the framework of the Carrera's Uni�ed Formulation

(CUF).

The paper is organised as follows: the design problem as well as the MS2L optimisation

strategy are dis
ussed in Se
tion 2. The mathemati
al formulation of the �rst-level problem

is detailed in Se
tion 3, while the problem of determining a suitable laminate sta
king

sequen
e is formulated in Se
tion 4. A 
on
ise des
ription of the Finite Element (FE)

models of the sti�ened panel are given in Se
tion 5, while the numeri
al results of the

optimisation pro
edure are shown in Se
tion 6. Finally, Se
tion 7 ends the paper with

some 
on
luding remarks.
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2. Multi-s
ale optimisation of 
omposite sti�ened panels

2.1. Problem Des
ription

The optimisation strategy presented in this study is applied to the repetitive unit (RU)

of a 
omposite sti�ened panel typi
ally utilised in air
raft wings. The RU is 
omposed by

the union of a skin and a �omega� shaped stringer (or sti�ener) as illustrated in Fig. 1. The

overall size of the RU are �xed: a = 150 mm is the width of the RU, while b = 600 mm

is its length whi
h represents also the distan
e between two 
onse
utive ribs. It must be

noted that sti�eners are equispa
ed over the panel with a step length equal to a. Both skin

and sti�ener are made of 
arbon-epoxy unidire
tional orthotropi
 laminae whose properties

are listed in Table 1 (taken from [11, 21, 22℄).

The fundamental hypotheses about the ma
ros
opi
 me
hani
al response of the RU

fo
us essentially on the laminate behaviour and geometry (for both skin and stringer).

• Ea
h laminate is made of identi
al plies (i.e., same thi
kness tply and material).

• The material of the 
onstitutive layer has a linear elasti
 transverse isotropi
 be-

haviour.

• Ea
h laminate is quasi-homogeneous and fully orthotropi
 [18, 22�24℄.

• At the ma
ros
opi
 s
ale the elasti
 response of ea
h laminate is des
ribed in the the-

oreti
al framework of the FSDT and the sti�ness matri
es of the plate are expressed

in terms of the laminate polar parameters [11, 21℄.

• No delamination o

urs at the plies interfa
e for both skin and stringer [25℄.

It is noteworthy that, no simplifying hypotheses are made on the geometri
 and me-


hani
al parameters of the RU (e.g., on the nature of the sta
king sequen
es). Only avoid-

ing the utilisation of a priori assumptions that extremely shrink the solution spa
e (e.g.,

the utilisation of symmetri
, balan
ed sta
ks to attain membrane/bending un
oupling and

membrane orthotropy, respe
tively) one 
an hope to obtain the best optimum solution for

a given problem: this is a key-point in the proposed approa
h.

2.2. Des
ription of the multi-s
ale two-level optimisation strategy

The main goal of the MS2L optimisation strategy is the least-weight design of the


omposite sti�ened panel subje
t to 
onstraints of di�erent nature, i.e., me
hani
al, geo-

metri
al as well as feasibility and te
hnologi
al requirements. The optimisation pro
edure

is arti
ulated into the following two distin
t (but related) optimisation problems.

First-level problem. The aim of this phase is the determination of the optimal value

of both me
hani
al and geometri
 parameters of the laminate 
omposing the RU of the

panel in order to minimise its weight and to satisfy, simultaneously, the full set of imposed

requirements (formulated as optimisation 
onstraints). At this level ea
h laminate is mod-

elled as an equivalent homogeneous anisotropi
 plate whose behaviour is des
ribed in terms

of the laminate polar parameters [11, 21℄. Therefore, the design variables of this phase are

the geometri
 parameters of the RU as well as the laminate polar parameters of both skin

and sti�ener.

Se
ond-level problem. The se
ond level of the strategy aims at determining a suitable

lay-up for both skin and stringer laminates (i.e., the laminate mesos
opi
 s
ale) meeting

the optimum 
ombination of their material and geometri
al parameters provided by the

�rst-level problem. The goal is, hen
e, to �nd at least one sta
king sequen
e (for ea
h

4



laminate) whi
h has to be quasi-homogeneous, fully orthotropi
 and that has to satisfy the

optimum values of the polar parameters resulting from the �rst step. At this level of the

strategy, the design variables are the layer orientations.

3. Mathemati
al formulation of the �rst-level problem

The overall features of the stru
ture at the ma
ros
opi
 s
ale have to be optimised

during this phase. The mass minimisation of the sti�ened panel RU will be performed by

satisfying the set of optimisation 
onstraints listed below:

1. a 
onstraint on the �rst bu
kling load of the RU;

2. geometri
 and te
hnologi
al 
onstraints related to the geometri
al parameters of the

RU;

3. feasibility 
onstraints on the laminate polar parameters of both skin and stringer.

These aspe
ts are detailed in the following subse
tions.

3.1. Geometri
al design variables

The design variables for the problem at hand are of two types: geometri
al and me
han-

i
al. Some of the geometri
al parameters of the RU of the sti�ened panel are illustrated

in Fig. 1. Of 
ourse, these parameters are not independent. The independent geometri


design variables are:

• the laminate thi
kness for both skin and stringer, i.e., tS and tB, respe
tively;

• the width a2 of the stringer bottom �ange;

• the stringer height h;

• the size a3.

The size a1 
an be related to the previous variables,

a1 =
a

2
− a2 − a3 , (1)

while the angle of the in
lined wall of the sti�ener is

θ = atan

(

h

a3 −
a2
2

)

. (2)

The previous design variables must satisfy a set of te
hnologi
al and geometri
al require-

ments. Firstly, the overall thi
kness of the laminates 
omposing the RU is a dis
rete

variable, the dis
retisation step being equal to the thi
kness of the elementary layer, i.e.,

tply (see Table 1):

tα = nαtply , α = S,B , (3)

where nS and nB are the number of layers of skin and sti�ener, respe
tively. It must be

highlighted that the optimum value of the laminate thi
kness determines also the optimum
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number of layers n to be used during the se
ond-level design problem (for both skin and

stringer). Se
ondly, parameters ai, (i = 1, 2, 3) have to meet the following 
onditions:

a1 > 0,

a3 ≥
a2
2
.

(4)

First inequality is ne
essary to avoid 
onta
t between two 
onse
utive stringers, while

se
ond one must be imposed in order to keep θ non-negative. In the framework of the

mathemati
al formalisation of the �rst-level problem, it is useful to introdu
e dimensionless

geometri
 design variables, as follows:

c1 = 2
a2
a
, c2 = 2

a3
a2

, c3 =
h

a2
. (5)

The dimensionless geometri
 parameters 
an be 
olle
ted into the ve
tor of geometri
 design

variables de�ned as:

ξTg = {nS, nB , c1, c2, c3} . (6)

In this ba
kground, inequalities of Eq. (4) 
an be reformulated as:

g1 (ξg) = 2c1 + c1c2 − 2 < 0,

g2 (ξg) = 1− c2 ≤ 0.
(7)

3.2. Me
hani
al design variables

In the framework of the FSDT [26℄ the 
onstitutive law of the laminate (expressed

within its global frame R = {0;x, y, z}) 
an be stated as:







N

M







=





A B

B D











ε0

χ0







, (8)

F = Hγ0 , (9)

where A, B and D are the membrane, membrane/bending 
oupling and bending sti�ness

matri
es of the laminate, while H is the out-of-plane shear sti�ness matrix. N, M and

F are the ve
tors of membrane for
es, bending moments and shear for
es per unit length,

respe
tively, whilst ε0, χ0 and γ0 are the ve
tors of in-plane strains, 
urvatures and out-

of-plane shear strains of the laminate middle plane, respe
tively, (in the previous equations

Voigt's notation has been utilised [26℄).

In order to analyse the elasti
 response of the multilayer stru
ture the best pra
ti
e
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onsists in introdu
ing the laminate normalised sti�ness matri
es:

A∗ =
1

t
A,

B∗ =
2

t2
B,

D∗ =
12

t3
D,

H∗ =











1

t
H (basic),

12

5t
H (modified).

(10)

where t is the total thi
kness of the laminate.

As dis
ussed in [11, 21℄, in the framework of the polar formalism it is possible to

express the Cartesian 
omponents of these matri
es in terms of their elasti
 invariants. It


an be proven that, in the FSDT framework, for a fully orthotropi
, quasi-homogeneous

laminate (i.e., a laminate having the same orthotropi
 behaviour in terms of normalised

membrane and bending sti�ness matri
es and whose membrane/bending 
oupling sti�ness

matrix is null) the overall number of independent me
hani
al design variables des
ribing its

me
hani
al response redu
es to only three, i.e., the anisotropi
 polar parameters RA∗

0K and

RA∗

1 and the polar angle ΦA∗

1 (this last representing the orientation of the main orthotropy

axis) of matrix A∗
. For more details on the polar formalism and its appli
ation in the


ontext of the FSDT the reader is addressed to [11, 21, 27℄.

In addition, in the formulation of the optimisation problem for the �rst level of the

strategy, the feasibility 
onstraints on the polar parameters (whi
h arise from the 
ombi-

nation of the layers orientations and positions within the sta
k) must also be 
onsidered.

These 
onstraints ensure that the optimum values of the polar parameters resulting from

the �rst step 
orrespond to a feasible laminate that will be designed during the se
ond step

of the MS2L strategy, see [28℄. Sin
e the laminate is quasi-homogeneous, su
h 
onstraints


an be written only for matrix A∗
:























−R0 ≤ RA∗

0K ≤ R0 ,

0 ≤ RA∗

1 ≤ R1 ,

2

(

RA∗

1

R1

)2

− 1−
RA∗

0K

R0
≤ 0 .

(11)

In Eq. (11), R0 and R1 are the anisotropi
 moduli of the ply redu
ed sti�ness matrix [11℄.

As in the 
ase of geometri
 design variables, it is very useful to introdu
e the following

dimensionless quantities:

ρ0 =
RA∗

0K

R0
, ρ1 =

RA∗

1

R1
. (12)

In this ba
kground, Eq. (11) writes:















−1 ≤ ρ0 ≤ 1 ,

0 ≤ ρ1 ≤ 1 ,

2 (ρ1)
2 − 1− ρ0 ≤ 0 .

(13)
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The me
hani
al design variables must be 
onsidered for ea
h laminate 
onstituting

the panel RU, i.e., for both skin and sti�ener laminates (ρ0α and ρ1α with α = S,B).

Moreover, the main orthotropy dire
tion of the generi
 laminate 
an be set equal to zero,

i.e., ΦA∗

1 = 0 for skin and stringer, whi
h means that the main orthotropy axis is aligned

with the dire
tion of the applied load. Therefore, the dimensionless me
hani
al parameters

de�ned above 
an be grouped into the ve
tor of me
hani
al design variables:

ξTm = {ρ0S , ρ1S , ρ0B , ρ1B} . (14)

First and se
ond 
onstraints of Eq. (13) 
an be taken into a

ount as admissible intervals

for the relevant optimisation variables, i.e., on ρ0 and ρ1. Hen
e, the resulting feasibility


onstraints on the skin and stringer dimensionless polar parameters be
ome:

g3(ξm) = 2 (ρ1S)
2 − 1− ρ0S ≤ 0 ,

g4(ξm) = 2 (ρ1B)
2 − 1− ρ0B ≤ 0 .

(15)

For a wide dis
ussion upon the laminate feasibility and geometri
al bounds as well as

on the importan
e of the quasi-homogeneity assumption the reader is addressed to [28℄.

3.3. Mathemati
al statement of the problem

As previously stated, the aim of the �rst-level optimisation is the minimisation of the

mass of the RU of the sti�ened panel by satisfying, simultaneously, 
onstraints of di�erent

nature. The design variables (both geometri
al and me
hani
al) of the problem 
an be


olle
ted into the following ve
tor:

ξT =
{

ξTg , ξ
T
m

}

. (16)

In this 
ontext the optimisation problem 
an be formulated as a 
lassi
al 
onstrained non-

linear programming problem (CNLPP):

min
ξ

M (ξ)

Mref

subje
t to:











1.05 −
λ (ξ)

λref
≤ 0 ,

gi(ξ) ≤ 0 , with i = 1, · · · , 4 .

(17)

The design spa
e of the �rst-level problem, together with the type of ea
h design variable,

is detailed in Table 2. In Eq. (17) M is the overall mass of the RU, λ is the �rst bu
kling

load of the sti�ened panel, while Mref and λref are the 
ounterparts for a referen
e solution

whi
h is subje
t to the same boundary 
onditions (BCs) as those applied on the RU of the

panel that will be optimised. The properties of the referen
e 
on�guration of the RU are

reported in Table 3.

3.4. Numeri
al strategy

Problem (17) is a non-
onvex CNLPP in terms of both geometri
al and me
hani
al

variables. Its non-linearity and non-
onvexity is due on the nature of the bu
kling load
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onstraint that is a non-
onvex fun
tion. In addition, the 
omplexity of su
h a problem is

also due to the non-linear feasibility 
onstraints on the laminate polar parameters.

The total number of design variables is nine while that of optimisation 
onstraints is

�ve (see Eq. (17)). Furthermore, the nature of design variables is di�erent (see Table 2):

integer (nS and nB), dis
rete (c1, c2, c3) and 
ontinuous (ρ0S , ρ1S , ρ0B , ρ1B) variables are
involved in the de�nition of this CNLPP.

For the resolution of problem (17) the GA BIANCA [20, 29℄ 
oupled with the FE

model of the panel RU (for 
al
ulating the �rst bu
kling load of the stru
ture) has been

utilised as optimisation tool for the solution sear
h, see Fig. 2. The GA BIANCA was

already su

essfully applied to solve di�erent kinds of real-world engineering problems, see

for example [30�33℄.

As shown in Fig. 2, for ea
h individual at ea
h generation, the numeri
al tool performs

a FE analysis for 
al
ulating the �rst bu
kling load (eigenvalue problem) of the sti�ened

panel as well as its weight. The inputs of the FE model of the RU (implemented in

ANSYS

r
environment) are both geometri
al and me
hani
al parameters (generated by

BIANCA). The GA elaborates the results provided by the FE model in order to exe
ute

the geneti
 operations. These operations are repeated until the GA meets the user-de�ned


onvergen
e 
riterion.

The generi
 individual (i.e., a generi
 point in the design spa
e) of the GA BIANCA

represents a potential solution for the problem at hand. The genotype of the individual for

problem (17) is 
hara
terised by only one 
hromosome 
omposed of nine genes, ea
h one


oding a 
omponent of the ve
tor of design variables, see Eq. (16).

4. Mathemati
al formulation of the se
ond-level problem

The se
ond-level problem fo
uses on the lay-up design of the both skin and stringer

laminates. The goal is to determine at least one sta
king sequen
e satisfying the optimum

values of both geometri
 and polar parameters resulting from the �rst level of the strategy

and having the elasti
 symmetries imposed to the laminate within the formulation of the

�rst-level problem, i.e., quasi-homogeneity and orthotropy. In the framework of the FSDT

and 
onsidering the polar formalism for representing the laminate sti�ness matri
es, this

problem 
an be stated in the form of an un
onstrained minimisation problem [11, 21℄:

min
δ

I (fi (δ)) , (18)

with

I (fi (δ)) =

6
∑

i=1

fi (δ) . (19)

where δ ∈ R
n
is the ve
tor of the layer orientations, i.e., the design variables of this phase,

while fi (δ) are quadrati
 fun
tions in the spa
e of polar parameters, ea
h one representing

a requirement to be satis�ed, su
h as orthotropy, un
oupling, et
. For the problem at hand

9



the partial obje
tive fun
tions are:

f1(δ) =

(

|ΦA∗

0 (δ) − ΦA∗

1 (δ)|

π/4
−KA∗(opt)

)2

, f2(δ) =

(

RA∗

0 (δ)−R
A∗(opt)
0

R0

)2

,

f3(δ) =

(

RA∗

1 (δ) −R
A∗(opt)
1

R1

)2

, f4(δ) =

(

|ΦA∗

1 (δ)− Φ
A∗(opt)
1 |

π/4

)2

, f5(δ) =

(

||C(δ)||

||Q||

)2

,

f6(δ) =

(

||B∗(δ)||

||Q||

)2

,

(20)

where f1 (δ) represents the elasti
 requirement on the orthotropy of the laminate having

the pres
ribed shape (imposed by the value of KA∗

whi
h is related to the sign of ρ0 at the
end of the �rst step of the strategy), f2 (δ), f3 (δ) and f4 (δ) are the requirements related to

the pres
ribed values of the optimal polar parameters resulting from the �rst-level problem,

while f5 (δ) and f6 (δ) are linked to the quasi-homogeneity 
ondition.

I (fi (δ)) is a positive semi-de�nite 
onvex fun
tion in the spa
e of laminate polar

parameters, sin
e it is de�ned as a sum of 
onvex fun
tions, see Eqs. (19)-(20). Nevertheless,

su
h a fun
tion is highly non-
onvex in the spa
e of plies orientations be
ause the laminate

polar parameters depend upon 
ir
ular fun
tions of the layers orientation angles. Moreover,

the absolute minima of I (fi (δ)) are known a priori sin
e they are the zeroes of this

fun
tion. For more details about the nature of the se
ond-level problem see [11, 21℄. It is

noteworthy that problem (18) must be solved two times, i.e., for ea
h laminate 
omposing

the skin and the sti�ener.

In order to simplify the problem of retrieving an optimum sta
k, the sear
h spa
e for

problem (18) has been restri
ted to a parti
ular 
lass of quasi-homogeneous laminates:

the quasi-trivial (QT) sta
king sequen
es whi
h 
onstitute exa
t solutions with respe
t to

the requirements of quasi-homogeneity, i.e., fun
tions f5 (δ) and f6 (δ) in Eq. (20) are

identi
ally null for QT sta
ks.

QT solutions 
an be found for laminates with identi
al plies by a
ting only on the

position of the layers within the sta
k. Indeed, QT sta
ks are exa
t solutions, in terms

of quasi-homogeneity 
ondition, regardless to the value of the orientation angle assigned

to ea
h layer. In this way orientations represent free parameters whi
h 
an be optimised

to ful�l further elasti
 requirements, i.e., fun
tions f1 (δ), f2 (δ), f3 (δ) and f4 (δ). The

pro
edure for sear
hing QT sta
ks is 
on
eptually simple. Let n be the number of layers and

ng ≤ n the number of saturated groups. Plies belonging to a given saturated group share

the same orientation angle θj, (j = 1, ..., ng). The idea is to look for all the permutations of
the position of the plies indexes belongin to ea
h group whi
h meet the quasi-homogeneity


ondition. More details on this topi
 
an be found in [34℄.

Suppose now to �x both the number of plies and saturated groups, namely n and ng. As

dis
ussed in [34℄, the problem of determining QT sta
ks for a given 
ouple of n and ng 
an

give rise to a huge number of solutions: the number of QT sta
ks rapidly in
reases along

with n. To this purpose a database of QT sta
ks has been built for di�erent 
ombinations

of n and ng.

For the problem at hand, and for ea
h 
onsidered 
ase (i.e., skin and stringer laminates),

the optimum number of plies nα, (α = S,B) 
onstitutes a result of the �rst-level problem,

while the number of saturated groups ng has been �xed a priori. Let be nsol the number

of QT sta
ks for a parti
ular 
ombination of nα and ng. Ea
h solution 
olle
ted within the

database is uniquely de�ned by means of an identi�er IDsol (i.e., an integer) whi
h varies

10



in the range [1, nsol]. Therefore, IDsol represents a further design variable along with the

ng orientation angles of the di�erent saturated groups, i.e., θ ∈ R
ng
. The design variables


an be thus 
olle
ted into the following ve
tor,

ηT =
{

IDsol, θ1, ..., θng

}

, (21)

and problem (18) 
an be reformulated as

min
η

4
∑

i=1

fi (η) , (22)

f5 (η) and f6 (η) being identi
ally null.

In this ba
kground, the solution sear
h for problem (22) is performed by means of the

GA BIANCA. In the 
ase of QT sta
ks the stru
ture of the individual genotype is simple

be
ause it is 
omposed of a single 
hromosome with ng + 1 genes: the �rst one 
odes the

variable IDsol whilst the remaining genes 
ode the orientation angles of every saturated

group whi
h are dis
rete variables in the range [-89

◦
, 90

◦
℄ with a step length equal to 1

◦
.

5. Finite element models of the sti�ened panel

In this se
tion two FE models of the sti�ened panel RU are dis
ussed: the �rst one is

used in the framework of the �rst-level problem of the MS2L approa
h while the se
ond

one is utilised for veri�
ation purposes.

5.1. The �nite element model for the optimisation pro
edure

The FE model of the panel RU used at the �rst-level of the MS2L strategy is built using

the FE 
ommer
ial 
ode ANSYS

r
. A linear eigenvalue bu
kling analysis is 
ondu
ted to

determine the value of the �rst bu
kling load for ea
h individual, i.e., for ea
h point in the

design spa
e, at the 
urrent generation.

The need to analyse, within the same generation, di�erent geometri
al 
on�gurations

(RUs with di�erent geometri
al and me
hani
al properties), ea
h one 
orresponding to

an individual, requires the 
reation of an ad-ho
 input �le for the FE 
ode that has to

be interfa
ed with BIANCA. The FE model must be 
on
eived to take into a

ount for a

variable geometry, material and mesh. Indeed, for ea
h individual at the 
urrent generation,

the FE 
ode has to be able to vary in the 
orre
t way the previous quantities, thus a proper

parametrisation of the model has to be a
hieved.

The FE model of the RU is illustrated in Fig. 3. The model has been built by using

a 
ombination of eight-nodes shell elements (ANSYS SHELL281 elements) and non-linear

multi-point 
onstraints elements (ANSYS MPC184 elements) both with six Degrees Of

Freedom (DOFs) per node.

As far as 
on
erns SHELL281 elements, their me
hani
al behaviour is des
ribed by

de�ning dire
tly the homogenised sti�ness matri
es A∗
, B∗

, D∗
and H∗

.

The 
ompatibility of the displa
ement �eld between skin and stringer is a
hieved

through ANSYS MPC184 elements whose formulation is based upon a 
lassi
al multi-point


onstraint element s
heme [35℄. MPC184 elements are de�ned between ea
h 
ouple of nodes

belonging to 
ontiguous shell elements as depi
ted in Fig. 3. In parti
ular, MPC184 ele-

ments are de�ned between nodes of the middle plane of the skin (master nodes) and those

of the middle plane of the bottom �anges of the stringer (slave nodes).
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Furthermore, MPC184 elements have been utilised to rigidify the end transverse se
-

tions of the RU, in order to simulate the presen
e of ribs (these last having an in-plane

sti�ness one/two order of magnitude higher than the �exural sti�ness of the RU). In par-

ti
ular, two pilot nodes A= {0, 0, ẑ} and B= {b, 0, ẑ} have been de�ned a

ording to the

RU global frame depi
ted in Fig. 3 (ẑ is the z 
omponent of the bary
entre of lines belong-

ing to a given transverse se
tion). Then, nodes A and B have been 
onne
ted (through

MPC184 elements) to those lo
ated on lines of the 
orresponding transverse se
tion, i.e.,

lines belonging to the planes x = 0 and x = b, respe
tively (see Fig. 3). The BCS for

nodes A and B are

node A: ui = 0, βi = 0;

node B: Fx = −1N, uy = uz = 0, βi = 0,

(i = x, y, z).

(23)

In Eq. (23) ui and βi are nodal displa
ements and rotations, respe
tively, whilst Fx is the

x 
omponent of the nodal for
e.

It is noteworthy that in problem (17) the �rst-bu
kling load of the sti�ened panel

is 
al
ulated by 
onsidering pertinent BCs on its RU. This fa
t impli
itly implies the

hypothesis of a panel having an �in�nite� length along y-axis, a

ording to the frame

depi
ted in Fig. 3. To take into a

ount for this aspe
t, periodi
 boundary 
onditions

(PBCs) must be 
onsidered:

ui

(

x,−
a

2
, 0
)

− ui

(

x,
a

2
, 0
)

= 0, ∀x ∈ ]0, b[ ,

βi

(

x,−
a

2
, 0
)

− βi

(

x,
a

2
, 0
)

= 0, ∀x ∈ ]0, b[ ,

(i = x, y, z).

(24)

PBCs of Eq. (24) must be de�ned for ea
h 
ouple of nodes belonging to the skin lateral

edges (i.e., lines lo
ated at y = ±a/2) ex
ept those pla
ed on the lines at x = 0 and x = b,
these last being already 
onne
ted to the pilot nodes A and B, respe
tively. PBCs are

de�ned through ANSYS 
onstraint equations (CEs) [35℄ between homologous nodes of the

skin lateral edges

Finally, before starting the optimisation pro
ess, a sensitivity study (not reported here

for the sake of brevity) on the proposed FE model with respe
t to the mesh size has

been 
ondu
ted: it was observed that a mesh having 56959 DOFs is su�
ient to properly

evaluate the �rst bu
kling load of the sti�ened panel.

5.2. The enhan
ed �nite element model for the veri�
ation phase

The validity and a

ura
y of the ANSYS model utilised within the optimisation pro
e-

dure is veri�ed a-posteriori in this work, by using an advan
ed higher-order formulation.

This re�ned solutions make use of the Carrera Uni�ed Formulation (CUF), a

ording to

whi
h the three-dimensional displa
ement �eld u(x, y, z) 
an be expressed as a general

expansion of the primary unknowns. In the 
ase of one-dimensional theories, one has:

u(x, y, z) = Fτ (y, z)uτ (x), τ = 1, 2, ....,M , (25)
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where Fτ are arbitrary fun
tions of the 
oordinates y and z on the 
ross-se
tion of

the beam stru
ture, uτ is the ve
tor of the generalized displa
ements whi
h lay along the

beam axis x and M stands for the number of terms used in the high-order expansion. To

be remarked that in Eq. (25) (as well as in the rest of the equations of this subse
tion)

Einstein summation 
onvention on repeated indi
es is ta
itly assumed.

The 
hoi
e of Fτ determines the 
lass of the 1D CUF model that is required and subse-

quently to be adopted. For example, if Lagrange polynomials are used as Fτ , Layer-Wise

(LW) theories for 
omposite stru
tures 
an be easily implemented, see [36℄. Unlike 
lassi
al

models for laminates whi
h are available in 
ommer
ial software tools, the unknowns of the

problem (and, thus, the number of DOFs) are layer-dependent in the 
ase of LW models.

In this manner, it is possible to satisfy the 
ontinuity of the transverse stresses and the

zig-zag behaviour of the displa
ements along the thi
kness of the 
omposite stru
ture, in

a

ordan
e with the equilibrium and 
ompatibility equations of elasti
ity.

One of the most important advantages of CUF is that it allows to write the governing

equations and the related �nite element arrays of low-order to high-�delity LW models in

an uni�ed manner. Generally speaking, CUF 
an be used to generate �nite elements whose

formal mathemati
al expressions are independent of the theory kinemati
s. For example, in

this work, the 
riti
al bu
kling loads are 
al
ulated by linearising the geometri
 nonlinear

governing equations and evaluating the loads that make the linearised tangent sti�ness

matrix singular; i.e. |KT | ≈ |K+Kσ| = 0, where K is the linear sti�ness matrix and Kσ

is the geometri
 sti�ness matrix.

The linear sti�ness matrix 
an be evaluated from the virtual variation of the internal

work, whi
h holds

δLint =

∫

l

∫

Ω
δǫTσdV , (26)

where ǫ and σ are the strain and stress ve
tors (Voigt's notation), Ω is the 
ross-se
tion of

the beam stru
ture and l is the beam length. By substituting the 
onstitutive and linear

geometri
al relations as well as CUF (Eq. (25)) and a 
lassi
al �nite element approximation

along the beam axis x, su
h that uτ (x) = Ni(x)uτi, the virtual variation of the strain

energy reads:

δLint = δuT
τiK

ijτs
usj , (27)

where uτi is the ve
tor of the �nite element unknowns and i represents summation on

the nodes of the beam element. K

ijτs
represents the 3 × 3 fundamental nu
leus of the

sti�ness matrix, whi
h 
an be expanded a

ording to (i, j) and (τ, s) to obtain the �nite

element array of the generi
 beam theory [37℄. Similarly, the gometri
 sti�ness matrix

Kσ 
an be expressed in terms of fundamental nu
leus by evaluating the linearisation of

the virtual variation of the strain energy and, subsequently, by linearising the nonlinear

geometri
 relations [38℄. This matrix, in fa
t, represents the 
ontribution of the pre-stress

on the sti�ness of the system. It is important to underline that, in this work, as a

urate

LW models of the reinfor
ed 
omposite panels are implemented, the full three-dimensional

stress �eld is taken into a

ount for evaluating the geometri
 sti�ness matrix Kσ. This is

not true in the 
ase of the ANSYS model employed in the optimisation pro
edure, whi
h

makes use of standard shell elements based on FSDT assumptions.
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6. Numeri
al results

Before starting the multi-s
ale optimisation pro
ess a referen
e stru
ture must be de-

�ned in order to establish referen
e values for the RU mass as well as for the �rst bu
kling

load of the sti�ened panel: both material and geometri
al properties of the referen
e solu-

tion are reported in Tables 1 and 3, respe
tively. The referen
e solution is subje
t to the

same set of BCs, i.e., Eqs. (23) and (24), as those applied on the RU of the panel that will

be optimised. One 
an noti
e that the referen
e stru
ture has a laminated skin 
omposed

of 28 plies and disposed a

ording to a symmetri
, balan
ed sta
k (therefore the result-

ing laminate is un
oupled and orthotropi
 in membrane, but not in bending), whilst the

stringer laminate is made of 32 plies with a symmetri
 quasi-isotropi
 sta
k (the laminate

is un
oupled and the membrane sti�ness matrix is isotropi
, but the bending one is totally

anisotropi
). This referen
e solution 
orresponds to a 
lassi
al 
on�guration utilised in

the aeronauti
al �eld: its mass and its sti�ness properties (in terms of bu
kling load) still

represent a �good� 
ompromise between weight and sti�ness requirements.

Regarding the setting of the geneti
 parameters for the GA BIANCA utilised to per-

form the solution sear
h for both �rst and se
ond-level problems they are listed in Table 4.

Moreover, 
on
erning the 
onstraint-handling te
hnique for the �rst-level problem the Au-

tomati
 Dynami
 Penalisation (ADP) method has been 
onsidered, see [29℄. For more

details on the numeri
al te
hniques developed within the new version of BIANCA and the

meaning of the values of the di�erent parameters tuning the GA the reader is addressed

to [20℄.

6.1. Optimum 
on�gurations of the panel

The optimum values of both geometri
 and me
hani
al design variables (dimensionless

variables) resulting from the �rst-level of the optimisation strategy are listed in Table 5.

When 
omparing the optimum solution of the �rst-level problem with the referen
e 
on�g-

uration, one 
an noti
e the number of plies redu
es from 28 to 20 for the skin laminate and

from 32 to 28 for the stringer. Moreover, both laminates are quasi-homogeneous and fully

orthtropi
 (both membrane and bending sti�ness matri
es) with an ordinary orthotropy

shape (parameter KA∗

= 0 be
ause the anisotropi
 polar modulus RA∗

0K is positive for both


ases, see [11℄). However, skin laminate gets a lower value of polar parameter RA∗

1 (an

order of magnitude lower than the 
orresponding value of RA∗

0K) whi
h means that this

solutions tends to exhibit a square symmetri
 behaviour (for both membrane and bending

sti�ness matri
es), as illustrated in the polar diagrams of Fig. 4. For a deeper insight on

these aspe
ts the interested reader is addressed to [11, 21℄.

Table 6 reports the �rst two best sta
king sequen
es, for both skin and stringer, whi
h

represents just as many solution for problem (22). As stated in Se
tion 4 the se
ond-

level problem is solved in the spa
e of QT sta
ks. In this ba
kground, after �xing the

number of plies n and the number of saturated groups ng the design variables are the

identi�er of the QT solution as well as the orientation angle of ea
h saturated group, see

Eq. (21). Be
ause problem (22) is highly non-
onvex in the spa
e of the orientation angles

of saturated groups, it is possible to �nd several solutions (theoreti
ally an in�nite number)

meeting the optimum value of the laminate polar parameters provided by the �rst-level

problem.

For the problem at hand, the number of plies for both skin and stringer laminates,

(nS and nB, respe
tively) is a dire
t result of the �rst level problem, while the number of

saturated group has been set equal to

• three for sta
ks S1 and B1,
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• four for sta
k S2,

• �ve for sta
k B2.

As it 
an be easily inferred from the results listed in Table 7, by 
ombining the previ-

ous sta
ks it is possible to get four di�erent optimum 
on�gurations of the sti�ened panel.

Indeed, these optimum panels really represent equivalent solutions. Sin
e they share the

same ma
ros
opi
 geometri
al parameters they have the same mass, i.e., M = 0.814 Kg

whi
h represents a signi�
ant redu
tion (−11.5%) when 
ompared to the referen
e 
on�g-

uration. Furthermore, these optimal 
on�gurations di�er only in terms of the optimum

sta
k 
omposing skin and sti�ener laminates but they show almost the same bu
kling re-

sponse: the per
entage in
rement of the �rst bu
kling load (with respe
t to the referen
e

value λref) ranges from 9% to 9.5%, see Table 7.

Therefore, ea
h optimum 
on�guration is simultaneously lighter and sti�er than the

referen
e one and this result has been a
hieved only by abandoning the usual engineer-

ing rules and hypotheses related to the nature of the sta
king sequen
e of the laminates


omposing the panel.

Fig. 4 shows the deformed shape related to the �rst bu
kling mode as well as the �rst


omponent of the normalised sti�ness matri
es of the laminate, i.e., A∗
, B∗

and D∗
for

both skin and stringer for the 
on�guration S1-B1: the solid line refers to the membrane

sti�ness matrix, the dashed one to the bending sti�ness matrix, while the dash-dotted

one is linked to the membrane/bending 
oupling sti�ness matrix. It 
an be noti
ed that

the laminate is un
oupled as the dash-dotted 
urve disappears, homogeneous as the solid

and dashed 
urves are 
oin
ident and orthotropi
 be
ause there are two orthogonal axes

of symmetry in the plane. In addition, for both laminates the main orthotropy axis is

oriented at ΦA∗

1 = 0◦ a

ording to the hypothesis of the �rst-level problem. The same


onsiderations 
an be repeated also for the rest of the optimum solutions.

6.2. Veri�
ation of the optimum 
on�gurations

A one-dimensional, high-order model based on CUF is used for validating the referen
e

and optimised RU analyses. The present CUF model employs a LW re�ned kinemati
s for

the a

urate des
ription of the pre-stress state of the RU subje
ted to 
ompression and,

thus, for enhan
ed evaluation of bu
kling loads. The CUF-LW models of the referen
e

and optimised RU panels have 372588 and 333792 DOFs, respe
tively. As in the 
ase of

the ANSYS model, PBCs are imposed by using the dire
t penalty approa
h. However,

it is important to underline that, be
ause the employed LW CUF models have only pure

translational displa
ements as unknowns, only the �rst line of Eq. (24) is enfor
ed.

The �rst bu
kling mode of the optimum 
on�guration S1-B1 is shown in Fig. 5. That

of the referen
e 
on�guration as well as those asso
iated to the other optimum solutions

are equivalent, thus they are not depi
ted for the sake of brevity. For 
ompleteness reasons,

however, the through-the-thi
kness stress distributions (see Fig. 6) a

ording to CUF and

ANSYS are given in Figs. 7 and 8. These �gures show the distributions of axial, σxx, trans-
verse shear, σxz, and transverse normal, σzz, stress 
omponents. It should be underlined

that the adopted ANSYS model provides a good distribution of axial stresses. In 
ontrast,

and a

ording to CUF referen
e solutions, the ANSYS FE model is not able to take into

a

ount shear and transverse normal stresses and this would dire
tly a�e
t the a

ura
y

of the bu
kling 
al
ulation.

Table 8 summarises the �rst 
riti
al bu
kling loads given by CUF high-order beam

models and they are 
ompared to those resulting from ANSYS model. The di�eren
es

between the results of the ANSYS FE model and the re�ned CUF solution for the optimum
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panels range from 7.4% to 7.9%, while for the referen
e 
on�guration the per
entage

di�eren
e is signi�
ant (up to 14%). This higher dis
repan
y is probably related to the

anisotropi
 bending behaviour of the referen
e solution. These di�eren
es are reasonable

and are related to the 3D stress distributions within ea
h 
onstitutive layer and the di�erent

order of a

ura
y 
hara
terising the CUF LW beam model. Of 
ourse, this stress �eld

strongly a�e
ts the geometri
 sti�ness matrix and 
annot be a
quired by ANSYS shell

elements whi
h are based on the FSDT hypotheses.

It is noteworthy that, a

ording to CUF numeri
al results, the gain in terms of sti�ness

is even higher than that foreseen by ANSYS, ranging from 15.2% for solution B1-S1 to

15.8% for solution B2-S2, as summarised in Table 9.

7. Con
lusions

The design strategy presented in this paper is a numeri
al optimisation pro
edure


hara
terised by several features that make it an innovative, e�e
tive and general method

for the multi-s
ale design of 
omposite stru
tures. In the present work this strategy has

been applied to the multi-s
ale optimisation of the repetitive unit of a 
omposite sti�ened

panel.

On the one hand, the design pro
ess is not submitted to restri
tions: any parameter


hara
terising the stru
ture (at ea
h relevant s
ale) is an optimisation variable. This allows

sear
hing for a true global minimum without making simplifying hypotheses on the nature

of the laminate sta
king sequen
e. On the other hand, the multi-s
ale design problem has

been split into two optimisation sub-problems whi
h are solved subsequently within the

same numeri
al pro
edure.

The �rst-level problem fo
uses on the ma
ros
opi
 s
ale of the panel: ea
h laminate


omposing the stru
ture is 
onsidered as an equivalent homogeneous anisotropi
 plate (for

both skin and stringer) and its ma
ros
opi
 me
hani
al response is des
ribed in terms of

polar parameters. Furthermore, also geometri
 design variables des
ribing the topology of

both skin and sti�ener are involved at this level. At this stage, the me
hani
al properties

of the multilayer plates are represented by means of the polar formalism, a mathemati-


al representation based on tensor invariants whi
h is 
hara
terised by several advantages.

The main features of the polar method are the possibility to represent in an expli
it and

straightforward way the elasti
 symmetries of the laminate sti�ness matri
es and to elimi-

nate from the optimisation pro
edure redundant me
hani
al properties.

The se
ond level of the pro
edure is devoted to the laminate mesos
opi
 s
ale: the

goal is to �nd at least one optimum sta
k (for both stringer and skin) meeting on the one

hand the elasti
 requirements imposed to the laminate (quasi-homogeneity and orthotropy)

during the �rst-level problem and on the other hand the optimum value of the laminate

polar parameters resulting from the �rst step.

The utilisation of an evolutionary strategy, together with the fa
t that the problem is

stated in the most general sense, allows �nding some non-
onventional 
on�gurations more

e�
ient than the standard ones. In fa
t, the 
onsidered numeri
al example proves that,

when standard rules for tailoring laminate sta
ks are abandoned and all the parameters


hara
terising the stru
ture are in
luded within the design pro
ess, a signi�
ant weight

saving 
an be obtained: up to 11.5% with respe
t to the referen
e stru
ture with enhan
ed

me
hani
al properties in terms of �rst bu
kling load (the per
entage in
rement ranges from

9% to 9.5% depending on the 
onsidered optimum solution).

In a se
ond time, both referen
e and optimum 
on�gurations of the sti�ened panel have

been analysed by means of a high-order layer-wise FE model developed in the framework
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of CUF. This analysis reveals that the bu
kling load provided by the ANSYS FE model

(whi
h is built by using shell elements based on FSDT) is overestimated and that the

per
entage di�eren
e ranges from 7.4÷7.9% for optimum solutions to 14% for the referen
e


on�guration. This dis
repan
y is related to the 
al
ulation of the 3D stress �eld in ea
h

layer whi
h strongly a�e
ts the geometri
 sti�ness matrix used to evaluate the �rst bu
kling

load of the panel.

Nevertheless, despite these dis
repan
ies, 
lassi
al shell elements based on FSDT 
an be

reliably employed in the framework of the MS2L optimisation strategy be
ause they allow

�nding true optimum solutions without using �expensive� models, in terms of both num-

ber of DOFs and 
omputational 
ost. Moreover, a

ording to CUF results, the optimum


on�gurations are really e�
ient when 
ompared to the referen
e one: the weight saving

is always the same, but the gain in terms of sti�ness is even higher than that foreseen by

ANSYS, ranging from 15.2% to 15.8% depending on the optimum solution.

These results unquestionably prove the e�e
tiveness and the robustness of the opti-

misation approa
h proposed in this work and provide 
on�den
e for further resear
h in

this dire
tion. As an example, future works may fo
us on 
oupling the present MS2L op-

timisation strategy with high-order models based on CUF. These 
onsiderations remain

still valid if further requirements (e.g., strength, fatigue, delamination, et
.) have to be

in
luded into the design problem formulation. All of these aspe
ts 
an be easily integrated

within the MS2L optimisation strategy without altering its overall ar
hite
ture and they

do not represent a limitation to the proposed strategy, on the 
ontrary they 
ould be an

interesting 
hallenge for future resear
hes on real-world engineering appli
ations.
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Tables

Te
hni
al 
onstants Polar parameters of Q a
Polar parameters of Q̂ b

E1 [MPa℄ 161000.0 T0 [MPa℄ 23793.3868 T [MPa℄ 5095.4545
E2 [MPa℄ 9000.0 T1 [MPa℄ 21917.8249 R [MPa℄ 1004.5454
G12 [MPa℄ 6100.0 R0 [MPa℄ 17693.3868 Φ [deg℄ 90.0
ν12 0.26 R1 [MPa℄ 19072.0711
ν23 0.10 Φ0 [deg℄ 0.0

Φ1 [deg℄ 0.0
Density and thi
kness

ρ [Kg/mm

3
℄ 1.58 × 10−6

tply [mm℄ 0.125
a
In-plane redu
ed sti�ness matrix of the ply.

b
Out-of-plane shear sti�ness matrix of the ply.

Table 1: Material properties of the 
arbon-epoxy ply taken from [11, 21, 22℄.

Design variable Type Lower bound Upper bound Dis
retisation step

ρ0S 
ontinuous −1.0 1.0 -

ρ1S 
ontinuous 0 1.0 -

ρ0B 
ontinuous −1.0 1.0 -

ρ1B 
ontinuous 0 1.0 -

c1 dis
rete 0.1 0.45 0.001
c2 dis
rete 1.00 3.00 0.01
c3 dis
rete 1.00 3.00 0.01
nS integer 20 32 1
nB integer 20 32 1

Table 2: Design spa
e of the �rst-level problem.

a [mm℄ 150.00
b [mm℄ 600.00
a2 [mm℄ 15.00
a3 [mm℄ 21.50
h [mm℄ 30.00
Mref [Kg℄ 0.92
λref [N℄ 445074

Sta
king sequen
e Part N. of plies

[(45/ − 45/902)2/(45/ − 45)3]s skin (S) 28

[452/02/− 452/904/− 452/02/452]s stringer (B) 32

Table 3: Referen
e solution for the sti�ened panel design problem.
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Geneti
 parameters

1

st
level problem 2

nd
level problem

N. of populations 1 1
N. of individuals 200 500
N. of generations 150 500
Crossover probability 0.85 0.85
Mutation probability 0.005 0.002
Sele
tion operator roulette-wheel roulette-wheel

Elitism operator a
tive a
tive

Table 4: Geneti
 parameters of the GA BIANCA for �rst and se
ond-level problems.

Geometri
 parameters

a2 [mm℄ a3 [mm℄ h [mm℄ nS nB

21.300 29.607 31.950 20 28

Polar parameters

RA∗

0K [MPa℄ RA∗

1 [MPa℄

Skin (S) 3511.00 242.36

Stringer (B) 9391.51 12080.84

Table 5: Numeri
al results of the �rst-level optimisation problem.

ID Best sta
king sequen
e N. of plies

Skin (S)

S1 [−63/0/63/0/63/ − 63/0/0/63/ − 63/63/ − 63/0/0/63/ − 63/0/ − 63/0/63] 20

S2 [43/90/0/0/ − 43/90/ − 43/90/0/ − 43/43/90/0/43/0/43/90/90/0/ − 43] 20

Stringer (B)

B1 [1/61/1/1/1/ − 51/1/1/ − 51/1/1/1/61/1/1/ − 51/1/1/1/61/1/1/61/1/1/1/ − 51/1] 28

B2 [0/59/ − 1/− 54/2/0/2/2/2/0/ − 54/ − 1/59/2/0/0/ − 54/− 1/0/59/0/2/59/2/ − 1/ − 54/2/0] 28

Table 6: Numeri
al results of the se
ond-level problem (�rst two optimum sta
ks for both skin and stringer).

Panel 
on�gurations

REF S1-B1 S1-B2 S2-B1 S2-B2

M [Kg℄ 0.920 0.814 (−11.5%)

λ [N℄ 445074 483951 (9%) 483838 (9%) 487493 (9.5%) 487386 (9.5%)

Table 7: Properties of the optimum solution (in terms of mass and bu
kling load) for di�erent skin-stringer


on�gurations; for ea
h property the per
entage di�eren
e between the optimum 
on�guration and the

referen
e one is indi
ated in parentheses.
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Panel 
on�gurations

λ [N℄ REF S1-B1 S1-B2 S2-B1 S2-B2

CUF 390870 450323 450430 451843 452615

ANSYS 445074 (14%) 483951 (7.5%) 483838 (7.4%) 487493 (7.9%) 487386 (7.7%)

Table 8: Comparison of the bu
kling load λ 
al
ulation between ANSYS FE model and high-order beam

CUF model for both referen
e and optimum solutions; the per
entage di�eren
e between ANSYS and CUF

models is indi
ated in parentheses.

Panel 
on�gurations

REF S1-B1 S1-B2 S2-B1 S2-B2

λ [N℄ 390870 450323 (15.2%) 450430 (15.2%) 451843 (15.6%) 452615 (15.8%)

Table 9: Comparison of the bu
kling load provided by the high-order beam CUF model for both referen
e

and optimum solutions; the per
entage di�eren
e between ea
h optimum 
on�guration and the referen
e

one is indi
ated in parentheses.
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Figures

Figure 1: (a) Geometry and overall size of the sti�ened panel (only two repetitive units are here represented

for sake of simpli
ity) and (b) geometri
 parameters of the repetitive unit.
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Figure 2: Logi
al �ow of the numeri
al pro
edure for the solution sear
h of the �rst-level problem.
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Figure 3: (a) FE model of the repetitive unit and related referen
e frame, (b) details of CEs for PBCs

along y-axis and (
) details of MPC184 elements.
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Figure 4: Numeri
al properties of the optimum panel S1-B1. (a) Deformed shape of the �rst bu
kling

mode (normalized displa
ement) and polar diagram of the �rst 
omponent of the homogenized laminate

in-plane sti�ness matri
es [MPa℄ for (b) skin and (
) stringer.

Figure 5: First bu
kling mode of optimum panel S1-B1 a

ording to higher-order CUF model.
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Figure 6: Cross-se
tion of the panel RU.
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Figure 7: Mid-span distributions of stresses 
omponents through the skin thi
kness (A-A') of the optimum

panel S1-B1; solid line ��� is CUF solution, 
ir
les �◦� represent ANSYS solution.
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Figure 8: Mid-span distributions of stresses 
omponents through the stringer thi
kness (B-B') of the

optimum panel S1-B1; solid line �−−� is CUF solution, 
ir
les �◦� represent ANSYS solution
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