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Abstract

This work deals with the problem of the least-weight design of a composite stiffened panel
subject to constraints of different nature (mechanical, geometrical and manufacturability
requirements). To face this problem, a multi-scale two-level (MS2L) design methodology
is proposed. This approach aims at optimising simultaneously both geometrical and me-
chanical parameters for skin and stiffeners at each characteristic scale (mesoscopic and
macroscopic ones). In this background, at the first level (macroscopic scale) the goal is to
find the optimum value of geometric and mechanical design variables of the panel minimis-
ing its mass and meeting the set of imposed constraints. The second-level problem focuses
on the laminate mesoscopic scale and aims at finding at least one stacking sequence (for
each laminate composing the panel) meeting the geometrical and material parameters pro-
vided by the first-level problem. The MS2L optimisation approach is based on the polar
formalism to describe the macroscopic behaviour of the composites and on a special genetic
algorithm to perform optimisation calculations. The quality of the optimum configurations
is investigated, a posteriori, through a refined finite element model of the stiffened panel
making use of elements with different kinematics and accuracy in the framework of the
Carrera’s Unified Formulation (CUF).
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1. Introduction

Anisotropic materials, such as fibres-reinforced composites, are extensively used in
many industrial fields thanks to their peculiar features: high stiffness-to-weight and strength-
to-weight ratios that lead to a substantial weight saving when compared to metallic alloys.

The problem of designing a composite structure is quite cumbersome and can be con-
sidered as a multi-scale optimisation problem. The complexity of the design process is
actually due to two intrinsic properties of composite materials, i.e., heterogeneity and
anisotropy. Heterogeneity gets involved mainly at the microscopic scale (i.e., that of con-
stitutive phases), whilst anisotropy intervenes at both mesoscopic scale (that of the con-
stitutive lamina) and macroscopic one (that of the laminate).

To illustrate the difficulty of properly design/optimise at each relevant scale a compos-
ite structure the study presented in this work focuses on a real-world engineering problem
that can be considered as paradigmatic: the multi-scale design of a least-weight compos-
ite stiffened panel subject to a given set of constraints of different nature (geometrical,
mechanical, technological, etc.).

Stiffened panels are widely used in many structural applications, mostly because they
allow for a substantial weight saving. Of course, this point is of paramount importance
especially in aircraft design, where an important reduction of the structural mass can be
achieved if composite laminates are used in place of aluminium alloys. A drawback of such a
choice is that the design process becomes more cumbersome than that of a classical metallic
structure. In fact, though the use of laminated structures is not a recent achievement in
structural mechanics, up to now no general methods exist for their optimum design. In
practical applications, engineers always use some simplifying rules to take into account for
some relevant properties (which are very difficult to be formalised otherwise).

Several works on the optimum design of composite stiffened panels can be found in
literature. Nagendra et al. [1] made use of a standard genetic algorithm (GA) to find a
solution for the problem of minimising the mass of a composite stiffened panel subject to
constraints on the first buckling load, on maximum allowable strains and “technological”
constraints on ply orientation angles. In [2] Bisagni and Lanzi defined a single-step post-
buckling optimisation procedure for the design of composite stiffened panels subjected to
compression load. The procedure was based on a global approximation strategy, where the
structure response is given by an artificial neural network (ANN) trained by means of finite
element (FE) analyses, while the optimisation tool consisted in a standard GA. Lanzi and
Giavotto [3] proposed a multi-objective optimisation procedure for the design of composite
stiffened panels capable to take into account the post-buckling behaviour. The procedure
made use of a standard GA and three different methods for surrogate modelling: ANN,
Radial Basis Functions and Kriging approximation. In [4] Barkanov et al. dealt with the
problem of the optimum design of lateral wing upper covers by considering different kinds of
stiffeners and loading conditions. Liu et al. [5] utilised the smeared stiffness-based method
for finding the best stacking sequences of composite wings with blending and manufacturing
constraints by considering a set of pre-defined fibre angles, i.e., 0°,90° and +45°. In [6]
Lopez et al. proposed a deterministic and reliability-based design optimisation of composite
stiffened panels considering post-buckling regime and a progressive failure analysis. Further
works on this topic can be found in literature. For example, and without any ambition
of exhaustiveness, the studies of Lillico et al. |7], Butler and Williams [8], Wiggenraad et
al. |9], Kaletta and Wolf [10] can be cited too.

A common limitation of the previous works is the utilisation of simplifying hypothe-
ses and rules in the formulation of the stiffened panel design problem. These restrictions
mainly focus on the nature of the stacking sequence of the laminates constituting the panel.



These assumptions are used on the one hand to obtain a short-cut to a possible solution,
i.e., to eliminate from the true problem some particularly difficult points or properties to be
obtained. On the other hand, some of such rules are considered to prevent the final struc-
ture from some undesired phenomena, though this is never clearly and rigorously stated
and proved. Unfortunately, the use of these simple rules has a main drawback: the de-
sign space is extremely shrunk, thus their utilisation automatically drives the optimisation
algorithm only towards suboptimal solutions.

Two examples are the use of symmetric stacking sequences, a sufficient but not neces-
sary condition for membrane-bending uncoupling and the use of balanced stacks to obtain
orthotropic laminates. When symmetric stacks are utilised, the design is done using half
of the layers, which means also half of the design variables. This kind of stack implicitly
implies a reduction of the design space: it is very difficult to obtain the lightest struc-
ture under this hypothesis. Conversely, the use of balanced stacks, a sufficient condition
for membrane orthotropy, leads systematically to misleading solutions: whenever such a
rule is used, bending orthotropy, a rather difficult property to be obtained [11], is simply
understated, assumed, but not really obtained, as in [12-15].

In aircraft structural design, some other rules are imposed to the design of composite
stiffened panels, although some of them are not mechanically well justified, see for in-
stance [12, 15]. Among these rules, the most significant restriction is represented by the
utilisation of a limited set of values for the layers orientation angles which are often limited
to the canonical values of 0°, 90° and +45°.

To overcome the previous restrictions, in the present study the multi-scale two-level
(MS2L) optimisation approach for designing anisotropic complex structures [16-18] is
utilised in the framework of the multi-scale optimisation of composite stiffened panels. The
proposed MS2L approach aims at proposing a very general formulation of design problem
without introducing simplifying hypotheses and by considering, as design variables, the full
set of geometric and mechanical parameters defining the behaviour of the panel at each
characteristic scale (mesoscopic and macroscopic).

In the context of the MS2L methodology, the optimisation problem is split in two
distinct (but related) sub-problems. At the first level (macroscopic scale) the goal is to find
the optimum value of geometric and mechanical design variables of the panel minimising its
mass and meeting the set of imposed constraints. The second-level problem focuses on the
laminate mesoscopic scale (i.e., the ply-level) and aims at finding at least one optimum stack
(for each laminate composing the panel) meeting the geometrical and material parameters
resulting from the first-level problem. The MS2L approach is based on the utilisation of
the polar formalism [19] as well as on a GA previously developed by the first author |20].

The quality of the optimum configurations is investigated, a posteriori, through a refined
finite element model of the stiffened panel making use of elements with different kinematics
and accuracy (in a global-local sense) in the framework of the Carrera’s Unified Formulation
(CUF).

The paper is organised as follows: the design problem as well as the MS2L optimisation
strategy are discussed in Section 2. The mathematical formulation of the first-level problem
is detailed in Section 3, while the problem of determining a suitable laminate stacking
sequence is formulated in Section 4. A concise description of the Finite Element (FE)
models of the stiffened panel are given in Section 5, while the numerical results of the
optimisation procedure are shown in Section 6. Finally, Section 7 ends the paper with
some concluding remarks.



2. Multi-scale optimisation of composite stiffened panels

2.1. Problem Description

The optimisation strategy presented in this study is applied to the repetitive unit (RU)
of a composite stiffened panel typically utilised in aircraft wings. The RU is composed by
the union of a skin and a “omega” shaped stringer (or stiffener) as illustrated in Fig. 1. The
overall size of the RU are fixed: @ = 150 mm is the width of the RU, while b = 600 mm
is its length which represents also the distance between two consecutive ribs. It must be
noted that stiffeners are equispaced over the panel with a step length equal to a. Both skin
and stiffener are made of carbon-epoxy unidirectional orthotropic laminae whose properties
are listed in Table 1 (taken from [11, 21, 22]).

The fundamental hypotheses about the macroscopic mechanical response of the RU
focus essentially on the laminate behaviour and geometry (for both skin and stringer).

e Each laminate is made of identical plies (i.e., same thickness ¢}, and material).

e The material of the constitutive layer has a linear elastic transverse isotropic be-
haviour.

e Each laminate is quasi-homogeneous and fully orthotropic [18, 22-24].

e At the macroscopic scale the elastic response of each laminate is described in the the-
oretical framework of the FSDT and the stiffness matrices of the plate are expressed
in terms of the laminate polar parameters [11, 21].

e No delamination occurs at the plies interface for both skin and stringer [25].

It is noteworthy that, no simplifying hypotheses are made on the geometric and me-
chanical parameters of the RU (e.g., on the nature of the stacking sequences). Only avoid-
ing the utilisation of a priori assumptions that extremely shrink the solution space (e.g.,
the utilisation of symmetric, balanced stacks to attain membrane/bending uncoupling and
membrane orthotropy, respectively) one can hope to obtain the best optimum solution for
a given problem: this is a key-point in the proposed approach.

2.2. Description of the multi-scale two-level optimisation strategy

The main goal of the MS2L optimisation strategy is the least-weight design of the
composite stiffened panel subject to constraints of different nature, i.e., mechanical, geo-
metrical as well as feasibility and technological requirements. The optimisation procedure
is articulated into the following two distinct (but related) optimisation problems.

First-level problem. The aim of this phase is the determination of the optimal value
of both mechanical and geometric parameters of the laminate composing the RU of the
panel in order to minimise its weight and to satisfy, simultaneously, the full set of imposed
requirements (formulated as optimisation constraints). At this level each laminate is mod-
elled as an equivalent homogeneous anisotropic plate whose behaviour is described in terms
of the laminate polar parameters [11, 21]. Therefore, the design variables of this phase are
the geometric parameters of the RU as well as the laminate polar parameters of both skin
and stiffener.

Second-level problem. The second level of the strategy aims at determining a suitable
lay-up for both skin and stringer laminates (i.e., the laminate mesoscopic scale) meeting
the optimum combination of their material and geometrical parameters provided by the
first-level problem. The goal is, hence, to find at least one stacking sequence (for each



laminate) which has to be quasi-homogeneous, fully orthotropic and that has to satisfy the
optimum values of the polar parameters resulting from the first step. At this level of the
strategy, the design variables are the layer orientations.

3. Mathematical formulation of the first-level problem

The overall features of the structure at the macroscopic scale have to be optimised
during this phase. The mass minimisation of the stiffened panel RU will be performed by
satisfying the set of optimisation constraints listed below:

1. a constraint on the first buckling load of the RU;

2. geometric and technological constraints related to the geometrical parameters of the
RU;
3. feasibility constraints on the laminate polar parameters of both skin and stringer.

These aspects are detailed in the following subsections.

3.1. Geomelrical design variables

The design variables for the problem at hand are of two types: geometrical and mechan-
tcal. Some of the geometrical parameters of the RU of the stiffened panel are illustrated
in Fig. 1. Of course, these parameters are not independent. The independent geometric
design variables are:

e the laminate thickness for both skin and stringer, i.e., tg and tp, respectively;
e the width ay of the stringer bottom flange;

e the stringer height h;

e the size as.

The size a1 can be related to the previous variables,

a1=g—a2—a37 (1)

while the angle of the inclined wall of the stiffener is

Hzatan< ha2>. (2)
CL3—7

The previous design variables must satisfy a set of technological and geometrical require-
ments. Firstly, the overall thickness of the laminates composing the RU is a discrete
variable, the discretisation step being equal to the thickness of the elementary layer, i.e.,
tply (see Table 1):

to = natply , = SaB s (3)

where ng and np are the number of layers of skin and stiffener, respectively. It must be
highlighted that the optimum value of the laminate thickness determines also the optimum



number of layers n to be used during the second-level design problem (for both skin and
stringer). Secondly, parameters a;, (i = 1,2,3) have to meet the following conditions:

a9 (4)

First inequality is necessary to avoid contact between two consecutive stringers, while
second one must be imposed in order to keep 6 non-negative. In the framework of the
mathematical formalisation of the first-level problem, it is useful to introduce dimensionless
geometric design variables, as follows:

h
01:2%, 02:2%, c3 = —. (5)
a as a9

The dimensionless geometric parameters can be collected into the vector of geometric design
variables defined as:

E;Z{n57n3761)027c3} . (6)
In this background, inequalities of Eq. (4) can be reformulated as:
g1 (&g) =2c1 +c1e2 —2 <0, )
92(59) =1-0c<0.

3.2. Mechanical design variables

In the framework of the FSDT |[26] the constitutive law of the laminate (expressed
within its global frame R = {0;x,y, z}) can be stated as:

N A B €0
M (| B D xo [ (8)
F =Hnyo , (9)

where A, B and D are the membrane, membrane/bending coupling and bending stiffness
matrices of the laminate, while H is the out-of-plane shear stiffness matrix. NN, M and
F are the vectors of membrane forces, bending moments and shear forces per unit length,
respectively, whilst €qg, xo and g are the vectors of in-plane strains, curvatures and out-
of-plane shear strains of the laminate middle plane, respectively, (in the previous equations
Voigt’s notation has been utilised [26]).

In order to analyse the elastic response of the multilayer structure the best practice



consists in introducing the laminate normalised stiffness matrices:

A*¥=-A,
t
. 2
B - t—2B,
.12
1 .
-H (basic),
H = !

BH (modified).
5t
where t is the total thickness of the laminate.

As discussed in [11, 21|, in the framework of the polar formalism it is possible to
express the Cartesian components of these matrices in terms of their elastic invariants. It
can be proven that, in the FSDT framework, for a fully orthotropic, quasi-homogeneous
laminate (i.e., a laminate having the same orthotropic behaviour in terms of normalised
membrane and bending stiffness matrices and whose membrane/bending coupling stiffness
matrix is null) the overall number of independent mechanical design variables describing its
mechanical response reduces to only three, i.e., the anisotropic polar parameters RS‘;{ and
Rf* and the polar angle <I>‘14* (this last representing the orientation of the main orthotropy
axis) of matrix A*. For more details on the polar formalism and its application in the
context of the FSDT the reader is addressed to |11, 21, 27].

In addition, in the formulation of the optimisation problem for the first level of the
strategy, the feasibility constraints on the polar parameters (which arise from the combi-
nation of the layers orientations and positions within the stack) must also be considered.
These constraints ensure that the optimum values of the polar parameters resulting from
the first step correspond to a feasible laminate that will be designed during the second step
of the MS2L strategy, see [28]. Since the laminate is quasi-homogeneous, such constraints
can be written only for matrix A*:

~Ry < Ry <Ry,

0< R <Ry, 1)
A* 2 A*

2<R_1> _1_h§0'
Ry Ry

In Eq. (11), Ry and R; are the anisotropic moduli of the ply reduced stiffness matrix [11].
As in the case of geometric design variables, it is very useful to introduce the following
dimensionless quantities:

POZRR—%{7 012%- (12)
In this background, Eq. (11) writes:
—1<py <1,
0<p <1, (13)

2(p1)° —=1-pp <0



The mechanical design variables must be considered for each laminate constituting
the panel RU, i.e., for both skin and stiffener laminates (pg, and pio with a = S, B).
Moreover, the main orthotropy direction of the generic laminate can be set equal to zero,
ie., <I>‘14* = 0 for skin and stringer, which means that the main orthotropy axis is aligned
with the direction of the applied load. Therefore, the dimensionless mechanical parameters
defined above can be grouped into the vector of mechanical design variables:

&, = {pos, p1s, pos, P18} - (14)

First and second constraints of Eq. (13) can be taken into account as admissible intervals
for the relevant optimisation variables, i.e., on pg and p;. Hence, the resulting feasibility
constraints on the skin and stringer dimensionless polar parameters become:

93(€m) = 2(p1s)> — 1 —pos <0,

15
94(&m) =2(p1B)* —1—pop < 0. (15)

For a wide discussion upon the laminate feasibility and geometrical bounds as well as
on the importance of the quasi-homogeneity assumption the reader is addressed to [28].

3.8. Mathematical statement of the problem

As previously stated, the aim of the first-level optimisation is the minimisation of the
mass of the RU of the stiffened panel by satisfying, simultaneously, constraints of different
nature. The design variables (both geometrical and mechanical) of the problem can be
collected into the following vector:

& =& €n} - o)

In this context the optimisation problem can be formulated as a classical constrained non-
linear programming problem (CNLPP):

min —M (&)
3 Mref
subject to:
NG
)\ref - '

gi(€) <0, withi=1,--- 4.

1.05 —

The design space of the first-level problem, together with the type of each design variable,
is detailed in Table 2. In Eq. (17) M is the overall mass of the RU, A is the first buckling
load of the stiffened panel, while M, and A.er are the counterparts for a reference solution
which is subject to the same boundary conditions (BCs) as those applied on the RU of the
panel that will be optimised. The properties of the reference configuration of the RU are
reported in Table 3.

3.4. Numerical strategy

Problem (17) is a non-convex CNLPP in terms of both geometrical and mechanical
variables. Its non-linearity and non-convexity is due on the nature of the buckling load



constraint that is a non-convex function. In addition, the complexity of such a problem is
also due to the non-linear feasibility constraints on the laminate polar parameters.

The total number of design variables is nine while that of optimisation constraints is
five (see Eq. (17)). Furthermore, the nature of design variables is different (see Table 2):
integer (ng and np), discrete (c1, c2, ¢3) and continuous (pos, p1s, PoB, p1B) variables are
involved in the definition of this CNLPP.

For the resolution of problem (17) the GA BIANCA |20, 29| coupled with the FE
model of the panel RU (for calculating the first buckling load of the structure) has been
utilised as optimisation tool for the solution search, see Fig. 2. The GA BIANCA was
already successfully applied to solve different kinds of real-world engineering problems, see
for example [30-33].

As shown in Fig. 2, for each individual at each generation, the numerical tool performs
a FE analysis for calculating the first buckling load (eigenvalue problem) of the stiffened
panel as well as its weight. The inputs of the FE model of the RU (implemented in
ANSYS® environment) are both geometrical and mechanical parameters (generated by
BIANCA). The GA elaborates the results provided by the FE model in order to execute
the genetic operations. These operations are repeated until the GA meets the user-defined
convergence criterion.

The generic individual (i.e., a generic point in the design space) of the GA BIANCA
represents a potential solution for the problem at hand. The genotype of the individual for
problem (17) is characterised by only one chromosome composed of nine genes, each one
coding a component of the vector of design variables, see Eq. (16).

4. Mathematical formulation of the second-level problem

The second-level problem focuses on the lay-up design of the both skin and stringer
laminates. The goal is to determine at least one stacking sequence satisfying the optimum
values of both geometric and polar parameters resulting from the first level of the strategy
and having the elastic symmetries imposed to the laminate within the formulation of the
first-level problem, i.e., quasi-homogeneity and orthotropy. In the framework of the FSDT
and considering the polar formalism for representing the laminate stiffness matrices, this
problem can be stated in the form of an unconstrained minimisation problem [11, 21]:

min 1 (f; (8)) , (18)
with
6
I(f;(8)) =) fi(d) . (19)
=1

where § € R" is the vector of the layer orientations, i.e., the design variables of this phase,
while f; (8) are quadratic functions in the space of polar parameters, each one representing
a requirement to be satisfied, such as orthotropy, uncoupling, etc. For the problem at hand



the partial objective functions are:

198O =) o) (R @6) = RY MY
fl(é)_( 0 7_(_/4 _KA( )) ) f2(6)_< 0 RO 0 5
A% sy pAT(opt)\ 2 A% sy a AT (opt) |\ 2 2
f3(5)=<R1 i ) , f4<6>:<'q’1 m-h ') - o) = (158
B
fﬁ(‘”‘( ] ) ’

(20)

where fj () represents the elastic requirement on the orthotropy of the laminate having
the prescribed shape (imposed by the value of K4* which is related to the sign of pg at the
end of the first step of the strategy), f2 (8), f3(d) and f4 (§) are the requirements related to
the prescribed values of the optimal polar parameters resulting from the first-level problem,
while f5(d) and fg (8) are linked to the quasi-homogeneity condition.

I(fi(d)) is a positive semi-definite convex function in the space of laminate polar
parameters, since it is defined as a sum of convex functions, see Egs. (19)-(20). Nevertheless,
such a function is highly non-convex in the space of plies orientations because the laminate
polar parameters depend upon circular functions of the layers orientation angles. Moreover,
the absolute minima of I (f;(d)) are known a priori since they are the zeroes of this
function. For more details about the nature of the second-level problem see [11, 21]. It is
noteworthy that problem (18) must be solved two times, i.e., for each laminate composing
the skin and the stiffener.

In order to simplify the problem of retrieving an optimum stack, the search space for
problem (18) has been restricted to a particular class of quasi-homogeneous laminates:
the quasi-trivial (QT) stacking sequences which constitute exact solutions with respect to
the requirements of quasi-homogeneity, i.e., functions f5 () and fs(d) in Eq. (20) are
identically null for QT stacks.

QT solutions can be found for laminates with identical plies by acting only on the
position of the layers within the stack. Indeed, QT stacks are exact solutions, in terms
of quasi-homogeneity condition, regardless to the value of the orientation angle assigned
to each layer. In this way orientations represent free parameters which can be optimised
to fulfil further elastic requirements, i.e., functions fi (8), f2(d), f3(d) and f4 (). The
procedure for searching QT stacks is conceptually simple. Let n be the number of layers and
ng < n the number of saturated groups. Plies belonging to a given saturated group share
the same orientation angle 0, (j = 1,...,ny). The idea is to look for all the permutations of
the position of the plies indexes belongin to each group which meet the quasi-homogeneity
condition. More details on this topic can be found in [34].

Suppose now to fix both the number of plies and saturated groups, namely n and n,. As
discussed in [34], the problem of determining QT stacks for a given couple of n and n, can
give rise to a huge number of solutions: the number of QT stacks rapidly increases along
with n. To this purpose a database of QT stacks has been built for different combinations
of n and n,.

For the problem at hand, and for each considered case (i.e., skin and stringer laminates),
the optimum number of plies n,, (o = S, B) constitutes a result of the first-level problem,
while the number of saturated groups ny has been fixed a priori. Let be nyy the number
of QT stacks for a particular combination of n, and n,. Each solution collected within the
database is uniquely defined by means of an identifier IDgy (i.e., an integer) which varies

10



in the range [1,ng,]. Therefore, IDg, represents a further design variable along with the
ng orientation angles of the different saturated groups, i.e., @ € R"s. The design variables
can be thus collected into the following vector,

T,T = {IDsol7917~"79n9}7 (21)

and problem (18) can be reformulated as

4
min 3 °fi () (22)
=1

f5(n) and fs (n) being identically null.

In this background, the solution search for problem (22) is performed by means of the
GA BIANCA. In the case of QT stacks the structure of the individual genotype is simple
because it is composed of a single chromosome with ny + 1 genes: the first one codes the
variable IDg,; whilst the remaining genes code the orientation angles of every saturated
group which are discrete variables in the range [-89°, 90°] with a step length equal to 1°.

5. Finite element models of the stiffened panel

In this section two FE models of the stiffened panel RU are discussed: the first one is
used in the framework of the first-level problem of the MS2L approach while the second
one is utilised for verification purposes.

5.1. The finite element model for the optimisation procedure

The FE model of the panel RU used at the first-level of the MS2L strategy is built using
the FE commercial code ANSYS®. A linear eigenvalue buckling analysis is conducted to
determine the value of the first buckling load for each individual, i.e., for each point in the
design space, at the current generation.

The need to analyse, within the same generation, different geometrical configurations
(RUs with different geometrical and mechanical properties), each one corresponding to
an individual, requires the creation of an ad-hoc input file for the FE code that has to
be interfaced with BIANCA. The FE model must be conceived to take into account for a
variable geometry, material and mesh. Indeed, for each individual at the current generation,
the FE code has to be able to vary in the correct way the previous quantities, thus a proper
parametrisation of the model has to be achieved.

The FE model of the RU is illustrated in Fig. 3. The model has been built by using
a combination of eight-nodes shell elements (ANSYS SHELL281 elements) and non-linear
multi-point constraints elements (ANSYS MPC184 elements) both with six Degrees Of
Freedom (DOFs) per node.

As far as concerns SHELL281 elements, their mechanical behaviour is described by
defining directly the homogenised stiffness matrices A*, B*, D* and H*.

The compatibility of the displacement field between skin and stringer is achieved
through ANSYS MPC184 elements whose formulation is based upon a classical multi-point
constraint element scheme [35]. MPC184 elements are defined between each couple of nodes
belonging to contiguous shell elements as depicted in Fig. 3. In particular, MPC184 ele-
ments are defined between nodes of the middle plane of the skin (master nodes) and those
of the middle plane of the bottom flanges of the stringer (slave nodes).

11



Furthermore, MPC184 elements have been utilised to rigidify the end transverse sec-
tions of the RU, in order to simulate the presence of ribs (these last having an in-plane
stiffness one/two order of magnitude higher than the flexural stiffness of the RU). In par-
ticular, two pilot nodes A= {0,0,2} and B= {b,0, 2} have been defined according to the
RU global frame depicted in Fig. 3 (2 is the z component of the barycentre of lines belong-
ing to a given transverse section). Then, nodes A and B have been connected (through
MPC184 elements) to those located on lines of the corresponding transverse section, i.e.,
lines belonging to the planes x = 0 and = = b, respectively (see Fig. 3). The BCS for
nodes A and B are

node A: u; =0, B; =0;
node B: F, =—1IN, uy=u, =0, 3 =0, (23)
(i =z,y,2).

In Eq. (23) u; and B; are nodal displacements and rotations, respectively, whilst F}, is the
x component of the nodal force.

It is noteworthy that in problem (17) the first-buckling load of the stiffened panel
is calculated by considering pertinent BCs on its RU. This fact implicitly implies the
hypothesis of a panel having an “infinite” length along y-axis, according to the frame
depicted in Fig. 3. To take into account for this aspect, periodic boundary conditions
(PBCs) must be considered:

U; (a:,—g,()) — U (33,
Bi (33,—%,0) — B (fba

(i =z,y,2).

,0) =0, Vo €]0,b[,

N N

,0) =0, Yz €]0,b], (24)

PBCs of Eq. (24) must be defined for each couple of nodes belonging to the skin lateral
edges (i.e., lines located at y = +a/2) except those placed on the lines at x = 0 and = = b,
these last being already connected to the pilot nodes A and B, respectively. PBCs are
defined through ANSY'S constraint equations (CEs) [35] between homologous nodes of the
skin lateral edges

Finally, before starting the optimisation process, a sensitivity study (not reported here
for the sake of brevity) on the proposed FE model with respect to the mesh size has
been conducted: it was observed that a mesh having 56959 DOFs is sufficient to properly
evaluate the first buckling load of the stiffened panel.

5.2. The enhanced finite element model for the verification phase

The validity and accuracy of the ANSYS model utilised within the optimisation proce-
dure is verified a-posterior: in this work, by using an advanced higher-order formulation.
This refined solutions make use of the Carrera Unified Formulation (CUF), according to
which the three-dimensional displacement field u(z,y,z) can be expressed as a general
expansion of the primary unknowns. In the case of one-dimensional theories, one has:

u(z,y,z) = Fr(y, 2)u-(x), T=12,..,M, (25)
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where F, are arbitrary functions of the coordinates y and z on the cross-section of
the beam structure, u, is the vector of the generalized displacements which lay along the
beam axis x and M stands for the number of terms used in the high-order expansion. To
be remarked that in Eq. (25) (as well as in the rest of the equations of this subsection)
Einstein summation convention on repeated indices is tacitly assumed.

The choice of F- determines the class of the 1D CUF model that is required and subse-
quently to be adopted. For example, if Lagrange polynomials are used as F, Layer-Wise
(LW) theories for composite structures can be easily implemented, see [36]. Unlike classical
models for laminates which are available in commercial software tools, the unknowns of the
problem (and, thus, the number of DOFs) are layer-dependent in the case of LW models.
In this manner, it is possible to satisfy the continuity of the transverse stresses and the
zig-zag behaviour of the displacements along the thickness of the composite structure, in
accordance with the equilibrium and compatibility equations of elasticity.

One of the most important advantages of CUF is that it allows to write the governing
equations and the related finite element arrays of low-order to high-fidelity LW models in
an unified manner. Generally speaking, CUF can be used to generate finite elements whose
formal mathematical expressions are independent of the theory kinematics. For example, in
this work, the critical buckling loads are calculated by linearising the geometric nonlinear
governing equations and evaluating the loads that make the linearised tangent stiffness
matrix singular; i.e. |Kr|~ |K+ K,| =0, where K is the linear stiffness matrix and K,
is the geometric stiffness matrix.

The linear stiffness matrix can be evaluated from the virtual variation of the internal
work, which holds

0 Liny = / / selodV | (26)
1JQ

where € and o are the strain and stress vectors (Voigt’s notation), € is the cross-section of
the beam structure and [ is the beam length. By substituting the constitutive and linear
geometrical relations as well as CUF (Eq. (25)) and a classical finite element approximation
along the beam axis x, such that u,(z) = N;(x)u,;, the virtual variation of the strain
energy reads:

§Lint = oul, K9y, (27)
where u,; is the vector of the finite element unknowns and ¢ represents summation on
the nodes of the beam element. K7 represents the 3 x 3 fundamental nucleus of the
stiffness matrix, which can be expanded according to (7,7) and (7,s) to obtain the finite
element array of the generic beam theory [37]. Similarly, the gometric stiffness matrix
K, can be expressed in terms of fundamental nucleus by evaluating the linearisation of
the virtual variation of the strain energy and, subsequently, by linearising the nonlinear
geometric relations [38]. This matrix, in fact, represents the contribution of the pre-stress
on the stiffness of the system. It is important to underline that, in this work, as accurate
LW models of the reinforced composite panels are implemented, the full three-dimensional
stress field is taken into account for evaluating the geometric stiffness matrix K. This is
not true in the case of the ANSYS model employed in the optimisation procedure, which
makes use of standard shell elements based on FSDT assumptions.
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6. Numerical results

Before starting the multi-scale optimisation process a reference structure must be de-
fined in order to establish reference values for the RU mass as well as for the first buckling
load of the stiffened panel: both material and geometrical properties of the reference solu-
tion are reported in Tables 1 and 3, respectively. The reference solution is subject to the
same set of BCs, i.e., Egs. (23) and (24), as those applied on the RU of the panel that will
be optimised. One can notice that the reference structure has a laminated skin composed
of 28 plies and disposed according to a symmetric, balanced stack (therefore the result-
ing laminate is uncoupled and orthotropic in membrane, but not in bending), whilst the
stringer laminate is made of 32 plies with a symmetric quasi-isotropic stack (the laminate
is uncoupled and the membrane stiffness matrix is isotropic, but the bending one is totally
anisotropic). This reference solution corresponds to a classical configuration utilised in
the aeronautical field: its mass and its stiffness properties (in terms of buckling load) still
represent a “good” compromise between weight and stiffness requirements.

Regarding the setting of the genetic parameters for the GA BIANCA utilised to per-
form the solution search for both first and second-level problems they are listed in Table 4.
Moreover, concerning the constraint-handling technique for the first-level problem the Au-
tomatic Dynamic Penalisation (ADP) method has been considered, see [29]. For more
details on the numerical techniques developed within the new version of BIANCA and the
meaning of the values of the different parameters tuning the GA the reader is addressed
to [20].

6.1. Optimum configurations of the panel

The optimum values of both geometric and mechanical design variables (dimensionless
variables) resulting from the first-level of the optimisation strategy are listed in Table 5.
When comparing the optimum solution of the first-level problem with the reference config-
uration, one can notice the number of plies reduces from 28 to 20 for the skin laminate and
from 32 to 28 for the stringer. Moreover, both laminates are quasi-homogeneous and fully
orthtropic (both membrane and bending stiffness matrices) with an ordinary orthotropy
shape (parameter K A" = ( because the anisotropic polar modulus Ra“fg is positive for both
cases, see [11]). However, skin laminate gets a lower value of polar parameter R{* (an
order of magnitude lower than the corresponding value of R()“fg) which means that this
solutions tends to exhibit a square symmetric behaviour (for both membrane and bending
stiffness matrices), as illustrated in the polar diagrams of Fig. 4. For a deeper insight on
these aspects the interested reader is addressed to [11, 21].

Table 6 reports the first two best stacking sequences, for both skin and stringer, which
represents just as many solution for problem (22). As stated in Section 4 the second-
level problem is solved in the space of QT stacks. In this background, after fixing the
number of plies n and the number of saturated groups n, the design variables are the
identifier of the QT solution as well as the orientation angle of each saturated group, see
Eq. (21). Because problem (22) is highly non-convex in the space of the orientation angles
of saturated groups, it is possible to find several solutions (theoretically an infinite number)
meeting the optimum value of the laminate polar parameters provided by the first-level
problem.

For the problem at hand, the number of plies for both skin and stringer laminates,
(ns and np, respectively) is a direct result of the first level problem, while the number of
saturated group has been set equal to

e three for stacks S1 and B1,
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e four for stack S2,
e five for stack B2.

As it can be easily inferred from the results listed in Table 7, by combining the previ-
ous stacks it is possible to get four different optimum configurations of the stiffened panel.
Indeed, these optimum panels really represent equivalent solutions. Since they share the
same macroscopic geometrical parameters they have the same mass, i.e., M = 0.814 Kg
which represents a significant reduction (—11.5%) when compared to the reference config-
uration. Furthermore, these optimal configurations differ only in terms of the optimum
stack composing skin and stiffener laminates but they show almost the same buckling re-
sponse: the percentage increment of the first buckling load (with respect to the reference
value \ef) ranges from 9% to 9.5%, see Table 7.

Therefore, each optimum configuration is simultaneously lighter and stiffer than the
reference one and this result has been achieved only by abandoning the usual engineer-
ing rules and hypotheses related to the nature of the stacking sequence of the laminates
composing the panel.

Fig. 4 shows the deformed shape related to the first buckling mode as well as the first
component of the normalised stiffness matrices of the laminate, i.e., A*, B* and D* for
both skin and stringer for the configuration S1-B1: the solid line refers to the membrane
stiffness matrix, the dashed one to the bending stiffness matrix, while the dash-dotted
one is linked to the membrane/bending coupling stiffness matrix. It can be noticed that
the laminate is uncoupled as the dash-dotted curve disappears, homogeneous as the solid
and dashed curves are coincident and orthotropic because there are two orthogonal axes
of symmetry in the plane. In addition, for both laminates the main orthotropy axis is
oriented at ®{" = 0° according to the hypothesis of the first-level problem. The same
considerations can be repeated also for the rest of the optimum solutions.

6.2. Verification of the optimum configurations

A one-dimensional, high-order model based on CUF is used for validating the reference
and optimised RU analyses. The present CUF model employs a LW refined kinematics for
the accurate description of the pre-stress state of the RU subjected to compression and,
thus, for enhanced evaluation of buckling loads. The CUF-LW models of the reference
and optimised RU panels have 372588 and 333792 DOFs, respectively. As in the case of
the ANSYS model, PBCs are imposed by using the direct penalty approach. However,
it is important to underline that, because the employed LW CUF models have only pure
translational displacements as unknowns, only the first line of Eq. (24) is enforced.

The first buckling mode of the optimum configuration S1-B1 is shown in Fig. 5. That
of the reference configuration as well as those associated to the other optimum solutions
are equivalent, thus they are not depicted for the sake of brevity. For completeness reasons,
however, the through-the-thickness stress distributions (see Fig. 6) according to CUF and
ANSYS are given in Figs. 7 and 8. These figures show the distributions of axial, 0., trans-
verse shear, 0,., and transverse normal, o,,, stress components. It should be underlined
that the adopted ANSYS model provides a good distribution of axial stresses. In contrast,
and according to CUF reference solutions, the ANSYS FE model is not able to take into
account shear and transverse normal stresses and this would directly affect the accuracy
of the buckling calculation.

Table 8 summarises the first critical buckling loads given by CUF high-order beam
models and they are compared to those resulting from ANSYS model. The differences
between the results of the ANSYS FE model and the refined CUF solution for the optimum
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panels range from 7.4% to 7.9%, while for the reference configuration the percentage
difference is significant (up to 14%). This higher discrepancy is probably related to the
anisotropic bending behaviour of the reference solution. These differences are reasonable
and are related to the 3D stress distributions within each constitutive layer and the different
order of accuracy characterising the CUF LW beam model. Of course, this stress field
strongly affects the geometric stiffness matrix and cannot be acquired by ANSYS shell
elements which are based on the FSDT hypotheses.

It is noteworthy that, according to CUF numerical results, the gain in terms of stiffness
is even higher than that foreseen by ANSYS, ranging from 15.2% for solution B1-S1 to
15.8% for solution B2-S2, as summarised in Table 9.

7. Conclusions

The design strategy presented in this paper is a numerical optimisation procedure
characterised by several features that make it an innovative, effective and general method
for the multi-scale design of composite structures. In the present work this strategy has
been applied to the multi-scale optimisation of the repetitive unit of a composite stiffened
panel.

On the one hand, the design process is not submitted to restrictions: any parameter
characterising the structure (at each relevant scale) is an optimisation variable. This allows
searching for a true global minimum without making simplifying hypotheses on the nature
of the laminate stacking sequence. On the other hand, the multi-scale design problem has
been split into two optimisation sub-problems which are solved subsequently within the
same numerical procedure.

The first-level problem focuses on the macroscopic scale of the panel: each laminate
composing the structure is considered as an equivalent homogeneous anisotropic plate (for
both skin and stringer) and its macroscopic mechanical response is described in terms of
polar parameters. Furthermore, also geometric design variables describing the topology of
both skin and stiffener are involved at this level. At this stage, the mechanical properties
of the multilayer plates are represented by means of the polar formalism, a mathemati-
cal representation based on tensor invariants which is characterised by several advantages.
The main features of the polar method are the possibility to represent in an explicit and
straightforward way the elastic symmetries of the laminate stiffness matrices and to elimi-
nate from the optimisation procedure redundant mechanical properties.

The second level of the procedure is devoted to the laminate mesoscopic scale: the
goal is to find at least one optimum stack (for both stringer and skin) meeting on the one
hand the elastic requirements imposed to the laminate (quasi-homogeneity and orthotropy)
during the first-level problem and on the other hand the optimum value of the laminate
polar parameters resulting from the first step.

The utilisation of an evolutionary strategy, together with the fact that the problem is
stated in the most general sense, allows finding some non-conventional configurations more
efficient than the standard ones. In fact, the considered numerical example proves that,
when standard rules for tailoring laminate stacks are abandoned and all the parameters
characterising the structure are included within the design process, a significant weight
saving can be obtained: up to 11.5% with respect to the reference structure with enhanced
mechanical properties in terms of first buckling load (the percentage increment ranges from
9% to 9.5% depending on the considered optimum solution).

In a second time, both reference and optimum configurations of the stiffened panel have
been analysed by means of a high-order layer-wise FE model developed in the framework
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of CUF. This analysis reveals that the buckling load provided by the ANSYS FE model
(which is built by using shell elements based on FSDT) is overestimated and that the
percentage difference ranges from 7.4+7.9% for optimum solutions to 14% for the reference
configuration. This discrepancy is related to the calculation of the 3D stress field in each
layer which strongly affects the geometric stiffness matrix used to evaluate the first buckling
load of the panel.

Nevertheless, despite these discrepancies, classical shell elements based on FSDT can be
reliably employed in the framework of the MS2L optimisation strategy because they allow
finding true optimum solutions without using “expensive” models, in terms of both num-
ber of DOFs and computational cost. Moreover, according to CUF results, the optimum
configurations are really efficient when compared to the reference one: the weight saving
is always the same, but the gain in terms of stiffness is even higher than that foreseen by
ANSYS, ranging from 15.2% to 15.8% depending on the optimum solution.

These results unquestionably prove the effectiveness and the robustness of the opti-
misation approach proposed in this work and provide confidence for further research in
this direction. As an example, future works may focus on coupling the present MS2L op-
timisation strategy with high-order models based on CUF. These considerations remain
still valid if further requirements (e.g., strength, fatigue, delamination, etc.) have to be
included into the design problem formulation. All of these aspects can be easily integrated
within the MS2L optimisation strategy without altering its overall architecture and they
do not represent a limitation to the proposed strategy, on the contrary they could be an
interesting challenge for future researches on real-world engineering applications.
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Tables

Technical constants

Polar parameters of Q ¢

Polar parameters of Q °

T [MPa] 5095.4545
R [MPa] 1004.5454
o [deg]  90.0

E, [MPa] 161000.0 | Tp [MPa] 23793.3868
E5 |MPa] 9000.0 T; [MPa| 21917.8249
G12 [MPa] 6100.0 Ry [MPa] 17693.3868
2P 0.26 Ry [MPa] 19072.0711
93 0.10 q)() [deg] 0.0

O, [deg] 0.0
Density and thickness
p |[Kg/mm?3] 1.58 x 1076
tply [mm] 0.125

@ In-plane reduced stiffness matrix of the ply.
b Out-of-plane shear stiffness matrix of the ply.

Table 1: Material properties of the carbon-epoxy ply taken from [11, 21, 22].

Design variable  Type Lower bound  Upper bound  Discretisation step
PoS continuous —1.0 1.0
P1s continuous 0 1.0
POB continuous —1.0 1.0
P1B continuous 0 1.0 -
c1 discrete 0.1 0.45 0.001
co discrete 1.00 3.00 0.01
c3 discrete 1.00 3.00 0.01
ng integer 20 32 1
np integer 20 32 1
Table 2: Design space of the first-level problem.
a [mm)| 150.00
b [mm)] 600.00
ag [mm)| 15.00
a3 [mm] 21.50
h |mm| 30.00
Mref [Kg] 0.92
Aret[N] 445074
Stacking sequence Part N. of plies
[(45) — 45/905)2/(45/ — 45)3], skin (S) 28

[452/02/ — 452/904/ — 459 /02 /452]5

stringer (B) 32

Table 3: Reference solution for the stiffened panel design problem.
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Genetic parameters

15! level problem | 2"¢ level problem

N. of populations 1 1

N. of individuals 200 500

N. of generations 150 200

Crossover probability | 0.85 0.85
Mutation probability | 0.005 0.002
Selection operator roulette-wheel roulette-wheel
Elitism operator active active

Table 4: Genetic parameters of the GA BIANCA for first and second-level problems.

Geometric parameters

az [mm| a3 [mm| A [mm]| ns np

21.300 29.607  31.950 20 28

Polar parameters
Ry [MPa|  R{* [MPa

Skin (S) 3511.00 242.36
Stringer (B) 9391.51 12080.84

Table 5: Numerical results of the first-level optimisation problem.

ID  Best stacking sequence N. of plies
Skin (S)
S1 [-63/0/63/0/63/ —63/0/0/63/ — 63/63/ —63/0/0/63/ —63/0/ — 63/0/63] 20
S2  [43/90/0/0/ —43/90/ —43/90/0/ — 43/43/90/0/43/0/43/90/90/0/ — 43] 20
Stringer (B)
Bl [1/61/1/1/1/ —51/1/1/ —51/1/1/1/61/1/1/ —51/1/1/1/61/1/1/61/1/1/1/ — 51/1] 28

B2 [0/59/ — 1/ — 54/2/0/2/2/2/0/ — 54/ — 1/59/2/0/0/ — 54/ — 1/0/59/0/2/59/2/ — 1/ — 54/2/0] 28

Table 6: Numerical results of the second-level problem (first two optimum stacks for both skin and stringer).

Panel configurations
| REF | S1-B1 | S1-B2 | S2Bl |  S2-B2
M [Kg] | 0.920 | 0.814 (—11.5%)
A[N] | 445074 | 483951 (9%) | 483838 (9%) | 487493 (9.5%) | 487386 (9.5%)

Table 7: Properties of the optimum solution (in terms of mass and buckling load) for different skin-stringer
configurations; for each property the percentage difference between the optimum configuration and the
reference one is indicated in parentheses.
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Panel configurations

AN] | REF S1-BL |  S1-B2 S2-B1 S2-B2

| | |
CUF | 390870 | 450323 | 450430 | 451843 | 452615
ANSYS | 445074 (14%) | 483951 (7.5%) | 483838 (7.4%) | 487493 (7.9%) | 487386 (7.7%)

Table 8: Comparison of the buckling load A calculation between ANSYS FE model and high-order beam
CUF model for both reference and optimum solutions; the percentage difference between ANSYS and CUF
models is indicated in parentheses.

Panel configurations
| REF | S1-B1 \ S1-B2 \ S2-B1 \ S2-B2
A [N] | 390870 | 450323 (15.2%) | 450430 (15.2%) | 451843 (15.6%) | 452615 (15.8%)

Table 9: Comparison of the buckling load provided by the high-order beam CUF model for both reference
and optimum solutions; the percentage difference between each optimum configuration and the reference
one is indicated in parentheses.
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Figure 1: (a) Geometry and overall size of the stiffened panel (only two repetitive units are here represented
for sake of simplicity) and (b) geometric parameters of the repetitive unit.
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Figure 2: Logical flow of the numerical procedure for the solution search of the first-level problem.
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Figure 3: (a) FE model of the repetitive unit and related reference frame, (b) details of CEs for PBCs

along y-axis and (c) details of MPC184 elements.
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Figure 4: Numerical properties of the optimum panel S1-Bl. (a) Deformed shape of the first buckling
mode (normalized displacement) and polar diagram of the first component of the homogenized laminate
in-plane stiffness matrices [MPa] for (b) skin and (c) stringer.
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Figure 5: First buckling mode of optimum panel S1-B1 according to higher-order CUF model.
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Figure 6: Cross-section of the panel RU.
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Figure 7: Mid-span distributions of stresses components through the skin thickness (A-A’) of the optimum
panel S1-B1; solid line “~” is CUF solution, circles “o” represent ANSYS solution.
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Figure 8: Mid-span distributions of stresses components through the stringer thickness (B-B’) of the
optimum panel S1-B1; solid line “——" is CUF solution, circles “o” represent ANSY'S solution

28



	Introduction
	Multi-scale optimisation of composite stiffened panels
	Problem Description
	Description of the multi-scale two-level optimisation strategy

	Mathematical formulation of the first-level problem
	Geometrical design variables
	Mechanical design variables
	Mathematical statement of the problem
	Numerical strategy

	Mathematical formulation of the second-level problem
	Finite element models of the stiffened panel
	The finite element model for the optimisation procedure
	The enhanced finite element model for the verification phase

	Numerical results
	Optimum configurations of the panel
	Verification of the optimum configurations

	Conclusions

