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Abstract

In the field of road safety, it is common to use responsibility analyses to assess the
effect of a given factor on the risk of being responsible for an accident, among drivers
involved in an accident only. Even if this design is now widely adopted in the field,
the question of selection bias is often raised. The structural Causal Model framework
now provides valuable tools to assess causal effects from observational data and identify
selection bias. In this article, we briefly review recent results regarding the recoverability
of causal effects from selection biased data, and apply them to the case of responsibility
analyses. Our objective is to formally determine whether causal effects can be unbias-
edly estimated through this type of analyses, when available data are restricted to severe
accidents, as it is commonly the case in practice. However, because speed has a direct
effect on the severity of the accident, we show that causal odds-ratios are not estimable
from responsibility analyses. We present numerical results to illustrate our argument,
the magnitude of the bias and to discuss recent results from real data.

Keywords: causal inference; recoverability ; selection bias; responsibility analyses; road
safety.
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1 Introduction
Research into road safety must recognise causality. Preventing road crashes, in the interest
of public health and safety, implies identifying the underlying causes of crashes. In the field,
main causes of the occurrence and severity of road crashes due to human behavior have been
established: driving under the influence of alcohol or drugs, inappropriate speed, distracted
driving, etc. Questions asked by decision-makers now mostly concern the magnitude of their
causal effects, as well as the burden of deaths or victims attributable to these various causes
of accident (Cummings et al., 2006).
In order to measure causal effects, the ideal designs are interventional studies such as the
randomized clinical trial (Mill, 1843). However, interventional studies are not always pos-
sible in epidemiology or clinical research, either for ethical, costs or other technical reasons
(Baiocchi et al., 2014). Consequently, it is common to only have access to observational data.
In this case, two main sources of bias often arise: confounding and selection bias (Hernán
et al., 2002, Greenland, 2003, Elwert, 2013, Elwert and Winship, 2014).
In the case of road safety epidemiology, no interventional study can be performed for obvi-
ous ethical reasons. In addition, data are usually only available when the outcome of interest,
the accident, occurred. Indeed, data are restricted to drivers and vehicles involved in road
accidents only, and often to severe road accidents only (e.g., injury or fatal accidents). This
extreme selection of data precludes the estimation of the effect of any exposure on the risk of
car accident. Therefore, the first step before estimating causal effects is to define appropri-
ate cases and controls. Two closely related approaches have been adopted to deal with this
issue: quasi-induced exposure (Stamatiadis and Deacon, 1997) and responsibility analysis
(Smith and Popham, 1951, Perchonok, 1978, Terhune, 1986, Brubacher et al., 2014). The
general idea is to assess the causal effect of a given factor on the risk of being responsible
for an accident, or a severe accident, among involved drivers. The two approaches first rely
on the assessment of the responsibility of each driver involved in crashes, usually from po-
lice reports. They then consist in comparing responsible drivers with non-responsible drivers
among involved drivers. The underlying assumption is that non-responsible drivers represent
a random sample of the general driving population that was "selected" to crash by circum-
stances beyond their control and therefore have the same risk factor profile as other drivers
on the road at the same time (Brubacher et al., 2014, Wahlberg and Dorn, 2007). A standard
claim is that "if this randomness assumption is met, then the risk estimate derived from a
responsibility analyses would be expected to be similar to that from a standard case-control
study" (Brubacher et al., 2014, Wahlberg and Dorn, 2007). Thus, responsibility analyses
would allow researchers to unbiasedly estimate the causal effect of any exposure on the risk
of being responsible for an accident, by restricting the analysis to drivers involved in an ac-
cident only. Even if induced exposure and responsibility analyses are now widely adopted
in the field (Asbridge et al., 2013, Salmi et al., 2014, Wahlberg, 2009), some authors have
raised questions about the validity of these approaches and the potential presence of selection
bias. Indeed, the randomness assumption is questionable since the non-responsible drivers
can be very different from the general driving population (Sanghavi, 2013). Consequently,
responsibility analyses could lead to biased estimations, even if relevant confounders have



been taken into account. Nethertheless, the question is still open and responsibility analyses
are rarely discussed and challenged.
Our objective is to answer this question by determining whether the causal effects of a given
factor can be unbiasedly estimated through responsibility analyses. The singularity of our
work is to use the causal reasoning, the Structural Causal Model (SEM) framework, and
recent results regarding the recoverability of causal effects in the presence of selection mech-
anism. Our results enable us to close the debate, unfortunately in favor of biased estimations,
but they also give interesting leads to interpret and discuss estimations derived from respon-
sibility analyses.
The article is organized as follows. In Section 2 below, we briefly recall some basics of the
SCM framework and recent results regarding the recoverability of causal effects in the pres-
ence of selection bias. In Section 3, the application to responsibility analyses is presented.
In Section 4, we present results from a simple numerical analysis to illustrate the possible
magnitude of bias, and we discuss recent results from real data. In Section 5, we conclude
with leads for future research.

2 Causal inference in the presence of selection mechanism
In this section, we present the Structural Causal Model (SCM) framework and study the
recoverability of causal effects in the general context of selection biased data.

We consider the scenario where Y denotes a dichotomous outcome, X a binary exposure of
interest, and W is a vector of additional categorical variables. We will denote by V the set
of observable variables

(
X ,W ,Y

)
. The causal model M leading to Y can be graphically

represented by a DAG G (Directed Acyclic Graph) (Pearl, 1995, Greenland et al., 1999, Gly-
mour, 2008). In the SCM framework, the DAG is associated to a set of structural functions,
each corresponding to one of the covariates in the DAG. See Appendix A for more details.
This set of equations allows the definition of Yx, the counterfactual outcome that would have
been observed in the counterfactual world where exposure would have been set to X = x, for
x ∈ {0,1}. Then, causal effects can be precisely defined. In particular, in the simple case
considered here where both X and Y are binary, the average causal total effect (ACE) of X on
Y is defined as:

ACE = E
(
Y1−Y0

)
= P
(
Y1 = 1

)
−P
(
Y0 = 1

)
. (1)

Here, the causal effect is defined on the excess risk scale, but causal risk ratio or odds-ratio
can be defined similarly.

Causal inference is mainly concerned with the identification of P
(
Yx = y

)
for
(
x,y
)
∈

{0,1} and then of the causal effects, from the distribution of the observed variables P
(
V = .

)
(Bareinboim and Tian, 2015). When there is no selection bias, criteria such as the back-
door and the front-door criteria ensure the identifiability of causal effects (Pearl, 1995, 2009).
When selection bias is present, the binary variable S indicating inclusion in the study has to
be added to G, leading to a new DAG Gs. It is standard to represent S in a specific way in



Gs to emphasize that S does not play any role in the causal model described by G but plays a
role in the selection process since data are only available for individuals for whom S = 1 (see
Figure 1). Then, the question is the recoverability of P

(
Yx = y

)
for
(
x,y
)
∈ {0,1} in terms

of the observable distribution P
(
V = .|S = 1

)
(Bareinboim and Pearl, 2012, Bareinboim and

Tian, 2015). Recoverability can be seen as a generalization of identifiability in the presence
of selection bias. Whether this selection may result in biased estimation of the causal ef-
fects of interest depends on the structure of Gs, and in particular on the arrows pointing to
or emanating from S in Gs (Hernán et al., 2004). Two types of results allow us to determine
whether the causal effect is recoverable depending on the structure of the DAG Gs. First,
Bareinboim and Tian (2015) define necessary and sufficient conditions ensuring the recover-
ability of the quantity P

(
Yx = y

)
, and as a byproduct the recoverability of the causal effects

(causal excess risk, causal relative risk, causal odds-ratio), in the presence of selection. Sec-
ond, under additional assumptions, causal odds-ratios are recoverable from selection biased
data in specific situations where the distribution P

(
Yx = y

)
and other causal effects are not

(Bareinboim and Pearl, 2012). For illustration, and motivated by the context of responsibility
analyses, we mostly focus on situations where inclusion in the study depends on the outcome
Y , as in DAGs A and B of Figure 1. We also consider the case where S is a descendant of an
intermediate variable (i.e., a descendant of X), as in DAG C of Figure 1.

DAG A

X Y S

W

DAG B

X Y S

W

DAG C

X

S

M Y

W

Figure 1: Examples of DAGs in the presence of selection bias

2.1 Recoverability of P
(
Yx = y

)
in the presence of selection mechanism

A central result for the recoverability of P
(
Yx = y

)
in the presence of selection is stated by

Bareinboim and Tian (2015). As above, denote by G the DAG of interest, composed of
the observable variables V , and by Gs the DAG obtained after the addition of the selection
variable S in G. For any C ⊆ V , further define GC the subgraph of DAG G composed of
the variables in C only. For any Vi ∈ V , further denote by An

(
Vi
)

G the union of Vi and
the ancestors of Vi in DAG G. Then, Theorem 2 in Bareinboim and Tian (2015) states that
P
(
Yx = y

)
is recoverable from selection biased data if and only if(

C.1
)

An
(
Y
)

GV \X
∩An

(
S
)

Gs
= /0.

Condition (C.1) above is violated in the three examples depicted in DAGs A, B and
C of Figure 1. For instance, we have Y ∈ An

(
Y
)

GV \X
∩An

(
S
)

Gs
in DAGs A and B, and



M ∈ An
(
Y
)

GV \X
∩An

(
S
)

Gs
in DAG C. Therefore, P

(
Yx = y

)
is not recoverable under these

types of selection. Examples of DAGs ensuring that P
(
Yx = y

)
is recoverable from selection

biased data can be found in Bareinboim and Tian (2015).

2.2 Recoverability of causal odds-ratios in the presence of selection bias

Assume that W is a vector of confounders between X and Y , as in DAGs A, B and C. Here,
we consider the recoverability of w-specific causal odds-ratio

COR
(
X ,Y |W = w

)
=
P
(
Y1 = 1|W = w

)
P
(
Y1 = 0|W = w

)
P
(
Y0 = 1|W = w

)
P
(
Y0 = 0|W = w

) .
The w-specific causal odds-ratio is the causal odds-ratio in the stratum of the population
defined by W = w. When W contains a set of sufficient confounders, conditional ignorability
Yx⊥⊥X |W holds (Pearl, 2000, VanderWeele and Robins, 2009, VanderWeele and Shpitser,
2011), so that P

(
Yx = 1|W = w

)
= P
(
Y = 1|X = x,W = w

)
. Then, w-specific causal odds-ratio

equals the adjusted odds-ratio

OR
(
X ,Y |W = w

)
=
P
(
Y = 1|X = 1,W = w

)
P
(
Y = 0|X = 1,W = w

)
P
(
Y = 1|X = 0,W = w

)
P
(
Y = 0|X = 0,W = w

) .
Following Definition 2 of Bareinboim and Pearl (2012), OR

(
X ,Y |W = w

)
, and then

in our case COR
(
X ,Y |W = w

)
, are recoverable from selection biased data if the assump-

tions embedded in the DAG renders it expressible in terms of the observable distribu-
tion P

(
V = .|S = 1

)
. The symmetry of the odds-ratio OR

(
X ,Y |W = w

)
= OR

(
Y,X |W = w

)
makes it recoverable in specific situations where P

(
Yx = y

)
is not. More precisely, Theo-

rem 1 in Bareinboim and Pearl (2012), or Corollary 4 in Didelez et al. (2010a), states that
OR
(
X ,Y |W = w

)
is recoverable from selection biased data if and only if(

C.2
)

X⊥⊥S|
(
Y,W

)
or Y ⊥⊥S|

(
X ,W

)
.

This condition holds under DAG A, but is not guaranteed under DAGs B and C. Conse-
quently, OR

(
X ,Y |W = w

)
and then COR

(
X ,Y |W = w

)
are recoverable under DAG A, while

they are not under DAGs B and C.

In this paragraph, we focus on DAGs A and B, i.e. on situations where inclusion depends
on the outcome Y , as in responsibility analyses. Through these two DAGs, we can note that
the w-specific causal odds-ratio is not recoverable as soon as the selection is affected by the
outcome and the exposure. This situation is related to the general phenomenon called collider
bias (Greenland, 2003, Rothman et al., 2008). We will see that it is at play in responsibility
analyses.



3 Application to responsibility analyses
We can now check whether the conditions to recover causal total effects in the presence of
selection bias hold in the particular setting of responsibility analyses. Under-reporting of
crashes is a well-recognised problem; the more serious the crash, the more likely it is to be
recorded (Amoros et al., 2008). As a result available data are often restricted to, or at least
mostly concern, severe accidents. Here, we will consider the estimation of the causal total
effect of a given exposure on the “responsibility” of a severe accident among drivers involved
in a severe car crash.

3.1 Formalization of responsibility analyses

First, let us formalize what “responsibility” means in responsibility analyses. In this context,
the “responsibility” of a driver is not entirely driven by the determination of a legal fault.
A driver involved in a crash is considered as responsible of this crash if he committed a
driving fault (lane departure, failure to obey traffic signs, driving against traffic, etc), which
should trigger the crash. Note that alcohol consumption or cannabis intoxication are traffic
violation (illegal and frowned upon) but they are not driving faults. Rather, they are causes
of driving faults. The responsibility, which is assigned after the crash from police reports,
is a measure of the driving fault, which takes place before the crash. We will denote by F
the binary variable indicating whether the driver commits a driving fault. Observe that this
variable is defined for all drivers, not only those involved in a crash. Further denote by A
the binary variable indicating whether this driver is involved in a severe accident. We can
therefore consider the binary variable R indicating whether the driver is responsible for a
severe accident. So, R = F×A, and we have:

R = 1 if and only if A = 1 and F = 1
R = 0 if A = 1 and F = 0
R = 0 if A = 0 even if F = 1.

First of all, we will focus on the recoverability of causal effects on the responsibility of
a severe accident R. But, we will see in a second step that it can be sometimes useful to
consider the recoverability of the w-specific causal odds ratio on the driving fault F which
can serve as a basis to approximate the w-specific causal odds ratio on the responsibility of a
severe accident R.

The DAG G below represents a simplified causal mechanism which leads to a severe accident
from one driver’s point of view. As already mentioned, an accident (severe or not) generally
occurs because of a driving fault. That is the reason why there is an arrow from F to A.
This driving fault is potentially caused by the considered exposure X (alcohol consumption,
cannabis intoxication, cell-phone use...), hence the arrow from X to F . X , F and A may
be affected by many confounders, like age, gender, daytime, period of the year, speed limit



etc. We denote by W the set of all confounders. Most often, the exposure X is related
to speed. We denote by V the binary variable indicating whether a given driver drives at
high or inappropriate speed. We first consider a case where X has an impact on high speed
V , such as alcohol, so there is an arrow from X to V . V has an impact both on driving
fault F and on severe accident A. Indeed, on the one hand, high speed has an impact on
driving performances since high speed increases the risk of being unable to fit his driving
to circumstances. Consequently, it increases the risk to commit a driving fault F . Driving
at an inappropriate speed can also be considered as a driving fault. On the other hand, high
speed has an impact on accident severity: the higher the speed, the more serious the crash.
As other variables, V is also affected by W . Finally, R depends on F and A, because R=F×A.

X F A

W
V

R

S

Figure 2: DAG G representing the causal mechanism leading to the occurence of a severe
accident A.

In Section 3.2, we apply the principles on the DAG illustrated by Figure 2, i.e when data are
available for severe crashes only (A = 1) and the considered exposure X causes high speed V .
In this case, selection is affected by both the outcome and the exposure, so we will see that
the causal effect is not recoverable. In Section 3.3 we will describe other situations where
the causal effect could be well approximated.

3.2 Recoverability of causal effects in responsibility analyses

In the DAG of Figure 2, A represents the occurence of a severe crash, on which selection
depends in the sense that S = 1⇒ A = 1.

Because A ∈ An
(
R
)

GV\X
∩An

(
S
)

Gs
, results presented in Section 2 indicate that P

(
Rx = r

)
is not recoverable in this context, for

(
x,r
)
∈ {0,1}. Regarding w-specific odds-ratios,

COR
(
X ,R|W = w

)
is not recoverable since neither X ⊥⊥ S|

(
R,W

)
nor R⊥⊥ S|

(
X ,W

)
is

guaranteed. On the one hand, the set
(
R,W

)
does not d-separate all the paths from X to

S since it does not d-separate the path X ←− V −→ A −→ S. On the other hand, the set(
X ,W

)
does not d-separate all the paths from R to S since

(
X ,W

)
does not d-separate the



path R←− F −→ A −→ S. As already mentioned, it is sometimes useful to consider the
recoverability of COR

(
X ,F |W = w

)
, but COR

(
X ,F |W = w

)
is not recoverable here since

neither X⊥⊥A|
(
F,W

)
nor F⊥⊥A|

(
X ,W

)
generally holds.

Note that a more realistic assumption may be that the selection depends not only on the
accident, but on W too. We can imagine that the selection depends on the type of road, since
we observe more accidents on highway for a given level of severity. But even if the selection
depends on A and W , the conclusions remain identical to the ones exposed here.

To recap, in the situation considered here where there is an arrow between X and V , and
another one between V and A, the causal effect of interest is not recoverable. For instance, the
estimation of the causal effect of alcohol in responsibility analyses focused on fatal accident
is biased.

In other words, the estimable adjusted odds-ratio OR
(
X ,R|W = w,A = 1

)
, which

equals

P
(
R = 1|X = 1,W = w,A = 1

)
P
(
R = 0|X = 1,W = w,A = 1

)
P
(
R = 1|X = 0,W = w,A = 1

)
P
(
R = 0|X = 0,W = w,A = 1

) .
is not equal to COR

(
X ,R|W = w

)
. It is important to further note that OR

(
X ,R|W = w,A = 1

)
is not causal even inside the subpopulation {A = 1} (Frangakis and Rubin, 2002), that is,
OR
(
X ,R|W = w,A = 1

)
,COR

(
X ,R|W = w,A = 1

)
, with

COR
(
X ,R|W = w,A = 1

)
=
P
(
R1 = 1|W = w,A = 1

)
P
(
R1 = 0|W = w,A = 1

)
P
(
R0 = 1|W = w,A = 1

)
P
(
R0 = 0|W = w,A = 1

) .
See Appendix C for more details.
Consequently, adjusted odds-ratios OR

(
X ,R|W = w,A = 1

)
available in responsibility analy-

ses have to be interpreted with caution when available data are restricted to severe accidents.
They correspond neither to causal quantities generalizable to people outside the population
of injured drivers, nor to causal quantities inside this population.

3.3 Recoverability of causal effect in other situations

In this part, we study whether causal odds-ratios COR
(
X ,R|W = w

)
could be approximated

if some paths were absent in the DAG of Figure 2.
We consider three situations (See Figure 3): the case

(
i
)

where X would not be a cause of A,
the case

(
ii
)

where X would not be a cause of V and V would not be a cause of F and the
case

(
iii
)

where X would not be a cause of V .



(i) V would not be a direct cause of A

X F A

S
W

R

V

(ii) X would not be a cause of V and V
would not be a cause of F

X F A

S
W

V

R
(iii) X would not be a cause of V

X F A

S
W

V

R

Figure 3: Other possible DAGs in responsibility analyses

In cases
(
i
)

and
(
ii
)
, the conditional independence X ⊥⊥ A|

(
F,W

)
holds, so that

COR
(
X ,R|W = w

)
can be well approximated by COR

(
X ,F |W = w

)
. Indeed, although nei-

ther P
(
Rx = r

)
nor COR

(
X ,R|W = w

)
is recoverable (as in Section 3.3), COR

(
X ,F |W = w

)
is recoverable because X ⊥⊥ S|

(
F,W

)
, which is implied by X ⊥⊥A|

(
F,W

)
. In other words,

COR
(
X ,F |W = w

)
= OR

(
X ,F |W = w,A = 1

)
= OR

(
X ,R|W = w,A = 1

)
, which equals

P
(
F = 1|X = 1,W = w,A = 1

)
P
(
F = 0|X = 1,W = w,A = 1

)
P
(
F = 1|X = 0,W = w,A = 1

)
P
(
F = 0|X = 0,W = w,A = 1

)
=
P
(
R = 1|X = 1,W = w,A = 1

)
P
(
R = 0|X = 1,W = w,A = 1

)
P
(
R = 1|X = 0,W = w,A = 1

)
P
(
R = 0|X = 0,W = w,A = 1

) ,
where the last equality comes from the fact that F = R in the subpopulation {A = 1}. In
addition, if P

(
Fx = 1|W = w

)
and P

(
Rx = 1|W = w

)
are both small for x ∈ {0,1}, it can be

shown that
COR

(
X ,R|W = w

)
≈COR

(
X ,F |W = w

)
. (2)

See Appendix B for the proof of this result. Therefore, if P
(
Fx = 1|W = w

)
and

P
(
Rx = 1|W = w

)
are small, COR

(
X ,R|W = w

)
is approximately recoverable in case

(
i
)
.

Unfortunately, cases
(
i
)

and
(
ii
)

are not realistic. In case
(
i
)
, the assumption that high speed

V would not be a cause of a severe accident does not seem reasonable. The absence of an
arrow from V to A might be more plausible if A represents the occurence of an accident,
irrespective to its severity. In this situation, and considering driving at high or inappropriate



speed as a driving fault F , then it might be argued that there is no arrow from V to A. The
absence of this arrow would still remain questionable. In case

(
ii
)
, the absence of an arrow

from V to F does not seem plausible. Indeed, high speed increases the risk of loss of control
and consequently the risk to commit a driving fault F .
Then case

(
iii
)

appears as the most plausible. However, condition X ⊥⊥A|
(
F,W

)
does not

hold in this case since
(
F,W

)
does not block the path X −→ F ←− V −→ A. We have

X⊥⊥A|
(
F,W,V

)
so that COR

(
X ,R|W = w,V = v

)
is recoverable under case

(
iii
)
. It requires

V to be observed, which is rarely the case in practice.

4 Numerical illustration
Above, we have shown that the absence of bias in responsibility analyses is only guaranteed
if X ⊥⊥A|

(
F,W

)
holds, which is not the case under realistic DAGs. However, for practition-

ers, it is useful to quantify the magnitude of an identified bias. Here, we present results from
a simple numerical study to give a first quantification of the magnitude of bias induced by
responsibility analyses in a simple causal model, and where X could represent alcohol con-
sumption. Note that we do not consider any sampling properties and hence do not simulate
data. Rather we compare theoretical quantities under a given choice of a joint distribution of(
X ,V,F,A,R,W

)
(Didelez et al., 2010b).

4.1 Full model

We consider a model consistent with the DAG of Figure 2. More precisely, our causal model
is obtained by specifying the structural functions fF , fA, fX , and fV as well as the distributions
of the disturbances εF , εA, εX , and εV .
Denote the indicator function by I·. Define four independent random variables εF , εA, εX ,
and εV distributed according to a uniform distribution over the interval 0,1. For any given
pX ∈

(
0,1
)
, define X = IεX ≤ pX so that X ∼ B

(
pX
)

is a Bernoulli variable. We consider
the special case where pX = 0.5. Now, introduce the sigmoid function h

(
x
)
=
(
1+ exp−x

)−1,
and set, for any

(
x,v, f

)
∈ {0,1}3 and for a set of real parameters α0,αX ,β0,βX ,βV ,γ0,γF ,γV .

pV
(
x
)
= h
(
α0+αX x

)
pF
(
x,v
)
= h
(
β0+βX x+βV v

)
pA
(

f ,v
)
= h
(
γ0+ γF f + γV v

)
.

Finally, variables V , F , A, R are defined as

V = IεV ≤ pV
(
X
)
,

F = IεF ≤ pF
(
X ,V

)
,

A = IεA ≤ pA
(
F,V

)
,

R = F×A.



Moreover, for ν ≥ 0, we set

α0 =−
1
2

αX

β0 =−
1
2
(
βX +βV −ν

)
γ0 =−

1
2
(
2h
(
ν
)

γF + γV −ν
)

See Appendix D for details

Then, we compute causal effects and the measure of association on the odds-ratio scale de-
fined below :

COR
(
X ,F |W = w

)
=
P
(
F1 = 1|W = w

)
P
(
F1 = 0|W = w

)
P
(
F0 = 1|W = w

)
P
(
F0 = 0|W = w

) ,
COR

(
X ,R|W = w

)
=
P
(
R1 = 1|W = w

)
P
(
R1 = 0|W = w

)
P
(
R0 = 1|W = w

)
P
(
R0 = 0|W = w

) ,
OR
(
X ,R|W = w,A = 1

)
= OR

(
X ,F |W = w,A = 1

)
=
P
(
F = 1|X = 1,W = w,A = 1

)
P
(
F = 0|X = 1,W = w,A = 1

)
P
(
F = 1|X = 0,W = w,A = 1

)
P
(
F = 0|X = 0,W = w,A = 1

) .
See Appendix E for the analytic formulas used to compute these effects.

4.2 Numerical results

We present results under configurations where βV = 1 and γF = 4, because speed V increases
the risk of comitting a fault and because F largely increases the risk of having an accident.
The choice ν = 13 leads to prevalences of A, R, and F inferior than 10−6%, which can be
considered as realistic. Then, we make the three remaining parameters, αX , βX and γV , vary
between 0 and 3, because alcohol X increases speed V and the risk of committing a fault F ,
and V increases the severity of the accident. Results are presented in Figure 4.

In the situation where αX , 0 and γV , 0, we observe differences between the three quantities
COR

(
X ,R|W = w

)
, COR

(
X ,F |W = w

)
and OR

(
X ,R|W = w,A = 1

)
, and they increase with

αX or βX . So, in the general case where X increases the risk to drive fast V and high speed
V increases the risk of being involved in a severe crash A, OR

(
X ,R|W = w,A = 1

)
is smaller

than the true causal effect COR
(
X ,R|W = w

)
in our simulation setting. Finally, the higher

the value of γV and αX or βX , the higher the bias.

When γV = 0, which corresponds to the absence of an arrow between V and A (see case
(
i
)

in
Figure 3), we observe no difference between OR

(
X ,R|W = w,A = 1

)
and COR

(
X ,F |W = w

)
,
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Figure 4: Causal and associational odds-ratios in the case where βV = 1 and γF = 4, and for
varying values of the other parameters αX ,βX ,γV . In each panel, along the x axis, αX or βX
are varied from 0 to 3, and the other parameter is set to 1.

and only a tiny one between COR
(
X ,F |W = w

)
and COR

(
X ,R|W = w

)
, whatever the

values of αX or βX (the difference between COR
(
X ,R|W = w

)
and COR

(
X ,F |W = w

)
is so small can not even be seen on Figure 4). This confirms that, in this situa-
tion, COR

(
X ,R|W = w

)
' COR

(
X ,F |W = w

)
, so that COR

(
X ,R|W = w

)
can be well-

approximated by COR
(
X ,F |W = w

)
. In a setting where ν = 2, which is less realistic from

the perspective of responsibility analyses since this would correspond to P
(
F = 1

)
≈ 11%



and P
(
A = 1

)
≈ 11%, differences between COR

(
X ,R|W = w

)
and COR

(
X ,F |W = w

)
get a

little larger, while we still have OR
(
X ,R|W = w,A = 1

)
= COR

(
X ,F |W = w

)
; see Fig 7 in

Appendix F.

Finally, we observe very little differences between COR
(
X ,F |W = w

)
, OR

(
X ,F |W = w,A = 1

)
and OR

(
X ,R|W = w,A = 1

)
for αX = 0; again, these differences are so small that they can

not be seen from Figure 4. In other words, when there is no arrow from X to V but V is a di-
rect cause of F and A, despite the fact that the conditional independence X ⊥⊥ A|

(
F,W

)
does not hold, differences between COR

(
X ,F |W = w

)
, OR

(
X ,F |W = w,A = 1

)
and

OR
(
X ,R|W = w,A = 1

)
are negligible under the settings that we have considered. These

differences become larger for the choice ν = 2, and more work would be needed to study how
these differences behave under more complex settings involving confounders, interactions,
etc.

To recap, under the simple generative model considered here, we can observe that the ob-
servable associational effect OR

(
X ,R|W = w,A = 1

)
approximatively unbiasedly estimates

COR
(
X ,R|W = w

)
and COR

(
X ,F |W = w

)
only when γV = 0 or αX = 0. The case where

γV = 0 is not plausible, because V is always a cause of A. The case where αX = 0 is plausi-
ble, because some causes of A are not causes of V . In this latter case, the approximation is
only valid under additional but realistic assumptions of low prevalences of F and A. Other-
wise, OR

(
X ,R|W = w,A = 1

)
is smaller than the true causal effect under the simple settings

considered here where X increases the risk to drive fast V .

4.3 Practical interest

Our results may be useful to discuss estimations derived from responsibility analyses.
In a recent study named ActuSAM, Martin et al. (2017) compare the effect of alcohol con-
sumption and the effect of cannabis intoxication on the risk for being responsible among
drivers involved in a fatal crash. The ActuSAM study was made of 2 870 fatal accidents
occurring in Metropolitan France in 2011, and of the corresponding 4 059 drivers tested for
alcohol and narcotics, and of expert-determined responsibility. A multivariate logistic re-
gression was performed to estimate the effect of alcohol and cannabis on the risk of being
responsible for a fatal accident. The association were estimated by odds-ratios and adjusted
for age, gender, vehicle category and time of accident. This study concludes that drivers
under the influence of alcohol are 17.8 times (12.1-26.1) more likely to be responsible for
a fatal accident. Moreover, the higher the blood alcohol concentration, the higher the risk
of being responsible for a fatal crash. Regarding cannabis intoxication, the ActuSAM study
concludes that drivers under the influence of cannabis multiply their risk of being responsible
for causing a fatal accident by 1.65 (1.16-2.34). By comparing the estimations (17.8 vs 1.65),
and above all population attributable fractions (PAF) (27.7% vs 4.2%), the authors concludes
that alcohol consumption remains the main problem on French roads.
Our previous results give interesting leads to discuss the estimations derived from ActuSAM



study. For instance, in the case of alcohol, it is commonly admitted that alcohol increases the
risk to drive fast. We are here in the situation described by Figure 3, where X is a cause of V
and V is a cause of A. In this situation, our results suggest that the estimation concerning the
risk of alcohol would be biased, and probably smaller than the true causal effect. We have
completed the ActuSAM results by studying the impact of alcohol, and cannabis, on speed
to confirm our reasoning. Our analysis was based on the same database than the ActuSAM,
and on a population of 2 566 drivers. We have included all fatal road crashes which had
taken place in France in 2011 in the study, and all the drivers with known speed, alcohol and
cannabis consumption. Speed is here considered as continous and we have performed a linear
regression model of speed on alcohol and cannabis adjusted on the same set of confounders
than the ones choosen in the ActuSAM study. The results are presented in Table 1. We have
knowledge that unbiased estimations are obtained by realising the modelisation of V on the
control subpopulation (VanderWeele and Vansteelandt, 2010). Otherwise, collision bias still
occurs in the relationship between X and V after conditioning on A. However, there are not
enough drunck drivers in the subpopulation of nonresponsible drivers, that is why we use
these estimations to comment the ActuSAM results.

Table 1: Adjusted coefficients for speed driving,(n=2 566, data source Voiesur 2011, fatal
accidents)

Variables Coefficients 95%CI
Alcohol ≥ 0.5 gr/l 14.12 [10.44,17.80]

Cannabis -3.10 [-8.03,1.83]

We observe that an alcohol consumption above 0.5 gr/l increases the average speed by 14
km/h; see Table 1. Even if this estimation may be prone to collider bias as mentioned above,
it is line with common knowledge. Since alcohol is likely to increase the risk to drive fast
and high speed affects the risk of fatal crash, our previous results suggest that the estimation
from the ActuSAM study is biased. More precisely, it would be smaller than the true causal
effect of alcohol of being responsible of a fatal crash.
Concerning cannabis intoxication, the effect of cannabis on speed has not been established
yet. If results presented in Table 1 were valid, it confirms that the relationship between
cannabis and speed is not significant, so we are close to DAG illustrating case

(
iii
)
. In this

situation, our theoretical results suggest that the estimation from ActuSAM study is also
biased. Nevertheless, under additional but realistic assumptions of low prevalences of F and
A, our numerical results suggest that the estimable odds-ratio would be very close to the true
causal effect of cannabis.
Our new findings do not negate the global conclusion of the ActuSAM study, because alcohol
remains a major health problem on French roads.



5 Discussion
In this article, we study responsibility analyses, which are commonly used in the field of road
safety epidemiology, under the lense of causal inference. After describing the causal DAG
involved in responsibility analyses, we formally show that this type of design does not allow
unbiased estimations, even after proper adjustments for confounders. Only one exception
exists if pratitioners are interested in the direct effect of X on R (e.g. conditioned on V ) in
the situation where X is not a cause of V .

Focusing first on a binary exposure X which has an impact on V , and where V is a cause
of a severe accident A, we show that w-specific causal odds-ratios COR

(
X ,R|W = w

)
is not

recoverable when data from the most severe accidents only are available. Under additional
assumptions, COR

(
X ,R|W = w

)
can be approximated by COR

(
X ,F |W = w

)
if
(
i
)

V was
not a cause of A, or if

(
ii
)

X was not a cause of V and V a cause of F . Nevertheless,
none of these cases are plausible in reality. Hence, COR

(
X ,R|W = w

)
is not recoverable

and can not be approximated in most situations. We use numerical examples to illustrate
our arguments. Under the simple settings that we have considered, we observe that the
observable associational effect OR

(
X ,R|W = w,A = 1

)
is smaller than the true causal effects

COR
(
X ,F |W = w

)
or COR

(
X ,R|W = w

)
in the situations where X and V , and V and A

are positively directly related. We also observe very small differences between the three
quantities when X is not a cause of V when prevalences of F and A are low. Our results
are useful to interpret recent estimations on the risk of alcohol or cannabis among drivers
involved in a fatal crash (Martin et al., 2017).

As a matter of fact, available controls in responsibility analyses are not representative of the
non-responsible drivers (R = 0) when data are restricted to severe accident. Indeed, this pop-
ulation is composed by three types of drivers: the ones for whom

(
F = 0,A = 0

)
, the ones

for whom
(
F = 0,A = 1

)
, and the ones for whom

(
F = 1,A = 0

)
. However, because data de-

scribes drivers involved in a crash only, the control group is only composed of drivers who
did not commit a driving fault but had a severe accident

(
F = 0,A = 1

)
. Rigorously, there is

no reason why this subgroup of non-responsible drivers should be similar to the two other
subgroups. In particular, drivers involved in a severe crash are likely to drive faster than those
who are not involved in an accident, since crash severity is partly caused by speed. Since in-
appropriate speed is related to alcohol, the subpopulations

(
F = 0,A = 0

)
and

(
F = 0,A = 1

)
are different regarding exposure X . Some authors have sensed this non-representativeness
issue and have proposed a heuristic transformation of the control group to make the final
sample resemble that from a case-control study (Laumon et al., 2005). However, there is no
way to assess whether the final sample is indeed representative without additional information
regarding P

(
X
)

for instance. This type of additional information could also make adjusted
causal odds-ratio COR

(
X ,R|W = w

)
, causal odds-ratio COR

(
X ,R

)
or even P

(
Rx = r

)
, for(

x,r
)
∈ {0,1}, recoverable from the available data, even if the structure of the DAG alone

does not make these quantities recoverable. One interesting lead for future research would
be to use our formalisation of responsibility analyses to determine which additional infor-



mation would be sufficient to recover causal effects such as COR
(
X ,R|W = w

)
. Note that if

we choose an exposure X , which has no effect on V , COR
(
X ,F |W = w

)
is recoverable and

COR
(
X ,R|W = w

)
can be approximated.

Future research may focus on the formal study of the direction of the selection bias involved
responsibility analyses, based on realistic assumptions such as the positivity of the association
between V and A, V and F , etc. Interestingly, when focusing on causal relative risks, rather
than causal odds-ratio, we have, for any value w of the confounders,

CRR
(
w
)
=
P
(
R1 = 1|W = w

)
P
(
R0 = 1|W = w

)
=
P
(
R = 1|X = 1,W = w

)
P
(
R = 1|X = 0,W = w

)
=
P
(
R = 1|X = 1,W = w,A = 1

)
P
(
R = 1|X = 0,W = w,A = 1

) × P(A = 1|X = 1
)

P
(
A = 1|X = 0

) ,
where we used the fact that A = 0⇒ R = 0. Then, the observable relative risk underestimates
the causal one if and only if P

(
A = 1|X = 1

)
P
(
A = 1|X = 0

)
≥ 1. In particular, this is the case

if X and A are positively monotonically associated (VanderWeele and Robins, 2010). This
could be seen as a reasonable assumption for exposures positively associated with high speed.

In other respect, selection bias is not the only issue in responsibility analyses. First, for
drivers involved in a crash, responsibility is usually determined from police reports, from
an algorithm (Robertson and Drummer, 1994, Terhune, 1986), or by experts. This assigned
responsibility is a noisy measure of the true responsibility. In particular, when responsibility
is assigned by experts, a safe rule would be to remove all information regarding X from police
reports so that experts are blinded to exposure status (Brubacher et al., 2014). Otherwise, it is
possible that experts use the information regarding X when assigning drivers’ responsibility,
which is particularly problematic (Salmi et al., 2014). Second, unmeasured confounders are
sources of confounding bias. For instance, risk proneness is likely to be a common cause of
alcohol consumption and inappropriate speed, and is therefore a confounder regarding the
causal relationship between X and A. It is generally unobserved and only loosely related to
age, gender, etc, so that adjusting for these covariates is not sufficient and confounding bias
arises.

Our research enables us to conclude about the validity of responsibility analyses, unfortu-
nately in favor of biased estimations. Nevertheless, this type of design is widely used and
no better alternatives exist as of today, so it is important to be able to comment estimations
derived from responsibility analyses. In this way, our results give first interesting leads to
interpret and discuss these estimations.
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Appendix A Causal inference in the Structural Causal
Model framework

This Appendix presents the basis of causal inference, with a special emphasis on the SCM
framework (Pearl, 2000). We consider the same simple setting as that of Section 2 where
cause X and effect Y are binary, and vector W is a set of categorical variables. A first use-
ful tool to describe causal assumptions underlying a causal model M is the DAG. See the
three examples considered in Figure 5. Under each of these examples, the DAG can be
translated into a Structural Equation Model (SEM), that is a set of three structural equations,
involving three autonomous functions fX , fW and fY , as well as three exogenous random
variables UX ,UW and UY , sometimes called disturbances (Pearl, 2000, 2009). We will as-
sume that UX ,UW and UY are jointly independent. These sets of structural equations govern
the distributions of the variables V =

(
X ,W ,Y

)
observed in the actual world and available in

observational studies. But they also allow the description of what we would have observed in
counterfactual worlds, if we could have intervened and forced the exposure to be set to X = x0
(with x0 ∈ {0,1} in the simple scenario considered here). This physical intervention can be
modeled by the do-operator introduced by Pearl (1995, 2000). In model M , this operator
modifies the value of X : instead of being the result of the autonomous function fX , it is set to
X = x0. The do-operator further removes any arrow pointing to X in the DAG. For instance,
in Figure 5, DAG a′ and DAG c′ are identical while DAG a and DAG c are different: the
two causal models are identical in the counterfactual world that we would observe after the
intervention do

(
X = x0

)
, but are different in the actual world.

Causal effects represent a general ability to transfer changes among covariates (Pearl,
2009), and the do-operator is a key tool for their definition in the SCMs framework. The in-
tervention do

(
X = x0

)
does not affect functions fV1 (nor disturbances UV1) for V1 ∈V \{X},

but it does affect the distribution of descendants of X in the DAG (its children, the chil-
dren of its children, etc.). More precisely, in the counterfactual world following the inter-
vention do

(
X = x0

)
, model M would be model Mx0 leading to observations of the vari-

ables V
(
x0
)
=
(
x0,W x0,Yx0

)
instead of V =

(
X ,W ,Y

)
. In case (a) for instance, we have

W x0 = fWUW =W but Yx0 = fY
(
x0,W x0 ,UY

)
= fY

(
x0,W ,UY

)
, which is typically different

from Y , unless X = x0. The random variables
(
Yx0

)
x0∈{0,1}

are not (fully) observed: they are
counterfactual variables, and correspond to potential outcomes (Splawa-Neyman, 1990, Ru-
bin, 1974, Holland, 1986). In the Marginal Structural Models (MSMs) framework (Robins
et al., 2000), these counterfactual variables

(
Yx0

)
x0∈{0,1}

are connected to the variable Y ob-
served in the actual world, through consistency constraints like the coherence assumption
(Robins, 1986):

(Coh)
(
X = x

)
⇒
(
Y = Yx

)
, for all potential values x of X .

In words, this assumption states that the actual outcome for an individual whose actual level
of exposure is x equals the outcome we would observe for this same individual in the counter-
factual world following do

(
X = x

)
, i.e., where exposure would be “physically” set to value
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Corresponding counterfactual worlds, following physical intervention do
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)
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)
Figure 5: Examples of DAGs and SEMs: actual and counterfactual worlds.

x. This assumption can be violated in randomized clinical trial if full adherence is not guar-
anteed for instance. In the simple case of binary exposure considered here, the coherence
assumption entails that Y = XY1 +

(
1−X

)
Y0. Under this coherence assumption, Y1 and Y0

are therefore partially observed and causal inference from observational data can be seen
as a missing data problem. One first advantage of SCMs over MSMs rests in the precise
definition of the counterfactual variables from the model, thanks to the DAG and the corre-
sponding SEM. For instance, it is easy to show that the coherence assumption is automati-
cally fulfilled in the structural interpretation of counterfactual variables considered here, since
Y = fY

(
X ,W ,UY

)
and Yx = fY

(
x,W ,UY

)
.

Once potential outcomes have been introduced (and precisely defined in the SCM
framework), causal effects can be precisely defined. In particular, in the simple example
considered here where both X and Y are binary, the average causal effect of X on Y is defined
as

ACE = E
(
Y1−Y0

)
= P
(
Y1 = 1

)
−P
(
Y0 = 1

)
. (3)



In the SCM framework, P
(
Yx = 1

)
is the probability that the outcome variable Y would

equal 1 in the counterfactual world following the intervention do
(
X = x

)
: using Pearl’s no-

tations, we have P
(
Yx = 1

)
= P
(
Y = 1|do

(
X = x

))
(see, e.g., Equation (7) in Pearl (2009)).

The average causal effect measures the difference between the risk of observing the out-
come in the counterfactual world where all individuals would be exposed, P

(
Y1 = 1

)
=

P
(
Y = 1|do

(
X = 1

))
, and the risk of observing the outcome in the counterfactual world

where exposure would be eliminated, P
(
Y0 = 1

)
= P

(
Y = 1|do

(
X = 0

))
. Here, causal ef-

fect is defined on the excess risk scale, but causal risk ratio or odds-ratio can of course be
defined similarly: e.g., for the causal risk ratio, it is defined as P

(
Y1 = 1

)
P
(
Y0 = 1

)
.

So far, we have shown that the introduction of the do-operator and the counterfactual
variables Y1 and Y0 allow a precise definition of causal effects. However, because such causal
effects rely on quantities that are not (fully) observed in the actual world, a natural question
arises whether these effects can be estimated from observational data.

Consider a general DAG G composed of observed variables V , with
(
X ,Y

)
∈ V .

In the SCMs framework, P
(
Y = y|do

(
X = x

))
= P

(
Yx = y

)
is said to be identifiable if the

assumptions embedded in DAG G ensure that this quantity is expressible in terms of the ob-
servable distribution P

(
V = v

)
; see Definition 1 in Bareinboim and Tian (2015) for instance.

Here we start by recalling standard conditions introduced in the literature, that are
sufficient for identifiability of P

(
Y = y|do

(
X = x

))
= P

(
Yx = y

)
, when combined with the

coherence assumption (Coh). These conditions ensure a certain level of “comparability” be-
tween exposed and non-exposed individuals in the actual world. In particular, the ignorability
assumption reads as follows (Greenland et al., 1999):

(Ign) Yx⊥⊥X , for all potential values x of X ,

where V1⊥⊥V2 stands for “V1 and V2 are independent”. This assumption states that the out-
come Yx we would observe in the counterfactual world where exposure would be set to value
x is independent of the actual level of exposure X . Under (Ign) and (Coh), the causal effect
of X can be estimated from observations of the actual world, as long as 0 < P

(
X = 1

)
< 1.

Indeed, by successively applying assumption (Ign) and (Coh), it follows that

P
(
Yx = 1

)
= P
(
Yx = 1|X = x

)
= P
(
Y = 1|X = x

)
(4)

Under (Coh) and (Ign) the association measure between X and Y is said to be unconfounded
and equals the causation measure. For instance, under (Coh) and (Ign), P

(
Y = 1|X = 1

)
−

P
(
Y = 1|X = 0

)
= P
(
Y1 = 1

)
− P

(
Y0 = 1

)
. Of course, (Ign) is a strong assumption and, as

will be made clearer below, it does not hold in the presence of confounders for instance. In
such cases, a conditional version of (Ign) can also been considered (Rosenbaum and Rubin,
1983). In particular, assume that, for some variable W , the following assumption holds:

(C.Ign) Yx⊥⊥X |W , for all potential values x of X ,



where V1⊥⊥V2|V3 stands for “V1 and V2 are conditionally independent given V3”. Then the
so-called adjustment formula, or back-door formula (Pearl, 1995), holds too:

P
(
Yx = 1

)
=

w
P
(
Yx = 1|W = w

)
P
(
W = w

)
=

w
P
(
Yx = 1|X = x,W = w

)
P
(
W = w

)
=

w
P
(
Y = 1|X = x,W = w

)
P
(
W = w

)
.

Therefore, under (Coh) and (C.Ign), we have

ACE =
w
{P
(
Y = 1|X = 1,W = w

)
−P
(
Y = 1|X = 0,W = w

)
}P
(
W = w

)
, (5)

and ACE corresponds to a marginalized version of the adjusted excess risk. Under the Ex-
perimental Treatment Assignment (ETA) assumption, that is 0 < P

(
X = x|W

)
< 1 almost

everywhere, ACE can be estimated from observations of the actual world. Methods adapted
to situations where the ETA assumption fails to hold have also been proposed (see Moore
et al. (2012) for a review and further extensions).



Appendix B Proof of approximation (2)
Under the assumption of no unmeasured confounder, OR

(
X ,F |W = w

)
=COR

(
X ,F |W = w

)
.

Moreover, if P
(
Fx = 1|W = w

)
is small for x ∈ {0,1}, then COR

(
X ,F |W = w

)
≈

CRR
(
X ,F |W = w

)
, while if P

(
Rx = 1|W = w

)
is small for x∈{0,1}, then COR

(
X ,R|W = w

)
≈

CRR
(
X ,R|W = w

)
. Therefore, under these assumptions, and if X⊥⊥A|

(
F,W

)
, we have

COR
(
X ,R|W = w

)
≈CRR

(
X ,R|W = w

)
=
P
(
R1 = 1|W = w

)
P
(
R0 = 1|W = w

)
=
P
(
F1 = 1,A1 = 1|W = w

)
P
(
F0 = 1,A0 = 1|W = w

)
=
P
(
F1 = 1,A1 = 1|X = 1,W = w

)
P
(
F0 = 1,A0 = 1|X = 0,W = w

)
=
P
(
F = 1,A = 1|X = 1,W = w

)
P
(
F = 1,A = 1|X = 0,W = w

)
=
P
(
A = 1|F = 1,X = 1,W = w

)
P
(
F = 1|X = 1,W = w

)
P
(
A = 1|F = 1,X = 0,W = w

)
P
(
F = 1|X = 0,W = w

)
=
P
(
A = 1|F = 1,W = w

)
P
(
F = 1|X = 1,W = w

)
P
(
A = 1|F = 1,W = w

)
P
(
F = 1|X = 0,W = w

)
=
P
(
F = 1|X = 1,W = w

)
P
(
F = 1|X = 0,W = w

)
=
P
(
F1 = 1|W = w

)
P
(
F0 = 1|W = w

)
=CRR

(
X ,F |W = w

)
≈COR

(
X ,F |W = w

)
Appendix C Formal definition of OR

(
X ,R|W = w,A = 1

)
Denote by Rx, Fx, Vx, Ax the counterfactual outcome variables we would observe in the coun-
terfactual world following the intervention X = x. Figure 6 presents the SWIT corresponding
to the intervention do

(
X = x

)
(Richardson and Robins, 2013).

From this representation, it directly follows that Rx ⊥⊥ X |W , and therefore that Rx ⊥⊥
X |
(
W ,Ax

)
. Then, the following holds

P
(
R = 1|X = x,W = w,A = 1

)
= P
(
Rx = 1|X = x,W = w,Ax = 1

)
by consistency

= P
(
Rx = 1|W = w,Ax = 1

)
since Rx⊥⊥X |

(
W ,Ax

)
. (6)



X x Fx Ax

W
Vx

Rx

Figure 6: The SWIT resulting from the intervention do
(
X = x

)
in case (ii)

Consequently, it can be shown that the adjusted odds-ratio conditioned on A = 1 is

OR
(
X ,R|W = w,A = 1

)
=
P
(
R1 = 1|W = w,A1 = 1

)
P
(
R1 = 0|W = w,A1 = 1

)
P
(
R0 = 1|W = w,A0 = 1

)
P
(
R0 = 0|W = w,A0 = 1

) .
Appendix D Choice of constant in numerical illustration
We note P

(
X = 1

)
= pX ,P

(
V = 1

)
= pV and P

(
F = 1

)
= pF . Inspired by Sperrin et al. (2016),

we set

α0 =−
(

pX αX
)

β0 =−
(

pX βX + pV βV −ν
′)

γ0 =−
(

pFγF + pV γV −ν
′)

with pX = pV = 0.5 and pF = h
(
ν
)
, so that the prevalence of V remains close to 50% and the

prevalences of F and A remain close to h
(
ν
)
. Consequently,

α0 =−
1
2

αX

β0 =−
1
2
(
βX +βV −ν

)
γ0 =−

1
2
(
2h
(
ν
)

γF + γV −ν
)



Appendix E Analytic expression used to compute causal
and associational effect in numerical illustra-
tion

Under our generative model, we get, for x ∈ {0,1},

P
(
Fx = 1|W = w

)
= P
(
F = 1|X = x,W = w

)
=

v∈
(
0,1
){P(F = 1|X = x,V = v,W = w

)
P
(
V = v|X = x,W = w

)
}

= h
(
β0+βX x+βV

)
h
(
α0+αX x

)
+h
(
β0+βX x

)
h
(
−
(
α0+αX x

))

P
(
Rx = 1|W = w

)
= P
(
A = 1,F = 1|W = w

)
=

v∈
(
0,1
){P(A = 1|F = 1,V = v,W = w

)
P
(
F = 1|X = x,V = v,W = w

)
P
(
V = v|X = x,W = w

)
}

= h
(
γ0+ γF + γV

)
h
(
β0+βX x+βV

)
h
(
α0+αX x

)
+

h
(
γ0+ γF

)
h
(
β0+βX x

)
h
(
−
(
α0+αX x

))

P
(
F = 1|X = x,W = w,A = 1

)
=
P
(
F = 1,X = x,W = w,A = 1

)
P
(
X = x,W = w,A = 1

)
=
P
(
A = 1|F = 1,X = x,W = w

)
P
(
F = 1X = x,W = w

)
P
(
A = 1|X = x,W = w

)
P
(
X = x|W = w

)
P
(
W = w

)
=

v∈
(
0,1
){P(A = 1|F = 1,V = v,W = w

)
P
(
F = 1|X = x,V = v,W = w

)
P
(
V = v|X = x,W = w

)
}

n

v, f∈
(
0,1
){P(A = 1|F = f ,V = v,W = w

)
P
(
F = 1|X = x,V = v,W = w

)
P
(
V = v|X = x,W = w

)
}

= h
(
γ0+ γF + γV

)
h
(
β0+βX x+βV

)
h
(
α0+αX x

)
+h
(
γ0+ γF

)
h
(
β0+βX x

)
h
(
−
(
α0+αX x

))
×

h
(
γ0+ γF + γV

)
h
(
β0+βX x+βV

)
h
(
α0+αX x

)
+h
(
γ0+ γF

)
h
(
β0+βX x

)
h
(
−
(
α0+αX x

))
+

h
(
γ0+ γV

)
h
(
−
(
β0+βX x+βV

))
h
(
α0+αX x

)
+h
(
γ0
)

h
(
−
(
β0+βX x

))
h
(
−
(
α0+αX x

))−1

Appendix F Numerical illustration with higher prevalences
of F and A

Here, we consider the same causal model and the same set of values for the different para-
maters considered in the model. We only change the value of ν from 13 to 2 to get higher



prevalences of F and A.
With ν = 2, the prevalence of F is around 14% and the prevalence of A is around 19%. It is
not realistic in our case but it allows us to illustrate the presence of bias when αX = 0 (See
Figure 7).

γV = 0 γV = 1.5 γV = 3
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Figure 7: Causal and associational odds-ratios in the case where ν = 2, and βV = 1 and γF = 4,
and for varying values of the other parameters αX ,βX ,γV . In each panel, along the x axis, αX
or βX are varied from 0 to 3, and the other parameter is set to 1.
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