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ABSTRACT 
Objective The severity of rheumatoid arthritis (RA) correlates directly with bone erosions due 

to osteoclast (OC) hyperactivity. Despite controlled inflammation, RA patients in sustained 

clinical remission or low disease activity may continue to accrue erosions urging the need for 

treatments suitable for long-lasting inhibition of OC activity without altering their physiological 

function in bone remodeling. Autotaxin (ATX) contributes to inflammation but its role in bone 

erosion is unknown. 

Methods ATX was targeted by both treatments with pharmacological drugs and conditional 

inactivation of Ennp2 (ATX gene) in OC (DATXCtsk mice). Arthritic and erosive diseases were 

studied in human tumor necrosis factor transgenic (hTNF+/-) and K/BxN serum-transfer 

arthritis mice. Systemic bone loss was also analyzed in the Lipopolysaccharide (LPS)-

induced inflammation and estrogen deprivation models. Joint inflammation and bone erosion 

were assessed by histology and microcomputed tomography. The role of ATX was examined 

in murine OC differentiation and activity assays. 

Results OC present at inflammatory sites overexpressed ATX. Pharmacological inhibition of 

ATX significantly mitigated focal (36% amelioration; p<0.05) and systemic bone loss (43% 

amelioration; p<0.05) in hTNF+/- mice without affecting synovial inflammation. OC-derived 

ATX revealed instrumental in OC bone resorptive activity and was upregulated under 

inflammation elicited by TNF or LPS. Specific loss of ATX in OC significantly protected 

against systemic bone loss and erosion after LPS and K/BxN-treatment (30% in systemic 

bone loss; p<0.01 and 55% in erosion; p<0,001) without bone protective property following 

ovariectomy.  

Conclusions Our results identify ATX as a novel OC factor that specifically controls 

inflammation-induced bone erosions and systemic bone loss. Therefore, ATX inhibition offers 

a novel therapeutic approach for preventing bone erosion in RA. 

 
Keywords: autotaxin, osteoclast, bone loss, rheumatoid arthritis. 
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INTRODUCTION 

  Rheumatoid arthritis (RA) is a chronic relapsing disease characterized by synovial 

inflammation, focal bone degradation, and systemic osteoporosis. Irreversible periarticular 

bone erosion is a hallmark of RA, which can occur soon after disease onset and correlates 

with disease severity and functional deterioration. At the present time, treatments of RA are 

focused on the inhibition of inflammation to halt synovitis and subsequent progression of 

bone erosion. However, some patients in sustained clinical remission still develop 

radiographic erosions (1, 2).  

Osteoclasts (OC) are responsible for focal erosions, juxtaarticular bone loss, and 

systemic osteoporosis in RA (3-5). Significant evidence has accumulated demonstrating that 

OC are present at sites of focal bone erosion at the pannus-bone interface (3, 6-8). These 

multinucleated cells originate from fusion of myeloid cells under the control of receptor 

activator of nuclear factor-κB ligand (RANKL) and proinflammatory cytokines in RA (5). 

Current treatments of RA are largely limited to controlling the inhibition of the immune 

inflammation to halt synovitis and to delay or even stop subsequent progression of bone 

erosion. Denosumab, a neutralizing antibody that selectively binds RANKL and consequently 

inhibits OC formation, slows the progression of bone erosion in RA patients without affecting 

synovial inflammation, suggesting that it is possible to limit bone erosion by targeting OC (9, 

10). However current anti-resorptive drugs are suboptimal in RA as they could lead to 

atypical fractures due to shutting down physiologic bone remodeling pointing to the need for 

alternative therapies. 

Autotaxin (ATX), also known as ecto-nucleotide 

pyrophosphatase/phosphodiesterase-2 (ENPP2), is a secreted enzyme produced by various 

tissues including the brain, liver, and adipose tissue (11). ATX is also a lysophospholipase D 

responsible for cleavage of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA) 

that in turn acts as a growth factor with pleiotropic actions such as cell proliferation, 

differentiation, and migration via at least six G protein-coupled receptors (LPA1-6) (12-13). 

High levels of LPA and ATX have been detected in synovial fluids of RA patients (14-16) and 

LPA1 knock out mice were reported to be protected from collagen-induced arthritis (14) 

suggesting that LPA/ATX axis controls inflammatory arthritis pathogenesis. ATX is 

upregulated by TNF in synovial fibroblasts resulting in increased levels of ATX at the joint 

inflammatory site in mouse models of RA (16). Thus, the contribution of ATX to synovial 

inflammation has been well established. In contrast, its role in bone erosion occurrence is not 

yet resolved. In case of an action, it could be either secondary to TNF dependent 

inflammation or direct on osteoclast-mediated bone resorption. Actually, LPA is a serum 

borne factor mandatory in vitro for RANKL-induced OC formation (17). Also, LPA mediates 
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OC survival (18) and controls OC resorption activity through cytoskeleton organization (19, 

20). However, the origin of LPA in bone is still unknown. 

In the present study we show that OC produces functionally active ATX. Using both 

genetic and pharmacological approaches we find that blocking ATX prevents systemic bone 

loss and bone erosion under inflammatory conditions accompanying RA without interfering 

with physiologic non-inflammatory bone remodeling. We provide evidence that OC-derived 

ATX is a key regulator whose inhibition uncouples inflammation from bone resorption. 

Therefore, ATX is a promising therapeutic target for the prevention of inflammation-

associated bone loss and of bone erosion in RA. 

 

 

MATERIALS AND METHODS  
Mice 
Enpp2fl/fl mice were kindly provided by Dr. Moolenaar (NKI, Amsterdam, Netherlands) (21). 

The Enpp2fl allele was deleted specifically in OC by crossing the strain with mice that 

express the Cre recombinase under the control of the Cathepsin K promoter, kindly provided 

by Dr. Kato (Tokyo University, Japan) (22). Spontaneous arthritic Tg197 humanized TNF 

transgenic (hTNF+/-) mice were obtained from Dr Kollias (A. F. B. S. Center, Athens, Greece) 

(23). Enpp2fl/fl and Ctsk-Cre+/- mouse strains were maintained on a BalB/c genetic 

background while hTNF+/- mouse strain was on the C57/BL6 background. Four-month-old 

female CTRL (Enpp2fl/flCtsk-Cre-/-) and DATXCtsk (Enpp2fl/flCtsk-Cre+/-) mice underwent 

ovariectomy (OVX) or sham-OVX surgery and were euthanized after 1 month. Uterine weight 

was measured at necropsy. Animals were sacrificed following the ARRIVE guidelines. 

Experimental protocols were approved by the local ethical Committee, CECCAPP of the 

Ecole Normale Supérieure or by the Institutional Animal Care and Use Committee of the 

Université Claude Bernard Lyon-1 (Lyon, France). 

 

Animal models of inflammation and arthritis  
Six-week-old male CTRL and DATXCtsk mice were injected i.p. either with 5mg/kg 

lipopolysaccharide (LPS, Sigma-Aldrich) or with a phosphate buffered saline (PBS) vehicle 

on day 0 and day 4 and euthanized on day 8.  

Both inducible and spontaneous animal models of arthritis were used in this study. K/BxN 

serum–transfer arthritis model was induced in 7-week-old male mice as previously described 

(24) by i.p. injection of 7 µl/g of pooled K/BxN arthritogenic serum on days 0, 2, 7, 12. Mice 

were euthanized on day 17 after initial injection. Twenty three day-old hTNF+/- female mice 

(23) were i.p. daily treated with either the ATX inhibitor BMP22 (1 mg/kg/day) or PBS vehicle 

for 14 days and euthanized on day 14 after the first injection. Disease severity and weight 
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loss in both arthritis models was blindly monitored every 2 to 3 days by a single investigator 

(SF). Clinical score was assessed by using the following system: 0, normal; 1, mild redness 

or swelling of digits, midfoot or ankle; 2, moderate inflammation of digits, midfoot or ankle; 3, 

moderate to severe inflammation involving digits; 4, severe inflammation of entire paw 

resulting in ankylosis. Each hind limb was graded, giving a maximum possible score of 8 per 

animal. Micrometer caliper was used to measure ankle thickness (25). 

 

Microquantitative computed tomography (micro-CT) 
Micro-CT analyses of the talus or calcaneus and of the distal femur of arthritic mice were 

carried out using a micro-CT scanner Skyscan 1176 (Skyscan Inc.). The X-ray excitation 

voltage was set to 50 kV with a current of 500 mA. A 0.5 mm aluminum filter was used to 

reduce beam-hardening artifacts. Samples were scanned in 70% ethanol with a voxel size of 

9.08 μm. Section images were reconstructed with NRecon software (version 1.6.1.8, 

Skyscan). Three-dimensional modeling and analysis of bone volume to tissue volume or 

bone volume density (BV / TV), and bone surface to tissue volume or bone surface density 

(BS / TV) were obtained with the CTAn (version 1.9) and CTVol (version 2.0) softwares. TV 

was determined as the volume in the absence of erosions and bone surface density was 

used to measure surface roughness/erosion as described in Quan et al. (26). 

 

Histologic analysis 
Mouse joint tissue and bone samples were fixed, decalcified, and embedded in paraffin. 

Cytochemical detection of TRAP positive OC using the TRAP activity kit assay (Sigma-

Aldrich) and immunohistochemical detection of ATX using polyclonal anti-ATX antibody 

(Cayman) were performed. The resorption surface (Oc.S/BS) was calculated as the ratio of 

TRAP-positive trabecular bone surface (Oc.S) to the total trabecular BS using image J 

software. Inflammation and bone erosions were assessed on HPS–stained sagittal sections 

of the midfoot in a blinded fashion from two independent reviewers (OP, FC) using a 

semiquantitative scoring system as previously described (7), with scores of 0-5 for 

inflammation and of 0–5 for bone resorption.  

 

Osteoclastogenesis and bone resorption assays 
Murine osteoclastogenesis and resorption assays were carried out as described previously 

(20, 27). Briefly, BMMC from hind limbs of mice were collected and seeded in 96-well tissue 

culture plates at a density of 2 × 104 cells per well in α-MEM medium (Invitrogen). We used 

charcoal-stripped FBS to avoid LPA and LPC contaminations of the cell culture medium. 

Culture media were supplemented with or without LPC (1µM, Avanti Polar Lipids) 

recombinant ATX (rATX, 0.3nM), Ki16425 (10μM, Interchim), or PF8380 (10nM, Cayman 
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Chemicals). After 6 days, mature OC were enumerated under a microscope on the basis of 

the number of nuclei (≥3 nuclei) and the TRAP activity (Sigma-Aldrich). Results were 

expressed as the number of OC per well. For stimulation experiments, OC were stimulated 

for 6h with recombinant mouse TNF (R&D systems) or LPS (Sigma-Aldrich) after one hour 

serum starvation in presence or absence of TCPA-1 (2µM) (Sigma-Aldrich). All 

osteoclastogenesis experiments were performed in triplicate.  

For resorption experiments, resorbed surface was quantified on bone-mimicking Osteo 

Assay Surface (3988; Corning). Day-4 OC were detached from plastic wells by flushing after 

incubation at 37°C for 5 min in PBS plus 0.25 mM EDTA, counted, and then seeded at the 

same number (2 × 104 cells/well in 96-well plates) in replicate plates and cultured for 48h. To 

measure the total surface of the resorbed matrix, OC were washed off with distilled water, 

and then the matrix was stained with a 5% (wt/vol) silver nitrate solution. Finally, the 

resorption index was obtained by expressing the total resorbed area per well. Images of all 

substrates were numerized with Epsilon perfection V750 Pro scanner (Micro Epsilon, 

Ortenburg, Germany), and manually quantified with ImageJ (National Institutes of Health, 

Bethesda, MD, USA). 

 

Western blotting 
The protein concentration of cell extracts was determined with a Protein Assay kit (Biorad). 

Cellular extracts from cultured OC were separated by 8% SDS-PAGE and transferred to 

immobilon transfer membrane (Millipore). Membranes were incubated with 5% low fat-milk 

and 0.1% Triton X-100, pH 7.4 in PBS for one hour at room temperature followed by an 

overnight incubation with anti-ATX antibody (Cayman chemicals) or with anti-β actin antibody 

(Sigma-Aldrich). ATX and β actin were visualized using horseradish-peroxidase-donkey anti-

rabbit IgG or anti-mouse IgG (Jackson) and enhanced chemiluminenscence (Amersham). 

 
Real-time quantitative polymerase chain reaction (RT-qPCR) analysis.  
Total RNA from OC cultures and from powdered whole bone was extracted using Trizol 

(Invitrogen AB) and the Nucleospin RNAII kit (Macherey-Nagel). Complementary DNA from 

OC and bones were synthesized by reverse transcription using iScript cDNA Synthesis kit 

(Biorad), Expression of target genes was quantified by qRT-PCR on a Biorad CFX Connect 

Real Time system using the iTaq Universal SYBR Green Super Mix (Biorad) and sets of 

specific primers. Quantifications were normalized to corresponding RNA L32 values and 

expressed as relative expression using the 2(-Delta Delta C(T)) method (27). Primer 

sequences (designated as f, forward, and as r, reverse) were as follows: L32 (f, 5’-

CAAGGAGCTGGAGGTGCTGC-3’ ; r, 5’- CTGCTCTTTCTACAATGGC-3’), Enpp2 (f, 5’-

GCCCTGATGTCCGTGTATCT-3’; r, 5’- CGTTTGAAGGCAGGGTACAT-3’), Ctsk (f, 5’-
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GAGGGCCAACTCAAGAAGAA-3’ ; r, 5’- GCCGTGGCGTTATACATACA-3’), Acp5 (f, 5’- 

CAGCAGCCCAAAATGCCT-3’ ; r, 5’- TTTTGAGCCAGGACAGCTGA-3’). 
 
Statistical analysis 

Differences between groups were determined by 1-way or 2-way ANOVA followed by 

Bonferroni posttest using GraphPad Prism v5.0c software. Single comparisons were carried 

out using two-sided unpaired Mann Whitney Test. P < 0.05 was considered significant. 

 
 
RESULTS  
Pharmacological inhibition of ATX activity reduces TNF-induced focal erosion and 
systemic bone loss without interfering with synovitis 
TNF plays an important role in the initiation and progression of inflammation and destructive 

bone loss in RA. To evaluate the therapeutic utility of inhibiting ATX in inflammatory arthritis, 

we blocked ATX activity using a small molecule inhibitor BMP22 in an inflammatory model of 

arthritis driven by TNF overexpression, the hTNF+/- transgenic mice (23). The therapeutic 

potential of blocking ATX activity with BMP22 has been previously demonstrated in non-

inflammatory mouse models (28, 29). We observed that treatment with 1mg/kg/day BMP22 

for 14 days of hTNF+/- transgenic mice did not substantially affect inflammation, as monitored 

by weight loss, paw swelling, clinical arthritis score, and hind paw histopathology compared 

with controls (Fig. 1A and 1B). Nevertheless, the histopathologic bone erosion score was 

significantly reduced in BMP22-treated mice (Fig. 1B bottom right panel). In support of these 

observations, micro-CT analysis and bone surface to bone tissue volume ratio (BS/TV) 

quantification in the calcaneum revealed that BMP22 was significantly protective (36% 

decrease; p<0.05) against the cortical bone erosion of hTNF+/- mice (Fig. 1C). Furthermore, 

BMP22 treatment significantly decreased TNF-induced systemic bone loss with a significant 

increase of 43% in BV/TV in BMP22-treated mice compared with vehicle-treated animals 

(p<0.05) (Fig. 1D). Consistently, the number of tartrate resistant acid phosphatase (TRAP)-

positive multinucleated OC was significantly reduced in the long bones of hTNF+/- mice 

treated with BMP22 compared to vehicle-treated animals (Fig. 1E). To determine the origin of 

ATX in the osteoarticular environment, we analyzed serial histological sections from hTNF+/- 

transgenic mice and found high ATX expression at the site of synovial inflammation (Fig. 1F 

left panel). Strikingly, at the bone erosion sites in the vicinity of synovial inflammation, TRAP-

positive multinucleated OC displayed strong ATX expression (Fig. 1F right panel). 

 

 

 



8 
 

OC-derived ATX is functionally active in resorbing OC.  

ATX was found to be a late marker of OC differentiation as shown by increased expression 

of the Enpp2 gene and ATX protein during osteoclastogenesis reaching the highest level on 

day 5 in mature OC in vitro (Fig. 2A and inset). ATX generates LPA leading to activation of 

LPA receptors (30). We have previously demonstrated that LPA is a serum-borne factor 

required in vitro for RANKL-mediated osteoclastogenesis and osteoclastic bone resorption 

via activation of the LPA1 receptor (17, 20). Therefore, we investigated whether ATX 

expressed by OC could affect OC differentiation and bone resorption. LPA and LPA 

precursors such as LPC are abundant in serum, therefore all OC manipulations were 

performed in the presence of charcoal-treated serum in order to eliminate the lipid fraction. In 

these conditions, osteoclastogenesis and mineral matrix resorption were abrogated (Fig. 2B-

C). In this system using wild type bone marrow mononuclear cells (BMMC), no increase of 

OC number was observed when LPC the substrate of ATX was added to the culture medium 

indicating that OC-derived ATX failed to affect osteoclastogenesis directly (Fig. 2B). This can 

potentially be explained by the low levels of ATX expression at early stages of OC 

differentiation (Fig. 2A). Nevertheless, the combination of LPC with exogenous recombinant 

ATX (rATX) restored almost 80% of the osteoclastogenesis observed with non-delipidated 

serum. The effect of LPC+rATX was completely abolished in the presence either of the ATX 

inhibitor PF-8380 or the LPA1/3 antagonist Ki16425 (Fig. 2B). These results indicate that ATX 

present in OC environment generates functionally active LPA which in turn regulates 

osteoclastogenesis. With regard to bone resorptive activity, mature OC were generated first 

in the presence of normal serum and then re-plated on synthetic mineralized surfaces in the 

presence of charcoal-stripped serum. Under these conditions, LPC alone was remarkably 

potent in restoring 80% of the lost resorptive activity of wild type OC generated in charcoal-

treated serum (Fig. 2C). A 20% additional enhancement was observed in the presence of 

LPC supplemented with rATX, suggesting that endogenously ATX produced by OC was the 

most effective. PF-8380 and Ki16425 treatments abolished the effects of exogenous LPC or 

LPC plus rATX, and rATX by itself had no effect. These data indicate that OC-derived ATX is 

not required during the initial steps of osteoclastogenesis but generates functionally active 

LPA that promotes bone resorption by mature OC by acting via the LPA1 receptor. 

 

Selective inhibition of OC-derived ATX does not affect physiological bone mass and 
ovariectomy-induced bone loss. 
To further elucidate the role of ATX in OC, we generated mice lacking ATX in mature OC by 

the crossing of Enpp2fl/fl mice with Ctsk-Cre+/- mice. These conditional KO Enpp2fl/fl Ctsk-

Cre+/- mice (referred hereafter as DATXCtsk mice) were born at the expected birth rate (not 

shown) which is different from the germline-deficient Enpp2 mice that display lethality during 
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embryogenesis due to severe vascular and neuronal defects (21, 31). ATX expression was 

assessed in vitro during the differentiation of BMMC into OC showing an almost complete 

absence of the protein in mature OC (Fig. 3A). Consistent with the previous results on bone 

resorption from wild type OC in the presence of the ATX inhibitor (Fig. 2C), ATX-deficient OC 

were unable to resorb mineralized matrix in the presence of LPC alone whereas, addition of 

rATX rescued this phenotype (Fig. 3B). Surprisingly, quantitative computed microtomography 

(micro-CT) measurements of bone density and quantification of OC numbers in control 

(CTRL) and DATXCtsk animals did not reveal any differences (Fig. 3C). Remarkably, sham 

and ovariectomized CTRL and DATXCtsk mice did not show any differences in bone volume 

density measured by micro-CT (Fig. 3D). Thus, selective deletion of OC-derived ATX has no 

impact on bone mass under non-pathologic physiological and ovariectomy-induced 

osteoporotic conditions.  

 

Selective inhibition of OC-derived ATX prevents LPS-induced bone loss 
Because pharmacological inhibition of ATX activity protected hTNF+/- mice from bone erosion 

and systemic bone loss (Fig. 1), we hypothesized that potential regulation of bone mass by 

ATX might only manifest under inflammatory conditions. We first generated and harvested 

CTRL and DATXCtsk mature OC that were secondary plated on mineralized matrix in the 

presence of LPC and charcoal-stripped serum supplemented with or without TNF or LPS. 

Compared with CTRL OC whose bone resorptive activity was significantly enhanced by TNF 

and LPS, ATX-deficient OC were refractory to stimulation either by TNF or LPS (Fig. 4A). To 

extend this finding in the context of inflammation-dependent OC resorption in vivo, we 

treated CTRL and DATXCtsk mice to endotoxin LPS challenge (5mg/kg). As expected, LPS 

induced a drastic bone loss with 40% reduction in BV/TV in CTRL mice compared with 

vehicle-treated mice (32). In contrast, LPS-treated DATXCtsk mice displayed no significant 

trabecular bone mass reduction similar to vehicle-treated animals (Fig. 4B). LPS-treated 

CTRL mice exhibited a significant increase in OC surface per bone surface (OC.S/BS) 

compared to mice treated with the vehicle, whereas DATXCtsk mice challenged with LPS 

showed no change in OC content compared to vehicle-treated DATXCtsk mice (Fig. 4C). LPS 

treatment induced a significant increase in expression of late osteoclastic markers, Acp5 and 

CtsK, and of Enpp2 in the bone from CTRL mice, but not from DATXCtsk mice (Fig. 4D). 

Remarkably, we observed a significant increase of Enpp2 transcript induced by LPS only in 

CTRL mice, indicating that among the bone cells expressing Enpp2, the OC is most 

responsive to LPS challenge. To evaluate whether the inflammatory environment affected 

Enpp2 expression in OC, mature CTRL OC were treated either with TNF or LPS in the 

presence of LPC and charcoal-treated serum. Both treatments upregulated Enpp2 in mature 
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OC indicating that Enpp2 promoter was the target of TNF and LPS signalling pathways in 

these fully differentiated cells (Fig. 4E). This hypothesis was confirmed by the use of TCPA-

1, a selective inhibitor of IκB kinase (IKK) β, which completely abolished both TNF- and LPS-

induced Enpp2 expression (Fig. 4E). 

 
Selective deletion of OC-derived ATX impacts bone mass and erosion under arthritic 
inflammation  
Next, we investigated if OC-derived ATX could contribute to arthritis-induced bone loss. 

CTRL and DATXCtsk mice given serum from K/BxN mice were then used to induce an arthritic 

disease (24). In line with the results obtained in the LPS model, under these extreme 

inflammatory conditions, micro-CT analysis showed that K/BxN serum transfer elicited a 

severe 88% decrease in BV/TV trabecular bone mass in CTRL mice. In contrast, serum 

transfer was significantly less detrimental causing a 58% decrease in BV/TV in DATXCtsk 

animals indicating a significant protection of 30% (p<0,01) in DATXCtsk from systemic bone 

loss induced by K/BxN serum (Fig. 5A). DATXCtsk mice treated with K/BxN serum displayed 

similar paw swelling, clinical arthritis score and histological synovitis compared to control 

mice underscoring that OC-derived ATX does not impact the inflammatory process (Fig. 5B-

C top panel). Remarkably, DATXCtsk mice displayed less TRAP-positive multinucleated OC at 

the synovitis-bone interface than CTRL mice and significative protection against cortical 

erosion induced by K/BxN serum (Fig. 5C bottom panel-D). Talus BS/TV values from CTRL 

mice treated with K/BxN serum showed a significant 1.8-fold increase compared to vehicle-

treated controls. Elevation of BS/TV ratio was due to increase in bone surface dependent on 

roughness/bone cortical erosions. Remarkably, increase in talus BS/TV value in DATXCtsk 

mice induced by K/BxN serum transfer was significantly reduced by 55% compared to that 

observed in CTRL mice (p<0.001) (Fig. 5E). Altogether these results indicate that OC-

derived ATX did not contribute to the inflammatory process but controlled arthritic bone 

destruction, highlighting the possibility of ATX as a novel therapeutic target for the control of 

RA-associated bone loss. 

 
 
DISCUSSION  

The hypothesis for a major contribution of LPA and ATX in RA has emerged recently (14, 

16). Mice with global deletion of the Lpar1 gene do not develop arthritis following 

immunization with type II collagen due to mitigated immune cell infiltration (14). By using 

these LPA1-deficient mice and pharmacological LPA1 blocking drugs, we have previously 

shown that this receptor is a key effector of OC-mediated bone resorption (20). In addition, 
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TNF-driven ATX expression in synovial fibroblasts generates LPA that in turn activates 

synovial fibroblasts (14, 16). Thus, combined LPA and TNF  signaling might contribute to 

joint inflammation and potentially to joint destruction. Indeed, genetic and pharmacological 

targeting of LPA1 result in attenuated bone degradation in animal models of arthritis (14).  

Data from preclinical animal arthritis models challenged with ATX inhibitor 

compounds have been lacking so far. Our study represents an important advance over the 

conditional genetic ablation of ATX in mesenchymal cells model described previously (16). 

The hypothesis put forward in that report, would predict attenuation of the inflammation after 

ATX inhibitor treatment. However, here we found that treatment with the inhibitor, BMP22 did 

not significantly affect articular inflammation in hTNF+/- mice. This could have been due to a 

suboptimal dosing regiment. However, BMP22-treated hTNF+/- mice displayed a significant 

reduction of local bone erosion and of systemic bone loss. Thus, pharmacological inhibition 

of ATX with BMP22 protected hTNF+/- transgenic mice from inflammation-induced bone loss 

by mitigating osteoclastic bone resorption rather than affecting the inflammatory response. 

Therefore, inhibition of ATX using BMP22 caused distinctively different effects on 

inflammation versus bone resorption in this model of RA. 

Bone erosions constitute a key and irreversible outcome in RA and reflect on the tight 

interaction between immune system and bone remodeling. Controlling synovial inflammation 

can arrest the progression of bone erosions in RA. However, RA patients in sustained clinical 

remission or low disease activity often continue to accrue bone erosions. In addition, certain 

RA patients exhibit persistent chronic synovitis marked by joint swelling without complaint of 

joint tenderness (33). Therefore, it might be worthwhile to consider the development of 

alternative therapeutics that selectively and directly target bone erosion. Indeed, current anti-

resorptive drugs, such as bisphosphonates and denosumab, can lead to atypical fracture due 

to shutting down physiologic bone remodeling after long-term treatment. 

No induction of toxicity was observed during this work with BMP22 nor reported from 

experimental mouse models of cancers using blockers of ATX activity (28, 34, 35). 

Furthermore, GLPG1690, a first-in-class ATX inhibitor, has successfully completed phase II 

clinical evaluation for the treatment of idiopathic pulmonary fibrosis without noted side effects 

(36). Therefore, pharmacological blocking of ATX activity is likely to also be safe in RA 

patients.  

ATX was found to be a late osteoclastic marker explaining the absence of its impact 

on the differentiation of DATXCtsk OC. In contrast, DATXCtsk mature OC were remarkably 

defective in mineral matrix degradation that was potently rescued when supplied with 

exogenous ATX. Additional sources of ATX and/or LPA might also be available in the bone 

microenvironment originating from chondrocytes (37), osteoblasts (38), adipocytes (39) and 
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endothelial cells (40), that may partly explain the absence of bone phenotype of DATXCtsk 

mice. Surprisingly, specific inhibition of OC-derived ATX, did not protect DATXCtsk mice from 

osteoporosis induced by ovariectomy whereas in striking contrast to full protection of the 

animals in models of LPS- and K/BxN serum transfer-induced bone loss. This suggests that 

OC-derived ATX might be central to a remarkable specificity of inflammation over estrogen-

dependent regulation of OC activity and bone degradation. Indeed, TNF and LPS enhanced 

the resorption activity by 6 to 7 fold in CTRL OC but were ineffective in DATXCtsk OC. This 

contention was supported by the presence of NF-κB DNA binding sites on Enpp2 promoter 

sequence (41) and was confirmed experimentally by the use of TCPA-1, a selective inhibitor 

of IκB kinase (IKK) β, which totally blunted LPS- and TNF-enhanced ATX expression 

indicating a convergent regulation mechanism for Enpp2 expression by both LPS and TNF in 

mature OC.  

Collectively our results demonstrate that osteoclast-derived ATX is a key player in 

inflammatory osteoclast-mediated bone resorption and should be considered as a promising 

novel therapeutic target for halting bone erosion in RA.  
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FIGURE LEGENDS 
Figure 1: ATX activity blockade has no protective effect on TNF-induced synovitis but 
reduces TNF-induced bone erosion and systemic bone loss. (A) Photographs of hind 

paw swelling from hTNF+/- mice 14 days after the initiation of vehicle or BMP22 treatment 

and mice weight, hind paw thickness and arthritis score from hTNF+/- mice during treatment 

period. Empty triangles: vehicle-treated hTNF+/- mice, black squares: BMP22-treated hTNF+/- 

mice. Data are expressed as means ± SEM (n=9 per group). (B) Representative HPS 

staining of hind paws from vehicle-treated hTNF+/- and BMP22-treated hTNF+/- mice (top 

panel). Scale bar, 100µm. Arrows indicate synovitis. Histologic scores for inflammation 

(bottom left panel) and bone erosions (bottom right panel) in midfoot of hind paws from 

vehicle-treated hTNF+/- and BMP22-treated hTNF+/- mice. (C) Representative three-

dimensional micro-CT reconstruction images (top panel) and corresponding bar charts of 

BS/TV in calcaneus (bottom panel) from vehicle-treated hTNF+/- and BMP22-treated hTNF+/- 

mice. Data are expressed as means ± SEM (n=6 per group). Scale bar, 100µm. (D) 

Representative three-dimensional micro-CT reconstructions of femoral trabecular bone and 

corresponding bar charts of BV/TV of the distal femoral metaphysis from vehicle-treated 

hTNF+/- and BMP22-treated hTNF+/- mice. Data are expressed as means ± SEM (n=6 per 

group). (E) Representative TRAP staining of tibiae and corresponding quantification of TRAP 

positive surface per bone surface (OC.S/BS in %) from vehicle-treated hTNF+/- and BMP22-

treated hTNF+/- mice. Data are expressed as mean ± SEM (n=6 per group). Scale bars, 100 

μm. (F) Representative immunochemistry for ATX (left panel) and TRAP stain (right panel) of 

hind paws from hTNF+/- mice. Scale bar, 100µm. Arrows indicate ATX-positive (left) and 

TRAP-positive (right) multinucleated cells. *p<0.05, **p< 0.01 assessed by Mann-Whitney 

test.  

 

Figure 2: ATX is expressed by mature OC and is functionally active in resorbing OC. 
(A) Quantitative RT-PCR (qRT-PCR) analysis for the expression of Enpp2 at different time of 

differentiation of murine BMMC into OC upon stimulation with M-CSF and RANKL. Data are 

expressed as mean ± SEM. (Inset A) Cell lysates from murine mature OC were analyzed by 

immunoblot with antibody against ATX. Actin was used as a loading control. (B) TRAP 

staining and quantification of OC generated from murine BMMC cultured with M-CSF and 

RANKL, in serum or in charcoal-stripped serum (Charc-serum) supplemented with indicated 

compound. Values are the mean ± SEM. Results are representative of 3 independent 

experiments. (C) Quantification of resorbed mineralized surface by OC. Values are the mean 

± SEM. Results are representative of 3 independent experiments. *p<0.05, ***p<0,001, 

assessed by ANOVA. 
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Figure 3: Inhibition of OC-derived ATX expression does not affect bone mass in basal 
and non-inflammatory osteoporosis conditions. 
(A) Cell lysates and corresponding quantification (ATX / Actin ratio) at different time of 

differentiation into OC of murine BMMC from CTRL and DATXCtsk mice analyzed by 

immunoblot with antibody against ATX. Actin was used as a loading control. (B) 

Quantification of resorbed mineralized surface by OC generated from BMMC of DATXCtsk 

mice cultured with M-CSF and RANKL in serum or in Charc-serum supplemented or not (NT 

for non-treated) with LPC alone or together with rATX. Values are the mean ± SEM. (C) 

Representative three-dimensional micro-CT reconstruction images and corresponding bar 

charts of trabecular bone mass quantification with BV/TV of CTRL and DATXCtsk mice (top 

panel). Data are expressed as means ± SEM (n=5 per group). Representative TRAP staining 

of tibiae and corresponding quantification of TRAP positive surface per bone surface 

(OC.S/BS in %) from CTRL and DATXCtsk mice (bottom panel). Data are expressed as mean 

± SEM (n=5 per group). (D) Representative three-dimensional micro-CT reconstruction 

images of CTRL and DATXCtsk mice after OVX or Sham operation and corresponding bar 

charts of trabecular bone loss quantification with % of sham BV/TV. Data are expressed as 

means ± SEM (n=9 per group). ***p<0,001 assessed by ANOVA. Scale bars, 100 μm. 

 

Figure 4: Inhibition of OC-derived ATX expression fully protects mice against LPS-
induced bone loss. 
(A) Quantification of resorbed mineralized surface by OC generated from CTRL and DATXCtsk 

murine BMMC cultured with M-CSF and RANKL and seeded for 48h in osteo-assay wells in 

Charc-serum supplemented with LPC alone or together with TNF (10 ng/ml) or LPS (1 

µg/ml). Values are the mean ± SEM. (B) Representative three-dimensional micro-CT 

reconstruction images and corresponding bar charts of femoral trabecular bone mass 

quantification with BV/TV of CTRL and DATXCtsk mice treated either with LPS or vehicle. Data 

are expressed as means ± SEM (n=6 per group). (C) Representative TRAP staining of tibiae 

and corresponding quantification of TRAP positive surface per bone surface (OC.S/BS in %) 

from CTRL and DATXCtsk mice treated either with LPS or vehicle. Data are expressed as 

mean ± SEM (n=6 per group). (D) qRT-PCR analysis for the expression of Acp5, Ctsk and 

Enpp2, in long bones from CTRL and DATXCtsk mice treated either with LPS or vehicle (n=6 

mice per group). (E) qRT-PCR analysis for the expression of Enpp2 in CTRL mature BMMC-

derived OC stimulated for up to 6h by TNF (10 ng/ml) or LPS (1 µg/ml) and TCPA-1 (2µM). 

Data are expressed as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, assessed by ANOVA. 

Scale bars, 100µm. 
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Figure 5: Mice deficient in OC-derived ATX are partially protected against K/BxN 
serum transfer-induced bone erosion and systemic bone loss. (A) Representative three-

dimensional micro-CT reconstruction images and corresponding bar charts of femoral 

trabecular bone mass quantification with BV/TV of CTRL and DATXCtsk mice treated with 

K/BxN serum or vehicle. Data are expressed as means ± SEM (n=6 per group). (B) 

Photographs of hind paw swelling 17 days after the initial serum transfer and hind paw 

thickness graphs during K/BxN serum transfer period from CTRL and DATXCtsk mice treated 

with K/BxN serum or with vehicle. Triangles: CTRL mice, squares: DATXCtsk mice, empty 

symbols: vehicle treatment, black symbols: K/BxN serum treatment. Data are expressed as 

means ± SEM (n=6 per group). (C) Representative HPS staining (top panel) and TRAP stain 

(bottom panel) of hind paws from CTRL and DATXCtsk mice treated with K/BxN. Scale bar, 

100µm. Stars and arrows indicate respectively synovitis and TRAP-positive multinucleated 

cells at synovitis-bone interface. (D) Representative three-dimensional micro-CT 

reconstruction images on hind paws from CTRL and DATXCtsk mice treated with K/BxN serum 

or vehicle 17 days after the initial serum transfer. Scale bar, 250 µm. (E) Representative 

three-dimensional micro-CT reconstruction images and corresponding bar charts of BS/TV in 

talus from CTRL and DATXCtsk mice treated with K/BxN serum or vehicle. Scale bar, 100 µm. 

Data are expressed as means ± SEM (n=6 per group). **p<0.01, ***p<0.001 assessed by 

ANOVA.  
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