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Abstract 

The role of the SiC substrate surface on the resistance to the local initiation of tarnishing of 

thin-layered silver stacks for demanding space mirror applications was studied by combined 

surface and interface analysis on model stack samples deposited by cathodic magnetron 

sputtering and submitted to accelerated aging in gaseous H2S.  It is shown that suppressing the 

surface pores resulting from the bulk SiC material production process by surface pretreatment 

eliminates the high aspect ratio surface sites that are imperfectly protected by the SiO2 

overcoat after the deposition of silver. The formation of channels connecting the silver layer 

to its environment through the failing protection layer at the surface pores and locally 

enabling H2S entry and Ag2S growth as columns until emergence at the stack surface is 

suppressed, which markedly delays tarnishing initiation and thereby preserves the optical 

performance. The results revealed that residual tarnishing initiation proceeds by a mechanism 

essentially identical in nature but involving different pathways short circuiting the protection 

layer and enabling H2S ingress until the silver layer. These permeation pathways are 

suggested to be of microstructural origin and could correspond to the incompletely coalesced 

intergranular boundaries of the SiO2 layer. 

 

Keywords: Mirror layers; protection layers; silver; silicon dioxide; atmospheric corrosion; 

tarnishing mechanism; surface analysis; ToF-SIMS; XPS; AFM 
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Introduction 

Space telescopes are equipped with mirrors consisting of thin-layered stacks including 

a reflecting metallic layer and a protection dielectric layer [1-4]. Silver is used as reflecting 

layer for its highest reflectivity in the visible and lowest emissivity in the infrared [5,6] while 

SiO2 [7,8] Al2O3 [9,10] Si3N4 [11,12] or SiNx
 [13-15] overcoats have been developed for 

confinement of the silver layer and protection from degradation in earth atmosphere. Despite 

this protection, silver space mirrors are susceptible to local degradation by tarnishing during 

indoor qualification and storage phases, limiting their long-term environmental durability 

after satellite assembly and before launching. 

Silver sulfide (Ag2S) is the predominant tarnish product of silver found in indoor 

atmospheres as a result of corrosion by organosulfur compounds or H2S pollutants [16-22] 

and H2S is the most used corrosive agent to study silver sulfidation in laboratory [23-27]. It 

has been shown that a H2S concentration as low as 0.2 ppb is sufficient to initiate silver 

sulfidation [28]. Degradation studies performed on space silver mirrors mostly addressed the 

efficiency of the protection layer and the effect of environmental aging on the optical 

properties [10,15,25,29-31], and more seldom their tarnishing mechanism [32-35]. 

In a recent work [35], we studied model stack samples consisting of thin silver layers 

covered by SiO2 coatings deposited by cathodic magnetron sputtering on SiC, a substrate 

already in use in light weight all-SiC telescopes assigned to scientific or earth observation 

missions. These stacks were submitted to accelerated aging in H2S gas and studied by 

combined surface and interface analysis using Atomic Force Microscopy (AFM), X-ray 

Photoelectron Spectroscopy (XPS) and Time-of Flight Secondary Ion Mass Spectrometry 

(ToF-SIMS). It was shown that local tarnishing is initiated by the formation of Ag2S columns 

emerging above the stack surface. Ag2S growth was promoted at high aspect ratio defects 

(surface pores) of the SiC substrate as a result from a failing protection by the covering SiO2 
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layer. It was proposed that, in the failure sites, permeation channels connect the silver layer to 

its environment through the deposited protection layer, like observed with silicon dioxide 

barrier layers on polymer substrates [36-38], and would enable local H2S entry and Ag2S 

growth until eruption at the stack surface.  

Here we bring new insight on the improved local resistance to tarnishing observed on 

a SiC substrate pretreated by chemical vapor deposition so as to suppress the high aspect ratio 

defects (surface pores) promoting degradation. Model stack samples consisting of thin silver 

mirror layers covered by SiO2 overcoats with adhesion interfacial layers were analyzed by 

AFM, ToF-SIMS and XPS before and after accelerated ageing in gaseous H2S environment in 

order to study the beneficial effect of the SiC substrate surface pretreatment. 

 

Experimental 

Two types of Boostec® SiC samples (10 x 10 x 1.5 mm) were purchased from 

Mersen. The samples hereafter denoted SiC were specified to have an optical surface polish 

with a nominal rms roughness of 4.4 nm. Those hereafter denoted SiC+CVD had one face 

pretreated by chemical vapor deposition (CVD) at Mersen so as to deposit a high purity SiC 

layer, ~200 µm thick, in order to suppress surface pores as specified by Mersen. Their 

nominal rms roughness was 1.2 nm after surface polish. 

All layers in the stacks were prepared by cathodic magnetron sputtering using the 

PACA2M deposition platform installed in clean room at CILAS Marseille [39-41]. The 

platform is equipped with an in situ broadband optical monitoring of the optical performance 

and deposited thickness [40]. Base pressure and working pressure during deposition were of 

10−7 mbar and 10−3-10−2 mbar, respectively. The deposited stacks consisted of (i) an adhesion 

interlayer of metallic nickel and chromium, about 10 nm thick, (ii) a silver mirror layer, 100 
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to 200 nm thick, (iii) an adhesion interlayera, and (iv) a dielectric protection layer of silicon 

dioxide, from 140 to 200 nm thick depending on the targeted optical performance. Prior to 

deposition, the target cathode surfaces were pretreated by Ar sputtering in order to minimize 

their surface contamination. After preparation the stack samples were taken out to clean room 

atmosphere and enclosed in membrane boxes under ambient pressure before shipping to 

CNRS-Chimie ParisTech for surface and interface analysis and accelerated aging tests. 

Accelerated atmospheric aging was performed in gaseous H2S selected as most 

corrosive indoor atmospheric agent of silver. The accelerated aging tests were performed at 

1000 mbar H2S and 75°C for 24, 48 and 96 h, like previously described [35]. The sulfurized 

samples were transferred through air for surface analysis. 

AFM imaging was performed in intermittent contact (tapping®) mode in air, using an 

Agilent 5500 microscope. A silicon cantilever with a resonance frequency in the range 200-

400 kHz and a force constant in the range 25-75 Nm-1 was employed. The silicon tip had a 

nominal radius < 10 nm. Sets of images were recorded over areas of 50 × 50 µm2, 

20 × 20 µm2 and 5 × 5 µm2 for each sample at different surface locations to ensure for surface 

homogeneity. Densities were estimated from the local images recorded over 50 × 50 µm2 and 

20 × 20 µm2 areas and extrapolated to 1 cm2. 

ToF-SIMS analysis was performed at a pressure of approximately 10−9 mbar with an 

IonTof 5 spectrometer. For depth profiling analysis, a pulsed 25 keV Bi+ primary ion source 

delivering a target current of 1.2 pA over a 100 × 100 μm2 area was interlaced with sputtering 

performed with a 2 keV Cs+ ion gun delivering 100 nA of target current over a 300 × 300 μm2 

area. These conditions were reproduced for all samples allowing direct comparison of the 

relative secondary ions intensities. For chemical imaging, a pulsed 25 keV Bi+ primary ion 

source was employed, delivering 0.15 pA of current over a 100 × 100 μm2 area analyzed with 

                                                 

 
a Thickness, material and chemical composition of this interlayer cannot be disclosed 
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a resolution of about 150 nm. Data acquisition and post-processing analyses were performed 

with the Ion-Spec software. 

XPS analysis was performed at an operating pressure of about 10-9 mbar with a VG 

ESCALAB 250 spectrometer calibrated against the reference binding energies (BE) of clean 

Cu (932.6 eV), Ag (368.2 eV) and Au (84 eV) samples. Survey spectra and high resolution 

spectra of the C 1s, O 1s, Si 2p, S 2p and Ag 3d core level regions were collected at 90° take-

off angle and with a pass energy of 100 and 20 eV, respectively, using an Al Kα 

monochromatized X-ray source (hν = 1486.6 eV).. Data processing (peak fitting and 

decomposition) was performed with the Advantage software provided by Thermo Electron, 

using a Shirley-type background, component peaks defined by BE, Full Width at Half 

Maximum (FWHM) and Gaussian/Lorentzian envelopes combined at a fixed ratio of 70/30. 

BEs of the component peaks were corrected with reference to the C 1s peak for -CH2-CH2- 

bonds set at 285.0 eV. Atomic concentration ratios were calculated from the intensities of the 

component peak assuming a homogeneous semi-infinite material and using the calibrated 

transmission factors of the spectrometer, Scofield photoionisation cross sections and values of 

the photoelectron attenuation lengths calculated using the method of Tanuma et al. [42].  

 

Results and Discussion 

SiC substrate and stack surface morphology  

Figure 1 shows typical AFM topographic images of the bare substrates and stacks for 

the SiC and SiC+CVD samples. They confirmed that the surface porosity characterizing the 

SiC substrate and originating from the material production process is suppressed by the CVD 

surface treatment like specified by the provider. On the SiC substrate (Figure 1(a,b)), the 

lateral dimensions (0.5-6 µm), depth (0.05-0.4 µm) and density (~1.6×106 cm-2) of the surface 
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pores remain essentially unchanged after deposition of the stacks, showing that the pores 

remain incompletely filled and that the surface still exhibits high aspect ratio topographic sites 

as discussed previously [35]. On the SiC+CVD substrate (Figure 1(d)), the pores have been 

filled by the deposition of the ~200 µm thick CVD SiC film. The images show the presence of 

polishing grooves with a local depth reaching 3 nm. This is indicative of the subsequent 

polishing treatment performed by the provider and suppressing all traces of the initial surface 

pores that may subsist in case of conformal growth of the CVD film. The measured rms 

roughness is 0.8 nm, in good agreement with the nominal value of 1.2 nm and significantly 

lower than that (3.7 nm) measured on the SiC substrate (nominal value of 4.4 nm). At higher 

magnification, a granular morphology characterizes the surface of the SiO2 protection layer, 

both on the SiO2/Ag/SiC (Figure 1(c)) and SiO2/Ag/SiC+CVD (Figure 1(e,f)) stacks. The 

grains have lateral dimensions of 50-150 nm on both substrates, as measured from Figure 1(c) 

and Figure 1(e). This morphology appears compact on both substrates revealing no detectable 

pores or pinholes of sub-micrometer dimension. 

Depth profiling of as-received stacks  

ToF-SIMS elemental depth profiles of the as-received SiO2/Ag/SiC and 

SiO2/Ag/SiC+CVD stacks are shown in Figure 2(a) and (b), respectively. The intensities of 

the selected ions are plotted on a logarithmic scale versus sputtering time. Starting from the 

outer surface, they allow us defining the following five regions (all marked): the protection 

layer region (using the SiO- and 18O- ions), the adhesion interfacial layer Ia, the silver mirror 

layer and the adhesion interfacial layer Ib regions (all three using the Ag- ions) and the SiC 

substrate region (using the SiC- and C- ions). The Ia and Ib interfacial layer regions can also be 

defined using their respective ions as reported previously [35].   

In the protection layer region, the SiO- and 18O- ions profiles exhibit plateaus of 

increasing intensity with in-depth progress on both substrates, confirming on the SiC+CVD 



 

 8 

sample the observation made on the SiC sample [35] and suggesting a density of the SiO2 

layer increasing with in-depth progress, i.e. decreasing with on-going deposition from the Ia 

interface, independently of the presence of SiC surface pores. In this protection layer region, 

the ions characteristic for the substrate (SiC- and C-) and silver layer (Ag-) are detected at 

trace level on the SiC+CVD sample. Carbon contamination during deposition and silicium-

carbon combination during analysis can be an explanation for the detection of the SiC- and C-

ions. Silver contamination of the target cathode during deposition of the previous layers could 

explain the detection of the Ag- ions. The presence of Ag in the protective SiO2 layer could 

also result from photo-enhanced diffusion during deposition promoted by oxygen adsorption 

on silver, as previously proposed for a TiO2 protection layer [43]. Still the pronounced 

decrease in intensity of these ions measured on the SiC+CVD sample compared to the SiC 

sample appears to be a direct effect of the suppression of the substrate surface pores, as 

confirmed by the AFM data, and thus of the channels in the protection layer exposing the 

underlying silver layer and substrate at the surface pores. This conclusion is also supported by 

the comparison of the profiles of the Cl-, 34S- and CN- ions, characteristic of atmospheric 

contamination by chlorine-, sulfur- and nitrogen-containing pollutants, respectively. Their 

trace level measured in the protection layer region of the SiC+CVD sample could originate 

from residual contamination during deposition (except for sulfur which is not detected in the 

protection layer region). However, the marked increase on the SiC sample is consistent with 

the presence of penetration pathways (i.e channels), associated with the presence of the 

substrate surface defects (i.e. pores) and enabling the permeation of the contaminants from the 

atmosphere [36-38]. 

Like previously discussed [35], the peak of the Ag- ions profile in the Ia interfacial 

region is consistent with the formation of a discontinuous adhesion interlayer forming islands 

[2,13], possibly as a result of silver diffusion during deposition [43] and promoting the 
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nucleation of a protection layer of decreased permeability [29,32,44]. This peak is also 

observed on the SiC+CVD sample, however with a much steeper increase at the approach of 

the Ia interfacial region. This is consistent with the formation of a sharper interface induced by 

the suppression of the substrate pores. In the silver layer region, the Ag- ions profile exhibit a 

plateau consistent with the formation of a continuous metallic layer. On the SiC+CVD 

sample, all other ions drop down in intensity as expected but much more than on the SiC 

substrate. Again, this is consistent with the suppression of the substrate holes and the 

associated decrease in roughness. Like in the SiO2 protection layer region, the extremely low 

intensity level of the Cl-, C- and CN- ions in the silver layer region is indicative of trace level 

contamination possibly occurring during deposition.  

In the Ib interfacial region (NiCr), the Ag- ions drop down in intensity like expected, 

which coincides with a peak in the NiCr- ions profile (not shown here) [35]. The SiC- and C- 

ions increase in intensity until reaching a plateau in the SiC substrate region. Again the 

intensity increases are steeper on the SiC+CVD sample because of the smoother interface 

formed after suppression of the substrate pores. In the Ib interfacial region, peaks are observed 

in the SiO-, 18O-, CN-, Cl- and 34S- ions profiles which are better defined on the SiC+CVD 

sample because of the smoother interface on the pore-free substrate surface. They are 

indicative of contamination of the substrate surface by oxygen, nitrogen, chlorine and carbon 

prior to the stack deposition. In the substrate region, the Ag-, SiO-, 18O-, CN-, Cl- and 34S- ions 

profiles drop down in intensity as expected but much more markedly on the SiC+CVD 

substrate. This is further evidence for the suppression of the substrate surface pores. 

Improved resistance to Ag2S formation 

The XPS survey and Ag 3d core level spectra for the SiO2/Ag/SiC and 

SiO2/Ag/SiC+CVD stacks subjected to accelerated aging in H2S for 96 h are shown in Figure 

3. The survey spectra are characteristic of a silicon dioxide surface contaminated by carbon 
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and evidence the presence of silver only on the SiC sample (Figure 3(a)). For both samples, 

the C 1s spectra recorded at high resolution exhibited one major component peak set at 

285 eV BE (1.8 eV FWHM) and one minor component peak at 287.4±0.1 eV BE (1.8 eV 

FWHM) corresponding to -CH2-CH2- and C=O and/or O-C=O bonded carbon, respectively, 

which is typical of oxide thin films exposed to ambient air and contaminated by organic 

pollutants [45-47]. The high resolution Si 2p spectra could be fitted with one single 

component peak at 103.2±0.1 BE (1.7 eV FWHM) and the O 1s spectra by one single 

component peak at 533.1±0.1 eV BE (1.7 eV FWHM), like expected for silicon dioxide 

[48,49]. The intensity ratio of these components yielded an O/Si atomic ratio of 1.9±0.2 

corresponding to the SiO2 stoichiometry.  

The XP Ag 3d core level spectra show two peaks assigned to the 3d5/2-3d3/2 spin orbit 

doublet. On the SiC sample (Figure 3(a)), the 3d5/2 and 3d3/2 components are positioned at 

BEs of 367.8 and 373.8 eV (0.8 eV FWHM), respectively, which does not allow 

discriminating the Ag(0) metallic state from the Ag(I) oxidized state. However, the Auger 

parameter ’, calculated from the kinetic energy of the Ag M4NN Auger transition 

(1129.6 eV) and binding energy of the Ag 3d5/2 core level, is 724.8 eV, which is in good 

agreement with values reported for Ag2S [50-53] and thus shows a Ag(I) oxidation state. The 

S 2p region for the SiC sample also supports the formation of Ag2S with its 2p3/2-2p1/2 spin 

orbit doublet positioned at BEs of 160.7 and 161.9 eV, respectively, in good agreement with 

those reported for silver sulfide [50,52,54-57]. As previously discussed [35], these data 

characterize the formation of Ag2S columns emerging at the surface of the SiO2 layer and in 

contact with the conductive silver layer of the stack through the dielectric protection layer.  

On the SiC+CVD sample (Figure 3(b)), the high resolution XPS Ag 3d core level 

region exhibits a signal undetected in the survey spectra because of its low intensity. Two 

Ag 3d5/2-3d3/2 spin orbit doublets are resolved. The 3d5/2 and 3d3/2 components of the minor 
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intensity doublet are positioned at BEs of 367.8 and 374.0 eV (1.8 eV FWHM), respectively, 

in good agreement with those measured on the SiC sample. Consistently, they are also 

assigned to the formation of Ag2S columns emerging at the surface of the dielectric SiO2 

layer, but in trace quantity compared to the SiC sample. The 3d5/2 and 3d3/2 components of the 

major intensity doublet are shifted to higher BE at 369.9 and 375.9 eV (1.8 eV FWHM), 

respectively, which is assigned to an electrical charging effect, as previously observed on the 

as-received SiC sample prior to sulfidation [35]. This higher BE Ag 3d doublet is thus 

assigned to the residual presence of silver also at the surface of the dielectric SiO2 layer but 

electrically isolated from the conductive mirror layer, so that there is no compensation of the 

charge during photoelectron emission. This residual contamination by silver of the surface of 

the as-received stacks is confirmed by the ToF-SIMS depth profiles that show a peak on the 

Ag- ions in the very first seconds of sputtering (Figure 2(b)). It most likely occurred in the 

cathodic magnetron sputtering chamber after deposition of the SiO2 protection layer. In the 

Ag M45NN Auger transition region, the signal was below the detection limit precluding the 

determination of the Auger parameter ’ and thus the identification of Ag2S. Likewise no 

S 2p3/2-2p1/2 spin orbit doublet could be discriminated from the background on the SiC+CVD 

sample sulfurized for 96 h, also because of an intensity below the detection limit. Still the 

sulfidation of these silver surface traces is most likely after accelerated aging in H2S for 96 h 

and proven by ToF-SIMS data presented further on. 

The Ag/(Si+O) atomic ratio calculated from the component peak intensities is 1.8×10-2 

for the SiC sample but only 0.1×10-2 for the SiC+CVD sample, demonstrating the markedly 

improved resistance to sulfidation brought by the suppression of the substrate surface pores. If 

one excludes from the calculation the silver surface contamination of the protection layer of 

the as-received SiC+CVD sample (higher BE Ag 3d5/2 and 3d3/2 components), this ratio drops 

down to ~0.03×10-2, i.e. a factor of 1/60 compared to the SiC sample, showing that the 
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formation of Ag2S columns emerging at the surface of the protection layer is nearly 

suppressed in our severe accelerated aging conditions. 

Residual local initiation of tarnishing  

AFM topographic images of the stacks after 24 h accelerated aging in H2S are shown 

in Figure 4. On the SiC sample (Figure 4(a)), local protruding features replace most of the 

surface pores as judged from their respective densities estimated to ~1.4×106 cm-2 and 

~1.6×106 cm-2, respectively, confirming that Ag2S columns have grown from the silver layer 

and through the protection layer, locally failing at the substrate pores, to erupt above the 

protection layer. On the SiC+CVD sample (Figure 4(b)), local protruding features are also 

observed but with a density reduced by a factor of at least 1/10 as judged from these AFM 

observations. Their lateral dimensions (0.5-2 µm) and height (0.1-0.3 µm) are also markedly 

lower that on the SiC sample (0.4-6 µm and 0.1-1 µm, respectively), confirming the markedly 

improved resistance to the local initiation of tarnishing brought by the suppression of the SiC 

substrate surface pores. Combined with the XPS data, these AFM data also show that the 

residual initiation of tarnishing measured on the SiC+CVD sample is local and corresponds to 

the formation of Ag2S hillocks protruding from the protection layer surface. It is unclear from 

these XPS data alone if the Ag2S hillocks observed correspond to the sulfidation of the silver 

residual surface contamination and or to the emergence at the surface of Ag2S columns 

growing from the silver mirror layer. 

ToF-SIMS elemental images (100 × 100 µm2) of the surface of the stacks after 24, 48 

and 96 h accelerated aging in H2S are shown in Figure 5. They were obtained after removal of 

the organic carbon contamination from exposure to ambient air by light sputtering of the 

surface. Superimposed O-+S- ions images are displayed with O- and S- images color-coded in 

green and red, respectively (color online). The images for the SiC sample (Figure 5(a)) have 

been discussed previously [35] and are reproduced here for the sake of comparison. They 
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show that sulfidation is local and dispersed (S- ions) and coincides with the presence of 

defects in the protection oxide layer (O- ions). With increasing accelerated aging time, the 

silver sulfide spots corresponding to Ag2S columns grow in number and size eventually 

leading to coalescence. On the SiC+CVD sample (Figure 5(b)), not all surface defects of the 

protection layer are sulfurized which suggests that the protection layer can remain an isolating 

barrier even if defective at the surface. With increasing accelerated aging time, the density of 

sulfide spots increases as measured from these 100 × 100 µm2 images, however to much 

lower extent than on the SiC sample thus confirming a markedly improved resistance to the 

initiation of local tarnishing. Besides, only a fraction of the observed sulfide spots correspond 

to the emergence at the surface of Ag2S columns growing from the silver mirror layer 

according to the XPS data. 

Figure 6 shows the specular reflectance spectra of the stacks prior to and after 24, 48 

and 96 h accelerated aging in H2S. All curves show reflectivity drops at 315 and 375 nm 

related to plasmon absorption by the Ag layer and by the silicon dioxide protection layer, 

respectively. The decrease of reflectivity caused by the protection layer and its adhesion layer 

above 330 nm was estimated to about 3% by comparison of stacks with and without the 

silicon dioxide overcoat on reference glass and silica substrates. Comparing the as-received 

SiC (Figure 6a) and SiC+CVD (Figure 6b) samples shows that the gain of specular 

reflectivity brought by the suppression of the SiC substrate surface pores and associated 

defects in the deposited stack is about 5%. Accelerated aging in H2S leads to the failure of the 

optical performance on the SiC sample as shown by the pronounced loss of reflectivity 

already observed after 24 h and amplified after 48 and 96 h. Clearly, it is caused by the 

development the silver sulfide spots corresponding to Ag2S columns invading the reflective 

stack. On the SiC+CVD samples, no reflectivity loss is observed after 24 and 48 h of 

accelerated aging, confirming the markedly improved resistance to sulfidation of the stacks. 
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For the sample aged for 96 h (and its reference), the reflectivity is lower in the 350-550 nm 

range owing to some variation of the protection layer thickness of the as received stacks. 

Above this spectral range, the loss of specular reflectivity is only about 2% with respect to the 

as-received sample, markedly lower than that measured after aging the SiC sample for 96 h 

(33%) and even 24 h (7%). The reflectivity of the SiC+CVD sample after 96 h aging is also 

observed to be higher than that of the SiC sample before aging, showing that the suppression 

of the SiC substrate surface pores improves the resistance to the initiation of tarnishing as 

well as the optical properties. 

Sub-surface penetration of sulfur and initiation of tarnishing 

Comparative ToF-SIMS depth profiles of the SiO-, minor isotope 34S- and AgS- ions  

measured before (0 h) and after 24, 48 and 96 h accelerated aging in H2S are shown in Figure 

7 for the SiO2/Ag/SiC+CVD stacks. The interfaces are marked for the 24 and 96 h samples 

with variations that reflect some dispersion of the as received multilayer stacks, mostly of the 

protection layer thickness. As discussed above, the SiO- ions profiles are characteristic for the 

protection layer and for the residual oxide contamination of the substrate surface prior to 

deposition of the stack. Their steep intensity variations in the Ia and Ib interfacial layer regions 

are indicative of the sharpness of the interfaces of the stack improved after suppression of the 

SiC surface pores. After accelerated aging up to 96 h in H2S, the SiO- ions profiles are 

identical showing that the structure of the stack and sharpness of its interfaces are essentially 

unchanged and thus that very little if any sulfidation took place underneath the protection 

layer.  

Prior to accelerated aging in H2S, the 34S- ions profile peaks in the Ib interfacial region, 

which is also indicative of surface residual contamination of the substrate by sulfur, most 

likely from ambient air, prior to deposition of the stack. No intensity is measured in the 

protection layer, Ia interfacial and silver layer regions. After 24 and 48 h accelerated aging, 
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the 34S- ions profiles are identical in the protection layer region. Looking further in-depth, 

their intensity increases regularly before dropping at zero in the Ia interfacial and silver layer 

regions. These profiles reveal that sulfur entered and progressed in the protection layer where 

it accumulated until reaching saturation level because further progress in the stack was 

blocked by the Ia interfacial and silver layer regions. H2S has been shown to molecularly 

adsorb on SiO2 [58] and it is inferred that, in our accelerated aging conditions where water, 

that can promote H2S dissociation is absent, sulfur entered and accumulated in the protection 

layer as molecular H2S. The regularly increasing intensities of the measured profiles with in-

depth progress in the protection layer are not characteristic for inward solid state diffusion 

from the outer surface, for which a profile decreasing in intensity should be observed [59]. 

This suggests the presence of pathways for H2S penetration in the protection layer and thus 

the presence of defects, possibly of microstructural origin and corresponding to incompletely 

coalesced intergranular boundaries of the SiO2 layer since AFM revealed a granular surface 

morphology of this layer. These microstructural defects would connect to form the pathways 

short circuiting the protection layer and enabling H2S ingress. The regularly increasing 

intensities of the 34S- ions profile could then be explained by an increasing density of these 

channels with in-depth progress in the SiO2 layer. However, this is not supported by the SiO- 

ions profiles also regularly increasing with in-depth progress and suggesting an increasing 

density of the SiO2 layer. Outgassing of H2S from the penetrating pathways in the UHV 

conditions of the ToF-SIMS measurements cannot be excluded. 

Figure 7 also shows that the AgS- ions profile have quite low intensities and peak 

concomitantly with the 34S- in the interfacial Ib region and/or Ag- ions profiles in the 

interfacial Ia region (shown in Figure 2 prior to accelerated aging). The combination of silver 

and sulfur secondary ions during analysis is a possible explanation. After 24 and 48 h 

accelerated aging, the intensities of the AgS- ions are still extremely low but slightly increase 



 

 16 

at the extreme surface of the stack and during the first 100-200 seconds of sputtering before 

vanishing. This is a clear indication that, at this stage of sulfidation, silver sulfide is not yet 

formed in the silver layer region and in the deeper part of the protection layer, and thus that 

the formation of Ag2S columns growing from the silver layer is not yet initiated despite the 

penetration of sulfur in the SiO2 layer, in contrast to what occurs in the presence of the SiC 

substrate pores. The local spots of sulfidation revealed by AFM (Figure 4) and ToF-SIMS 

imaging (Figure 5) are then those characterized in XPS by higher BE-shifted Ag 3d5/2-3d3/2 

doublets and corresponding to the sulfidation of the silver contamination traces initially 

present at the surface of the stacks after deposition and/or of those present in the bulk of the 

protection layer and possibly segregating to the surface during accelerated aging performed at 

75°C. 

After 96 h accelerated aging, both the 34S- and AgS- ions profiles increase in intensity 

in all regions of the stacks, including in the Ia interfacial, silver and Ib interfacial layer regions 

until then unaltered. This shows that sulfidation of the silver mirror layer has been initiated 

below the protection layer following its exposure to H2S penetrating through the channels 

short circuiting the protection layer. The 34S- ions profile shows a peak increase in the 

interfacial Ib region underneath the silver mirror layer. Ag2S growing by cationic outward 

diffusion of Ag+ ions [60-62], this suggests that short circuits for sulfur penetration 

underneath the silver layer have been created by the formation of Ag2S. Porosity has been 

previously reported to develop in a silver layer following the formation of Ag2S by cationic 

transport [63] and it is possible that in our case pores were formed in the silver mirror layer in 

the vicinity of the sites of local growth of Ag2S and subsequently connected to open channels 

for the penetration of sulfur through the silver layer until the interfacial Ib layer.  

At this stage (96 h) of accelerated aging, AgS- ions are detected all throughout the 

protection layer region (Figure 7). This is consistent with the growth of Ag2S columns from 
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the silver layer and until emergence at the surface of the stack as inferred from the XPS data 

that show a Ag 3d5/2-3d3/2 doublet non shifted in binding energy in contrast to that 

corresponding to Ag2S formation at the surface of the protection layer. The growth of these 

Ag2S columns is local as confirmed by the ToF-SIMS (Figure 5) data. It has been shown that 

Ag2S does not grow as a continuous layer but rather forms local hillocks that coalesce in 

advanced stages of sulfidation [64-66]. In our case, the growth of Ag2S as columns results 

from the presence of the channels enabling the penetration of H2S through the protection layer 

and it is local because of the most likely discontinuous distribution of these pathways short 

circuiting the protection layer. The Pilling-Bedworth ratio for the formation of Ag2S from 

metallic silver being 1.65 as calculated from the molar volume of Ag2S (33.82 cm3) and Ag 

(10.27 cm3), swelling of the silver mirror layer underneath the protection layer can be 

expected to result from its local sulfidation. This volume increase would generate mechanical 

stress that could eventually crack the protection layer above. Newly formed cracks, 

presumably of nanoscale dimensions since not observed by AFM (Figure 4) nor ToF-SIMS 

imaging (Figure 5), would then open new permeation pathways, promoting the penetration of 

H2S in the protection layer and thereby explaining the increased intensity of the 34S- ions 

profile measured in the protection layer region after 96 h accelerated aging in H2S. 

 

Conclusions 

AFM, XPS and ToF-SIMS measurements were combined in a comprehensive 

approach to bring new insight on how to improve the pre-launch long-term environmental 

durability of thin-layered silver stacks supported on light-weight SiC substrates for space 

mirror applications. Model stack samples consisting of a thin silver layer and a SiO2 

protection overcoat, with adhesion interfacial layers, and deposited by cathodic magnetron 

sputtering, were submitted to severe accelerated aging in H2S gas at 1000 mbar and 75°C. 
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The results show that markedly improved resistance to local tarnishing and 

preservation of the optical properties is obtained for stacks supported on a SiC substrate 

pretreated by CVD so as to deposit a ~2 µm thick SiC film. The CVD surface treatment 

suppresses the surface pores resulting from the bulk SiC material production process and 

thereby eliminates the high aspect ratio surface sites that are imperfectly protected by the SiO2 

overcoat after the stack deposition, and thus more susceptible to the initiation of tarnishing. 

As a result the preferential tarnishing mechanisms, involving channels connecting the silver 

layer to its environment through the protection layer and enabling local H2S entry and Ag2S 

growth as columns until emergence at the stack surface, is shut down and tarnishing initiation 

by degradation of the silver layer is markedly delayed and optical performance preserved.  

After 96 h accelerated aging at 1000 mbar and 75°C, only trace sulfidation was 

observed on the CVD pretreated samples. It resulted for its majority from the reaction with 

H2S of silver contamination traces initially present at or near the surface of the stack from the 

deposition process. The minority tarnish traces revealed a degradation mechanism, essentially 

identical in nature to the preferential mechanism with Ag2S growing as columns through the 

protection layer, but involving different pathways short circuiting the protection layer and 

enabling H2S ingress until the silver layer. These pathways are suggested to be of 

microstructural origin and could correspond to the incompletely coalesced intergranular 

boundaries of the SiO2 layer. 
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Figure captions 

Figure 1 (color online) Top view AFM topographic images of the SiC (a,b,c) and SiC+CVD 

(d,e,f) substrates: (a,d) uncoated samples, (b,c,e,f) stack samples prepared by cathodic 

magnetron sputtering. z range is 150 nm (a), 100 nm (b), 25 nm (c,f); 20 nm (e) and 7 nm 

(d) and color-coded from dark/black to light/white with increasing z (surface height).  

Figure 2 (color online) ToF-SIMS elemental depth profiles of the stacks on the SiC (a) and 

SiC+CVD (b) substrates and consisting of the silver mirror layer (marked Ag) deposited on 

the NiCr layer (marked Ib) grown on the SiC substrate and covered by the silicon oxide 

protection layer (marked Protection) with an interface layer (marked Ia). Selected negative 

secondary ions are marked. 

Figure 3 (color online) XPS survey and Ag3d core level spectra for the stacks on the SiC (a) 

and SiC+CVD (b) substrates after 96 h accelerated aging in H2S at 1000 mbar and 75°C. 

Figure 4 (color online) Top view AFM topographic images for stacks on the SiC (a) and 

SiC+CVD (b,c) substrates after 24 h accelerated aging in H2S at 1000 mbar and 75°C. z 

range is 100 nm (a) and 20 nm (b,c) and color-coded from dark/black to light/white with 

increasing z (surface height). (c) is an enlarged new image of the local region marked in (b). 

Figure 5 (color online) ToF-SIMS elemental images for the stacks on the SiC (a) and 

SiC+CVD (b) substrates after 24, 48 and 96 h accelerated aging in H2S at 1000 mbar and 

75°C. Superimposed O-+S- images are shown with the O- and S- ions color-coded in green 

and red, respectively. 
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Figure 6 (color online) Specular reflectance spectra for the stacks on the SiC (a) and 

SiC+CVD (b) substrates before and after 24, 48 and 96 h accelerated aging in H2S at 

1000 mbar and 75°C.. 

Figure 7 (color online) ToF-SIMS depth profiles of the SiO-, AgS- and 34S- ions for the stacks 

on the SiC+CVD substrate prior to (0 h) and after 24, 48 and 96 h accelerated aging in H2S 

at 1000 mbar and 75°C. 
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