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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

This study aims at providing an original metamodeling technique based on the Non-Uniform Rational B-Splines (NURBS) 
formalism. The proposed approach is able to fit general non-convex sets of target points (TPs) by extending the NURBS formalism 
to the N-dimensional (N-D) case, getting in this way a general NURBS hypersurface. The shape of such a hypersurface is tuned 
by several parameters: the number of control points (CPs), their coordinates and related weights, the degrees of the blending 
functions and the knot-vector components defined along each direction. The goal of the proposed strategy is to find the best NURBS 
hypersurface approximating a given set of TPs. To this purpose the problem is formulated as an unconstrained least-square distance 
problem wherein the optimisation variables are all the parameters tuning the shape of the NURBS hypersurface. Nevertheless, 
when the number of CPs and the degrees of the basis functions are included among the design variables the resulting problem is 
defined over a space having a variable dimension. To deal with this aspect, a special genetic algorithm, able to solve problems 
characterised by a variable number of design variables, is considered to determine automatically (i.e. without the user’s 
intervention) the optimum value of both the design space size (related to the integer variables of the NURBS hypersurface) and the 
NURBS hypersurface continuous parameters. The effectiveness of the proposed approach is proven by means of a meaningful 
benchmark. 
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1. Introduction 

Computers increasing performances are widely utilized to 
improve simulation complexity over computation time. 
However, some applications need quasi-real-time models 
especially for design/optimisation purposes. Metamodeling 
techniques can minimise the computational effort to realize 
complex multi-field and/or multi-scale simulations which must 
be integrated within an optimisation process. Currently, 
Artificial Neural Networks (ANN) [1,2], Proper Generalized 
Decomposition (PGD) [3], Fuzzy Logic (FL) [4] and Radial 
Basis Functions (RBFs) [5] are the most common methods 
available in literature for realising surrogate models. Of course, 
each technique is characterised by both advantages and 
shortcomings. For example, ANN are not suitable for multiple 
outputs request [2] (when considering multiple responses ANN 

accuracy often decreases), while PGD provides less accurate 
results for nonlinear problems [3]. As a general remark, setting 
the parameters number for classical metamodeling techniques 
could be a quite difficult task which often needs a trial-and-
error approach. For instance, improving arbitrarily the number 
of layers and/or neurons for ANN or improving the modes 
number for PGD can lead to overfitting and to a subsequent 
increase of the overall complexity for the problem at hand. In 
any case, all these methods need a great amount of available 
data, thus implying extensive experimental and/or numerical 
campaigns. 

The surrogate model proposed in this study relies on the 
utilisation of N-dimension (N-D) Non-Uniform Rational Basis 
Spline (NURBS) hypersurfaces to fit a given set of data points, 
also called target points (TPs) and aims at overcoming the 
previous limitations by automatically determining the optimum 
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number of the NURBS hypersurface parameters without 
requiring a trial-and-error approach.  

Up to now, only few research works focus on the 
formulation/implementation of surrogate models based on the 
NURBS formalism [6–8]. NURBS curves and surfaces are 
standard geometrical entities widely used in Computer Aided 
Design (CAD) software. NURBS hypersurfaces represent a 
generalisation of these entities. A NURBS hypersurface is 
defined through the number of dimensions (related to the size 
of the problem at hand), the degree of blending-functions along 
each dimension, the overall number of control points (CPs), the 
coordinates of each CPs and the related weights, the knot vector 
components along each dimension. The large number of 
parameters tuning the shape of a NURBS hypersurface renders 
it a very versatile tool for many mathematical and engineering 
applications, not only for formulating surrogate models [9–12]. 
However, the significant amount of parameters defining the 
NURBS hypersurface also constitutes the main drawback: it is 
very hard to properly tune all these parameters without making 
some simplifying assumptions or preliminary choices as done 
in[6,7]. 

In [8] a NURBS-based surrogate model for inverse 
characterization of composite materials is presented. In this 
background Turner and Crawford [6] developed an iterative 
procedure for determining a suitable number of CPs for the 
NURBS hypersurface. The technique proposed by Turner and 
Crawford is based upon an empirical rule which computes the 
position of new control points on the basis of the cost function 
of the problem at hand (typically the maximum error of 
approximation). Nevertheless, their approach is characterised 
by some restrictions: 
 the empirical rule for updating the number of CPs as well 

as their coordinates is strongly problem-dependent; 
 the degrees of blending functions were set a priori; 
 the knot vectors components were uniformly distributed 

or calculated by means of simple empirical rules. 
To overcome the previous restrictions, in this work, an 

innovative surrogate model based on N-D NURBS 
hypersurfaces is proposed. The problem of approximating a 
given set of TPs is formulated as an unconventional 
Unconstrained Non-Linear Programming Problem (UNLPP) 
defined over a space of variable dimension. Furthermore, this 
UNLPP is formulated without considering simplifying 
hypotheses, thus by considering as design variables all the 
parameters tuning the NURBS hypersurface shape (both 
integer and continuous parameters).  

Of course, when dealing with an optimisation problem 
defined over a domain having a variable dimension, a particular 
care must be put in the choice of a proper numerical tool to 
perform the solution search. To this purpose in this study a 
special genetic algorithm (GA) [11,13] able to deal with 
problems characterised by a “variable number of design 
variables” is utilised as optimisation tool. 

The effectiveness of the proposed approach will be proven 
through a meaningful benchmark. 

2. A NURBS-based surrogate model 

2.1. Classic NURBS surfaces theoretical framework 

Non-Uniform Rational B-Splines curves and surfaces are 
explicit parametric geometric entities mostly used in CAD 
software. According to the notation introduced in [14] the 
Cartesian coordinates of a generic point of a NURBS surface 
can be written as: 

𝑺𝑺(𝑢𝑢, 𝑣𝑣) =  
∑ ∑ 𝑁𝑁𝑖𝑖,𝑝𝑝(𝑢𝑢)𝑁𝑁𝑗𝑗,𝑞𝑞(𝑣𝑣)𝜔𝜔𝑖𝑖,𝑗𝑗𝑷𝑷𝑖𝑖,𝑗𝑗

𝑛𝑛𝑣𝑣
𝑗𝑗=0

𝑛𝑛𝑢𝑢
𝑖𝑖=0
∑ ∑ 𝑁𝑁𝑖𝑖,𝑝𝑝(𝑢𝑢)𝑁𝑁𝑗𝑗,𝑞𝑞(𝑣𝑣)𝜔𝜔𝑖𝑖,𝑗𝑗

𝑛𝑛𝑣𝑣
𝑗𝑗=0

𝑛𝑛𝑢𝑢
𝑖𝑖=0

,        (1) 

where  1 ,0, vu  are the dimensionless parameters of the 

surface, 3S  is the vector collecting the coordinates of the 
generic point belonging to the surface, whilst ji,P is the array 

of the CPs coordinates, i.e. one array of size 
   11 

 vu nn
 

is required for each coordinate.  1un  and  1vn  are the 
number of CPs along u  and v  directions, respectively. 

   11
,


 vu nn

ji  is the array of weights related to each 

CP. )(, uN pi  and )(, vN qj  are the p-th and q-th -degree B-
spline blending functions, which are recursively defined. For 
example, the expression of )(, uN pi is written as: 
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Similar expressions apply for )(, vN qi . In Eq. (2) iU  is the i-
th component of the non-periodic non-uniform knot vector 
along u direction. Of course, a knot vector is required also in v-
direction in order to define the associated blending functions. 
The generic expression for both knot vectors is: 

𝐔𝐔 =  {0, … ,0⏟  
𝑝𝑝+1

, 𝑈𝑈𝑝𝑝+1, … , 𝑈𝑈𝑚𝑚𝑢𝑢−𝑝𝑝−1, 1, … ,1⏟  
𝑝𝑝+1

} ,

𝐕𝐕 =  {0, … ,0⏟  
𝑞𝑞+1

, 𝑈𝑈𝑞𝑞+1, … , 𝑈𝑈𝑚𝑚𝑣𝑣−𝑞𝑞−1, 1, … ,1⏟  
𝑞𝑞+1

} .
       (3) 

The size of knot vectors U and V are  1um  and  1vm , 
respectively. Their size strictly depends upon the number of 
CPs as well as on the degrees of blending functions along each 
direction, namely 

. 1
, 1




qnm
pnm

vv

uu              (4) 

Each knot vector is a non-decreasing sequence of real numbers 
that can be interpreted as a discrete collection of values of the 
dimensionless parameter of the surface. All the components of 
knot vectors can have a multiplicity µ. If a knot has a 
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multiplicity µ along u-direction then the basis function 
)(, uN pi is p-µ times continuously differentiable (at the knot). 

The same considerations can be repeated for )(, vN qi  if a 
component of V has multiplicity µ. Therefore, for a fixed 
degree along a given direction, increasing the knot multiplicity 
decreases the continuity of the surface at that knot. This means 
that the value of the knot vectors components strongly affects 
the local shape of a NURBS surface. For a deeper insight in the 
matter, the reader is addressed to [14]. 

2.2. The case of NURBS hypersurfaces 

Let N be the dimension of the problem and M that of the 
hypersurface. Let MN  :S  be the parametric vector 
equation of the hypersurface. Analogously to the 2D case, the 
explicit parametric expression of the k-th coordinate of the 
NURBS hypersurface writes: 
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In Eq. (5),  1 ,0,,...,1 Nuu  are the dimensionless 

parameters of the hypersurface, while  kS  is the k-th 
coordinate of the generic point belonging to the hypersurface. 
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generic component of the array of weights related to each CP. 
The expression of the generic ip -th degree blending function 
along dimension i can be stated as: 

𝑁𝑁𝑗𝑗,0(𝑢𝑢𝑖𝑖) = {1 if 𝑈𝑈𝑗𝑗
(𝑖𝑖) ≤ 𝑢𝑢𝑖𝑖 ≤ 𝑈𝑈𝑗𝑗+1

(𝑖𝑖)

0            otherwise
,  

𝑁𝑁𝑗𝑗,𝜏𝜏(𝑢𝑢𝑖𝑖) =
𝑢𝑢𝑖𝑖−𝑈𝑈𝑗𝑗

(𝑖𝑖)

𝑈𝑈𝑗𝑗+𝜏𝜏
(𝑖𝑖) −𝑈𝑈𝑗𝑗

(𝑖𝑖) 𝑁𝑁𝑗𝑗,𝜏𝜏−1(𝑢𝑢𝑖𝑖) +
𝑈𝑈𝑗𝑗+𝜏𝜏+1
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(𝑖𝑖) 𝑁𝑁𝑗𝑗+1,𝜏𝜏−1(𝑢𝑢𝑖𝑖),  (6) 

𝑖𝑖 = 1, … , 𝑁𝑁, 𝑗𝑗 = 0,… , 𝑛𝑛𝑖𝑖, 𝜏𝜏 = 1,… , 𝑝𝑝.  
 

Of course, blending functions are defined by considering 
knot vectors component along each dimension. The expression 
of the generic knot vector along dimension i is 

𝐔𝐔(𝑖𝑖) =  {0, … ,0⏟  
𝑝𝑝𝑖𝑖+1

, 𝑈𝑈𝑝𝑝𝑖𝑖+1
(𝑖𝑖) , … , 𝑈𝑈𝑚𝑚𝑖𝑖−𝑝𝑝𝑖𝑖−1

(𝑖𝑖) , 1, … ,1⏟  
𝑝𝑝𝑖𝑖+1

},                    (7) 

where the size of the knot vector is given by 

.1i , 1 ,...,N pnm iii              (8) 

3. Optimization problem formulation 

3.1. Problem description 

The problem under consideration here focuses on the 
approximation of the temperature field of a thin plate of size 

1.0xL m and 1.0yL m along x and y axes, respectively. 
The thickness of the plate is 𝑡𝑡. A constant flux 𝛷𝛷0 = 100 W/m² 
is applied at x = 0 and x = Lx while the rest of the plate is under 
convection flux with coefficient h and infinite temperature 

15,298T K. A pictorial representation is given in Fig. 1.  
As stated above, the proposed NURBS-based surrogate 

model aims at approximating the temperature field of the plate 
for different combinations of variables 𝑡𝑡 and h  which can be 
seen as design parameters for the problem at hand. Therefore, 
the temperature field needs to be determined for each value of 
the previous parameters, namely: 

𝑇𝑇 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑡𝑡, ℎ)  (9) 

 The goal is thus to determine a suitable NURBS 
hypersurface fitting (with a certain level of accuracy) a set of 
given TPs. These TPs must be calculated for different values of 
𝑡𝑡 and h  in each point of the plate. For the considered example 
the overall dimensions of the NURBS hypersurface are N=4 
and M=1, i.e., the NURBS hypersurface reduces to a scalar 
function depending on four independent parameters as stated in 
Eq. (9). 

The TPs coordinate (i.e. the temperature) can be collected 
into a N-D array: 

𝑄𝑄𝑖𝑖1,𝑖𝑖2,𝑖𝑖3,𝑖𝑖4 = 𝑇𝑇(𝑥𝑥𝑖𝑖1 , 𝑦𝑦𝑖𝑖2, 𝑡𝑡𝑖𝑖3, ℎ𝑖𝑖4),    ∀𝑖𝑖𝑗𝑗 ∈ [0 ;  𝑟𝑟𝑗𝑗]  (10) 

rj+1 being the number of TPs along dimension j. The set of 
TPs is composed of an overall number nQ of points given by: 

.)1(
1

TP 



N

j
jrn            (11) 

 
Fig. 1. Geometry and boundary conditions for the plate. 

The set of TPs (i.e. the temperature field in each point of the 
plate for different combinations of 𝑡𝑡 and h ) has been obtained 
by means of a finite element (FE) analysis. The FE model has 
been coded into ANSYS environment and it is composed of 
101x101 Shell131 elements with a single DOF per node. Fig. 2 
illustrates the trend of the temperature field (dimensionless) 
over the plate for a given pair of thickness and convection 
coefficient values. 
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number of the NURBS hypersurface parameters without 
requiring a trial-and-error approach.  

Up to now, only few research works focus on the 
formulation/implementation of surrogate models based on the 
NURBS formalism [6–8]. NURBS curves and surfaces are 
standard geometrical entities widely used in Computer Aided 
Design (CAD) software. NURBS hypersurfaces represent a 
generalisation of these entities. A NURBS hypersurface is 
defined through the number of dimensions (related to the size 
of the problem at hand), the degree of blending-functions along 
each dimension, the overall number of control points (CPs), the 
coordinates of each CPs and the related weights, the knot vector 
components along each dimension. The large number of 
parameters tuning the shape of a NURBS hypersurface renders 
it a very versatile tool for many mathematical and engineering 
applications, not only for formulating surrogate models [9–12]. 
However, the significant amount of parameters defining the 
NURBS hypersurface also constitutes the main drawback: it is 
very hard to properly tune all these parameters without making 
some simplifying assumptions or preliminary choices as done 
in[6,7]. 

In [8] a NURBS-based surrogate model for inverse 
characterization of composite materials is presented. In this 
background Turner and Crawford [6] developed an iterative 
procedure for determining a suitable number of CPs for the 
NURBS hypersurface. The technique proposed by Turner and 
Crawford is based upon an empirical rule which computes the 
position of new control points on the basis of the cost function 
of the problem at hand (typically the maximum error of 
approximation). Nevertheless, their approach is characterised 
by some restrictions: 
 the empirical rule for updating the number of CPs as well 

as their coordinates is strongly problem-dependent; 
 the degrees of blending functions were set a priori; 
 the knot vectors components were uniformly distributed 

or calculated by means of simple empirical rules. 
To overcome the previous restrictions, in this work, an 

innovative surrogate model based on N-D NURBS 
hypersurfaces is proposed. The problem of approximating a 
given set of TPs is formulated as an unconventional 
Unconstrained Non-Linear Programming Problem (UNLPP) 
defined over a space of variable dimension. Furthermore, this 
UNLPP is formulated without considering simplifying 
hypotheses, thus by considering as design variables all the 
parameters tuning the NURBS hypersurface shape (both 
integer and continuous parameters).  

Of course, when dealing with an optimisation problem 
defined over a domain having a variable dimension, a particular 
care must be put in the choice of a proper numerical tool to 
perform the solution search. To this purpose in this study a 
special genetic algorithm (GA) [11,13] able to deal with 
problems characterised by a “variable number of design 
variables” is utilised as optimisation tool. 

The effectiveness of the proposed approach will be proven 
through a meaningful benchmark. 

2. A NURBS-based surrogate model 

2.1. Classic NURBS surfaces theoretical framework 

Non-Uniform Rational B-Splines curves and surfaces are 
explicit parametric geometric entities mostly used in CAD 
software. According to the notation introduced in [14] the 
Cartesian coordinates of a generic point of a NURBS surface 
can be written as: 

𝑺𝑺(𝑢𝑢, 𝑣𝑣) =  
∑ ∑ 𝑁𝑁𝑖𝑖,𝑝𝑝(𝑢𝑢)𝑁𝑁𝑗𝑗,𝑞𝑞(𝑣𝑣)𝜔𝜔𝑖𝑖,𝑗𝑗𝑷𝑷𝑖𝑖,𝑗𝑗

𝑛𝑛𝑣𝑣
𝑗𝑗=0

𝑛𝑛𝑢𝑢
𝑖𝑖=0
∑ ∑ 𝑁𝑁𝑖𝑖,𝑝𝑝(𝑢𝑢)𝑁𝑁𝑗𝑗,𝑞𝑞(𝑣𝑣)𝜔𝜔𝑖𝑖,𝑗𝑗

𝑛𝑛𝑣𝑣
𝑗𝑗=0

𝑛𝑛𝑢𝑢
𝑖𝑖=0

,        (1) 

where  1 ,0, vu  are the dimensionless parameters of the 

surface, 3S  is the vector collecting the coordinates of the 
generic point belonging to the surface, whilst ji,P is the array 

of the CPs coordinates, i.e. one array of size 
   11 

 vu nn
 

is required for each coordinate.  1un  and  1vn  are the 
number of CPs along u  and v  directions, respectively. 

   11
,


 vu nn

ji  is the array of weights related to each 

CP. )(, uN pi  and )(, vN qj  are the p-th and q-th -degree B-
spline blending functions, which are recursively defined. For 
example, the expression of )(, uN pi is written as: 
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Similar expressions apply for )(, vN qi . In Eq. (2) iU  is the i-
th component of the non-periodic non-uniform knot vector 
along u direction. Of course, a knot vector is required also in v-
direction in order to define the associated blending functions. 
The generic expression for both knot vectors is: 

𝐔𝐔 =  {0, … ,0⏟  
𝑝𝑝+1

, 𝑈𝑈𝑝𝑝+1, … , 𝑈𝑈𝑚𝑚𝑢𝑢−𝑝𝑝−1, 1, … ,1⏟  
𝑝𝑝+1

} ,

𝐕𝐕 =  {0, … ,0⏟  
𝑞𝑞+1

, 𝑈𝑈𝑞𝑞+1, … , 𝑈𝑈𝑚𝑚𝑣𝑣−𝑞𝑞−1, 1, … ,1⏟  
𝑞𝑞+1

} .
       (3) 

The size of knot vectors U and V are  1um  and  1vm , 
respectively. Their size strictly depends upon the number of 
CPs as well as on the degrees of blending functions along each 
direction, namely 

. 1
, 1




qnm
pnm

vv

uu              (4) 

Each knot vector is a non-decreasing sequence of real numbers 
that can be interpreted as a discrete collection of values of the 
dimensionless parameter of the surface. All the components of 
knot vectors can have a multiplicity µ. If a knot has a 

 Author name / Procedia CIRP 00 (2018) 000–000  3 

multiplicity µ along u-direction then the basis function 
)(, uN pi is p-µ times continuously differentiable (at the knot). 

The same considerations can be repeated for )(, vN qi  if a 
component of V has multiplicity µ. Therefore, for a fixed 
degree along a given direction, increasing the knot multiplicity 
decreases the continuity of the surface at that knot. This means 
that the value of the knot vectors components strongly affects 
the local shape of a NURBS surface. For a deeper insight in the 
matter, the reader is addressed to [14]. 

2.2. The case of NURBS hypersurfaces 

Let N be the dimension of the problem and M that of the 
hypersurface. Let MN  :S  be the parametric vector 
equation of the hypersurface. Analogously to the 2D case, the 
explicit parametric expression of the k-th coordinate of the 
NURBS hypersurface writes: 

M

uNuN

PuNuN

uuS

N

N

N

NN

NN

N

N

NN

ii

n

i

n

i
Npipi

k
iiii

n

i

n

i
Npipi

N
k ,...,1k    , 

)()...(...

)()...(...

),...,(

,...,
0 0

,1,

)(
,...,,...,

0 0
,1,

1
)(

1

1

1

11

11

1

1

11



 

 

 

 




 (5) 

 
In Eq. (5),  1 ,0,,...,1 Nuu  are the dimensionless 

parameters of the hypersurface, while  kS  is the k-th 
coordinate of the generic point belonging to the hypersurface. 
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iiP is the generic component of the 

array collecting the k-th coordinate for each CP.  1in  is the 
number of CPs along the i-th dimension, while 
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CP 1  is the overall number of CPs which form 

the so-called hyper-net. 
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ii  is the 

generic component of the array of weights related to each CP. 
The expression of the generic ip -th degree blending function 
along dimension i can be stated as: 

𝑁𝑁𝑗𝑗,0(𝑢𝑢𝑖𝑖) = {1 if 𝑈𝑈𝑗𝑗
(𝑖𝑖) ≤ 𝑢𝑢𝑖𝑖 ≤ 𝑈𝑈𝑗𝑗+1

(𝑖𝑖)

0            otherwise
,  

𝑁𝑁𝑗𝑗,𝜏𝜏(𝑢𝑢𝑖𝑖) =
𝑢𝑢𝑖𝑖−𝑈𝑈𝑗𝑗

(𝑖𝑖)

𝑈𝑈𝑗𝑗+𝜏𝜏
(𝑖𝑖) −𝑈𝑈𝑗𝑗

(𝑖𝑖) 𝑁𝑁𝑗𝑗,𝜏𝜏−1(𝑢𝑢𝑖𝑖) +
𝑈𝑈𝑗𝑗+𝜏𝜏+1
(𝑖𝑖) −𝑢𝑢𝑖𝑖

𝑈𝑈𝑗𝑗+𝜏𝜏+1
(𝑖𝑖) −𝑈𝑈𝑗𝑗+1

(𝑖𝑖) 𝑁𝑁𝑗𝑗+1,𝜏𝜏−1(𝑢𝑢𝑖𝑖),  (6) 

𝑖𝑖 = 1, … , 𝑁𝑁, 𝑗𝑗 = 0,… , 𝑛𝑛𝑖𝑖, 𝜏𝜏 = 1,… , 𝑝𝑝.  
 

Of course, blending functions are defined by considering 
knot vectors component along each dimension. The expression 
of the generic knot vector along dimension i is 

𝐔𝐔(𝑖𝑖) =  {0, … ,0⏟  
𝑝𝑝𝑖𝑖+1

, 𝑈𝑈𝑝𝑝𝑖𝑖+1
(𝑖𝑖) , … , 𝑈𝑈𝑚𝑚𝑖𝑖−𝑝𝑝𝑖𝑖−1

(𝑖𝑖) , 1, … ,1⏟  
𝑝𝑝𝑖𝑖+1

},                    (7) 

where the size of the knot vector is given by 

.1i , 1 ,...,N pnm iii              (8) 

3. Optimization problem formulation 

3.1. Problem description 

The problem under consideration here focuses on the 
approximation of the temperature field of a thin plate of size 

1.0xL m and 1.0yL m along x and y axes, respectively. 
The thickness of the plate is 𝑡𝑡. A constant flux 𝛷𝛷0 = 100 W/m² 
is applied at x = 0 and x = Lx while the rest of the plate is under 
convection flux with coefficient h and infinite temperature 

15,298T K. A pictorial representation is given in Fig. 1.  
As stated above, the proposed NURBS-based surrogate 

model aims at approximating the temperature field of the plate 
for different combinations of variables 𝑡𝑡 and h  which can be 
seen as design parameters for the problem at hand. Therefore, 
the temperature field needs to be determined for each value of 
the previous parameters, namely: 

𝑇𝑇 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑡𝑡, ℎ)  (9) 

 The goal is thus to determine a suitable NURBS 
hypersurface fitting (with a certain level of accuracy) a set of 
given TPs. These TPs must be calculated for different values of 
𝑡𝑡 and h  in each point of the plate. For the considered example 
the overall dimensions of the NURBS hypersurface are N=4 
and M=1, i.e., the NURBS hypersurface reduces to a scalar 
function depending on four independent parameters as stated in 
Eq. (9). 

The TPs coordinate (i.e. the temperature) can be collected 
into a N-D array: 

𝑄𝑄𝑖𝑖1,𝑖𝑖2,𝑖𝑖3,𝑖𝑖4 = 𝑇𝑇(𝑥𝑥𝑖𝑖1 , 𝑦𝑦𝑖𝑖2, 𝑡𝑡𝑖𝑖3, ℎ𝑖𝑖4),    ∀𝑖𝑖𝑗𝑗 ∈ [0 ;  𝑟𝑟𝑗𝑗]  (10) 

rj+1 being the number of TPs along dimension j. The set of 
TPs is composed of an overall number nQ of points given by: 

.)1(
1

TP 



N

j
jrn            (11) 

 
Fig. 1. Geometry and boundary conditions for the plate. 

The set of TPs (i.e. the temperature field in each point of the 
plate for different combinations of 𝑡𝑡 and h ) has been obtained 
by means of a finite element (FE) analysis. The FE model has 
been coded into ANSYS environment and it is composed of 
101x101 Shell131 elements with a single DOF per node. Fig. 2 
illustrates the trend of the temperature field (dimensionless) 
over the plate for a given pair of thickness and convection 
coefficient values. 
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Fig. 2. Dimensionless temperature field over the plate for a given 

combination of thickness and convection coefficient. 

3.2. Mathematical statement of the problem 

The main goal of the proposed approach is to obtain a 
surrogate model formulated in the theoretical framework of 
NURBS hypersurfaces, characterized by an overall number of 
CPs (𝑛𝑛𝐶𝐶𝐶𝐶) lower than that of TPs (𝑛𝑛𝑇𝑇𝐶𝐶) describing the response 
of the system with a sufficient accuracy (according to the 
problem requirements). 

The idea is to search for the best value of the parameters 
tuning the shape of the NURBS hypersurface minimizing the 
following error function: 
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without introducing any simplifying hypotheses or empirical 
rule on the overall number of parameters involved in the 
NURBS hypersurface definition. 

As clearly appears from Eq. (12), the NURBS hypersurface 
fitting problem can be stated as an unconstrained least-square 
problem. X is the vector collecting the optimization variables, 

41 ,...,kkQ  is the array of TPs coordinates while )(
41 ,...,kkuS  is 

its counterpart belonging to the NURBS hypersurface when the 
dimensionless parameters ui take the values 𝑢𝑢𝑖𝑖

(𝑘𝑘), (𝑘𝑘 = 0,… , 𝑟𝑟𝑖𝑖,
𝑖𝑖 = 0, … ,4). 𝐮𝐮𝑘𝑘1,…,𝑘𝑘𝑁𝑁 is the array containing all the 𝑢𝑢𝑖𝑖

(𝑘𝑘).  
For the problem at hand, X collects only the independent 

design variables of the NURBS hypersurface.  
From Eq. (5) the definition of a NURBS hypersurface 

involves parameters of different nature: 
 integers ones as the numbers of both knot vector 

components and CPs, (𝑚𝑚𝑖𝑖+1,  𝑛𝑛𝑖𝑖+1, respectively) as well as 
the degrees of the blending functions 𝑝𝑝𝑖𝑖  along each 
dimension; 

 continuous variables as internal knot vector values 
   i
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p iii
UU 11,...,  , CPs coordinates along each direction 

)(
,...,1

k
ii N

P , weights 
Nii ,...,1

 and the dimensionless parameters 

𝑢𝑢𝑖𝑖
(𝑘𝑘). 

Some of these parameters are interdependent, whereas other 
can be smartly chosen. 

In particular, as far as concerns the set of continuous 
dimensionless parameters, i.e. 𝑢𝑢𝑖𝑖

(𝑘𝑘) , they are obtained 
according to the chord length method [14]. Furthermore, due to 
the smoothness of the set of TPs (which form a convex set) a 
B-Spline hypersurface is sufficient to build the surrogate model 
(in this case all weights have been set equal to one).  

The number of CPs along each dimension can be determined 
once the size of the knot vector and the degree of the blending 
functions along the same dimension are known, see Eq. (8). 

Moreover, when the size of the knot vector as well as its 
internal components along each dimension are known, the 
degree of the blending functions (along each direction) is given 
and the values of 𝑢𝑢𝑖𝑖

(𝑘𝑘) have been computed by means of the 
chord length method, finding the optimum value of the CPs 
coordinates is a quite trivial task. Indeed, problem (12) is 
convex in terms of CPs coordinates. It can be proven that the 
optimum value of CPs coordinates can be determined by 
generalizing the well-known surface fitting algorithm A9.7 
from [14] to the N-D case. A schematic flow chart of this 
general algorithm is shown in Fig 3. For sake of brevity, it can 
be stated that the optimum value of CPs coordinates can be 
computed as a succession of curve fitting problems along each 
dimension. In particular, this algorithm provides the CPs 
coordinates by solving successively linear systems, as follows: 
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In Eq. (14) 
       1...11 21  Nrrnk

iP  is a temporary array 
collecting the unknowns for the curve fitting problem along 
dimension i. It is calculated “column by column” along the 
remaining dimensions. When passing to the curve fitting 
problem along dimension 2 (i.e., the second iteration of the 

calculation) its size changes to 
       1...11 21  Nrnnk

iP  
until iteration N where the size is finally 

       1...11 21  Nnnnk
iP . 
Generally speaking, for surface fitting problems, matrix  

Ni
TNi can be ill-conditioned (depending on the values of the 

different parameters tuning the shape of the NURBS 
hypersurface). To this purpose a particular attention must be 
put in calculating its inverse. Therefore, the Moore-Penrose 
pseudo-inverse method has been considered to solve the linear 
system of Eq. (14). 

 

Fig. 3. Logical flow of the surface fitting algorithm [14] extended to the N-D 
case. 
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Beside the values 𝑢𝑢𝑖𝑖
(𝑘𝑘), the algorithm of Fig. 3 needs some 

further input quantities in order to be executed: 
 integer parameters, i.e., pi and mi, 𝑖𝑖 = 1,… , 𝑁𝑁 , 
 continuous parameters, i.e., internal knot vector 

components    i
pm

i
p iii

UU 11,...,  . 

These quantities represent the independent optimization 
variables collected into the vector X. 

3.3. Numerical strategy 

Problem (12) is a non-standard UNLPP because it is defined 
over a space of variable dimension. Indeed, the size of the 
vector of optimization variables depends upon the current value 
of the integer design parameters, namely 𝑝𝑝𝑖𝑖  and 𝑚𝑚𝑖𝑖 . In 
particular the size of vector X is: 
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Considering the unique mathematical features of problem 
(12) a hybrid optimization tool composed of the new version of 
the GA BIANCA [13], interfaced with the MATLAB fmincon 
algorithm [15], has been developed, see Fig. 4. As shown in 
Fig. 4, the optimization procedure for problem (12) is split in 
two phases.  

During the first phase, solely the GA BIANCA is utilized to 
perform the solution search and the full set of design variables 
is taken into account. BIANCA is a special GA able to deal 
with optimization problems characterized by a variable number 
of design variables, i.e., optimization problems of modular 
systems. This goal can be achieved thanks to the original 
features of such a GA. In BIANCA the information is 
organized in a genotype composed of chromosomes which are 
in turn made of genes (each gene codes a specific design 
variable). When the object of the optimization problem is a 
modular system (i.e., a system composed of a variable number 
of modules characterized by the same vector of variables) each 
constitutive module is represented by a chromosome, while 
each gene codes a design variable related to the module. 

 
Fig. 4. Hybrid optimization algorithm. 

In agreement with the paradigms of natural sciences, 
individuals characterized by a different number of 
chromosomes (i.e., modular structures composed of a different 
number of modules) belong to different species. BIANCA has 

been conceived for crossing also different species, thus making 
possible (and without distinction) the simultaneous 
optimization of species and of individuals. This task can be 
attained thanks to some special genetic operators that have been 
implemented to perform the reproduction phase between 
individuals belonging to different species, see Fig. 5. For more 
details on the original features of such a GA the interested 
reader is addressed to [13].  

 

 
Fig. 5. BIANCA algorithm [13]. 

Due to the strong nonlinearity of problem (12), the aim of 
the genetic calculation is to provide a potential sub-optimal 
point in the design space, which constitutes the initial guess for 
the subsequent phase, i.e., the local optimization performed via 
the fmincon gradient-based algorithm. During this second 
phase, only the components of the knot vector along each 
dimension are considered as design variables, see Fig.  4. 

4. Numerical results 

4.1. Results with iterative method 

In this first case, the hypersurface fitting problem (12) has 
been solved by using the iterative procedure proposed in [14]. 
The algorithm presented in [14] tries to solve problem (12) by 
using, during the first iterations, few CPs along each 
dimension. Then, if the stop criterion is not met (i.e. the cost 
function is not lower than or equal to a certain threshold value 
defined by the user) the algorithm repeats the fitting process by 
adding CPs in the direction where the ratio ρi between the 
number of CPs ni and the number of TPs ri is the lowest. In this 
background, knot vectors components are computed in a 
manner that ensures every knot of the  iU  contains at least one 
𝑢𝑢𝑖𝑖
(𝑘𝑘) , dimensionless parameters are computed according to 

chord length method [14] and the degrees are set equal to two, 
see [6,7] for more details. Table 1 lists the number of both TPs 
𝑟𝑟𝑖𝑖 and CPs ni and the internal knot values {𝑈𝑈𝑗𝑗

(𝑖𝑖)} obtained via 
the iterative method. As it can be seen from this table, the 
average error is 8.881917e-05. The overall number of TPs 
utilized in this example is nQ = 4498641 while the overall 
number of CPs at the end of the procedure is nCP = 4096.  

Table 1. Results of iterative procedure (precision 1.e-04). 

Variable x y Th h 

ri 101 101 21 21 
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Fig. 2. Dimensionless temperature field over the plate for a given 

combination of thickness and convection coefficient. 

3.2. Mathematical statement of the problem 

The main goal of the proposed approach is to obtain a 
surrogate model formulated in the theoretical framework of 
NURBS hypersurfaces, characterized by an overall number of 
CPs (𝑛𝑛𝐶𝐶𝐶𝐶) lower than that of TPs (𝑛𝑛𝑇𝑇𝐶𝐶) describing the response 
of the system with a sufficient accuracy (according to the 
problem requirements). 

The idea is to search for the best value of the parameters 
tuning the shape of the NURBS hypersurface minimizing the 
following error function: 
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without introducing any simplifying hypotheses or empirical 
rule on the overall number of parameters involved in the 
NURBS hypersurface definition. 

As clearly appears from Eq. (12), the NURBS hypersurface 
fitting problem can be stated as an unconstrained least-square 
problem. X is the vector collecting the optimization variables, 

41 ,...,kkQ  is the array of TPs coordinates while )(
41 ,...,kkuS  is 

its counterpart belonging to the NURBS hypersurface when the 
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design variables of the NURBS hypersurface.  
From Eq. (5) the definition of a NURBS hypersurface 

involves parameters of different nature: 
 integers ones as the numbers of both knot vector 

components and CPs, (𝑚𝑚𝑖𝑖+1,  𝑛𝑛𝑖𝑖+1, respectively) as well as 
the degrees of the blending functions 𝑝𝑝𝑖𝑖  along each 
dimension; 
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Some of these parameters are interdependent, whereas other 
can be smartly chosen. 

In particular, as far as concerns the set of continuous 
dimensionless parameters, i.e. 𝑢𝑢𝑖𝑖

(𝑘𝑘) , they are obtained 
according to the chord length method [14]. Furthermore, due to 
the smoothness of the set of TPs (which form a convex set) a 
B-Spline hypersurface is sufficient to build the surrogate model 
(in this case all weights have been set equal to one).  

The number of CPs along each dimension can be determined 
once the size of the knot vector and the degree of the blending 
functions along the same dimension are known, see Eq. (8). 

Moreover, when the size of the knot vector as well as its 
internal components along each dimension are known, the 
degree of the blending functions (along each direction) is given 
and the values of 𝑢𝑢𝑖𝑖

(𝑘𝑘) have been computed by means of the 
chord length method, finding the optimum value of the CPs 
coordinates is a quite trivial task. Indeed, problem (12) is 
convex in terms of CPs coordinates. It can be proven that the 
optimum value of CPs coordinates can be determined by 
generalizing the well-known surface fitting algorithm A9.7 
from [14] to the N-D case. A schematic flow chart of this 
general algorithm is shown in Fig 3. For sake of brevity, it can 
be stated that the optimum value of CPs coordinates can be 
computed as a succession of curve fitting problems along each 
dimension. In particular, this algorithm provides the CPs 
coordinates by solving successively linear systems, as follows: 
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In Eq. (14) 
       1...11 21  Nrrnk

iP  is a temporary array 
collecting the unknowns for the curve fitting problem along 
dimension i. It is calculated “column by column” along the 
remaining dimensions. When passing to the curve fitting 
problem along dimension 2 (i.e., the second iteration of the 

calculation) its size changes to 
       1...11 21  Nrnnk

iP  
until iteration N where the size is finally 

       1...11 21  Nnnnk
iP . 
Generally speaking, for surface fitting problems, matrix  

Ni
TNi can be ill-conditioned (depending on the values of the 

different parameters tuning the shape of the NURBS 
hypersurface). To this purpose a particular attention must be 
put in calculating its inverse. Therefore, the Moore-Penrose 
pseudo-inverse method has been considered to solve the linear 
system of Eq. (14). 

 

Fig. 3. Logical flow of the surface fitting algorithm [14] extended to the N-D 
case. 
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Beside the values 𝑢𝑢𝑖𝑖
(𝑘𝑘), the algorithm of Fig. 3 needs some 

further input quantities in order to be executed: 
 integer parameters, i.e., pi and mi, 𝑖𝑖 = 1, … , 𝑁𝑁 , 
 continuous parameters, i.e., internal knot vector 

components    i
pm

i
p iii

UU 11,...,  . 

These quantities represent the independent optimization 
variables collected into the vector X. 

3.3. Numerical strategy 

Problem (12) is a non-standard UNLPP because it is defined 
over a space of variable dimension. Indeed, the size of the 
vector of optimization variables depends upon the current value 
of the integer design parameters, namely 𝑝𝑝𝑖𝑖  and 𝑚𝑚𝑖𝑖 . In 
particular the size of vector X is: 
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Considering the unique mathematical features of problem 
(12) a hybrid optimization tool composed of the new version of 
the GA BIANCA [13], interfaced with the MATLAB fmincon 
algorithm [15], has been developed, see Fig. 4. As shown in 
Fig. 4, the optimization procedure for problem (12) is split in 
two phases.  

During the first phase, solely the GA BIANCA is utilized to 
perform the solution search and the full set of design variables 
is taken into account. BIANCA is a special GA able to deal 
with optimization problems characterized by a variable number 
of design variables, i.e., optimization problems of modular 
systems. This goal can be achieved thanks to the original 
features of such a GA. In BIANCA the information is 
organized in a genotype composed of chromosomes which are 
in turn made of genes (each gene codes a specific design 
variable). When the object of the optimization problem is a 
modular system (i.e., a system composed of a variable number 
of modules characterized by the same vector of variables) each 
constitutive module is represented by a chromosome, while 
each gene codes a design variable related to the module. 

 
Fig. 4. Hybrid optimization algorithm. 

In agreement with the paradigms of natural sciences, 
individuals characterized by a different number of 
chromosomes (i.e., modular structures composed of a different 
number of modules) belong to different species. BIANCA has 

been conceived for crossing also different species, thus making 
possible (and without distinction) the simultaneous 
optimization of species and of individuals. This task can be 
attained thanks to some special genetic operators that have been 
implemented to perform the reproduction phase between 
individuals belonging to different species, see Fig. 5. For more 
details on the original features of such a GA the interested 
reader is addressed to [13].  

 

 
Fig. 5. BIANCA algorithm [13]. 

Due to the strong nonlinearity of problem (12), the aim of 
the genetic calculation is to provide a potential sub-optimal 
point in the design space, which constitutes the initial guess for 
the subsequent phase, i.e., the local optimization performed via 
the fmincon gradient-based algorithm. During this second 
phase, only the components of the knot vector along each 
dimension are considered as design variables, see Fig.  4. 

4. Numerical results 

4.1. Results with iterative method 

In this first case, the hypersurface fitting problem (12) has 
been solved by using the iterative procedure proposed in [14]. 
The algorithm presented in [14] tries to solve problem (12) by 
using, during the first iterations, few CPs along each 
dimension. Then, if the stop criterion is not met (i.e. the cost 
function is not lower than or equal to a certain threshold value 
defined by the user) the algorithm repeats the fitting process by 
adding CPs in the direction where the ratio ρi between the 
number of CPs ni and the number of TPs ri is the lowest. In this 
background, knot vectors components are computed in a 
manner that ensures every knot of the  iU  contains at least one 
𝑢𝑢𝑖𝑖
(𝑘𝑘) , dimensionless parameters are computed according to 

chord length method [14] and the degrees are set equal to two, 
see [6,7] for more details. Table 1 lists the number of both TPs 
𝑟𝑟𝑖𝑖 and CPs ni and the internal knot values {𝑈𝑈𝑗𝑗

(𝑖𝑖)} obtained via 
the iterative method. As it can be seen from this table, the 
average error is 8.881917e-05. The overall number of TPs 
utilized in this example is nQ = 4498641 while the overall 
number of CPs at the end of the procedure is nCP = 4096.  

Table 1. Results of iterative procedure (precision 1.e-04). 

Variable x y Th h 

ri 101 101 21 21 
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ni 16 16 4 4 

U1 = U2 {0.000000; 0.000000; 0.000000; 0.057333; 0.124667; 0.192000; 
0.259333; 0.326667; 0.394000; 0.461333; 0.528667; 0.596000; 
0.663333; 0.730667; 0.798000; 0.865333; 0.932667; 1.000000; 
1.000000; 1.000000} 

U3 = U4 {0.000000; 0.000000; 0.000000; 0.300000; 0.650000; 1.000000; 
1.000000; 1.000000} 

Average error: 8.881917e-05 

Max error: 7.080100e-03 

4.2. Results with the hybrid optimization tool and discussion 

Here the results of the hybrid optimization strategy are 
presented. At the end of the optimisation process several 
“equivalent” optimum solutions have been found. This means 
that the problem of finding a suitable B-Spline hypersurface 
fitting the (convex) set of TPs becomes a non-convex problem 
when integrating the degree and the number of knots (along 
each direction) among the design variables. Indeed, at the end 
of the optimisation process, within the final population one can 
find solutions minimising the number of B-Spline hypersurface 
parameters and characterised by an excellent accuracy level.  

However, in order to highlight the (significant) influence of 
the value of the knot vectors components on the value of the 
objective function, it has been chosen to present a result 
characterised by the same value of both the degrees and the 
number of knot vectors components as those provided by the 
iterative procedure explained in the previous section. Table 2 
lists the optimum value of the knot vector components (along 
each dimension) resulting from the optimization process. In 
this case, the values of the knot vectors components are quite 
different. Accordingly, the value of the objective function (i.e., 
the average error) is about an order of magnitude lower than 
that resulting from the iterative procedure. To attain the same 
level of accuracy, when using the iterative procedure, the 
number of CPs along each dimension must be increased as 
follows: 𝑛𝑛1 = 𝑛𝑛2 = 36 and 𝑛𝑛3 = 𝑛𝑛4 = 8, leading in this way 
to an overall number of 82944 CPs (i.e. 20 times those provided 
by the optimization strategy).  

Table 2. Results of fmincon function optimization. 

Vari
able 

x y th h 

ni 16 16 4 4 

U1 {0.000000; 0.000000; 0.000000; 0,032466; 0,067869; 0,143467; 
0,2892994; 0,6519176; 0,815020; 0,908234; 0,969446; 0,979813; 
0,983679; 0,995262; 0,997999; 0,999455; 0,999455; 1.000000; 
1.000000; 1.000000} 

U2 {0.000000; 0.000000; 0.000000; 0,057281; 0,124735; 0,191993; 
0,259237; 0,326633; 0,394234; 0,461419; 0,528678; 0,595977; 
0,663156; 0,730557; 0,797903; 0,865612; 0,932640; 1.000000; 
1.000000; 1.000000} 

U3 {0.000000; 0.000000; 0.000000; 0,137774; 0,442168; 1.000000; 
1.000000; 1.000000} 

U4 {0.000000; 0.000000; 0.000000; 0,016338; 0,249257; 1.000000; 
1.000000; 1.000000} 

Average error: 2.203175e-06 

Max error: 1.654188e-04 

5. Conclusions 

A new metamodeling technique based on NURBS 
hypersurface formalism together with a hybrid optimization 
strategy has been presented in this paper. The originality of this 
approach is characterized by the fact that nor simplifying 
hypotheses neither empirical rules are utilized a priori. The 
proposed approach aims at minimizing the number of 
parameters defining the NURBS surface by ensuring, at the 
same time, a good level of accuracy (at least equal to those 
provided by classical iterative procedures). To achieve this 
result, the solution search for the hypersurface fitting problem 
is realized by means of a hybrid optimization tool of which the 
kernel is a special genetic algorithm able to deal with problems 
defined over a domain of variable dimension.  

The effectiveness of this process has been proven through a 
meaningful benchmark and the obtained results are compared 
to those resulting from an iterative method taken from 
literature. 

Further studies have to explore the influence of NURBS 
hypersurfaces parameters and the interest of using them instead 
of B-Spline ones. Moreover, the robustness and the 
effectiveness of the proposed approach must be validated 
through a real-world engineering problem, since first results are 
really promising.  
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