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Abstract In this study, a new assessment of thin cloud detection with the application of bidirectional
reflectance distribution function (BRDF) model-based background surface reflectance was undertaken by
interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land
surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due
to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in
the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds
in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially
underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting
solar angle-dependent geostationary sensor geometry. For quantitative validation, Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the
proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of
detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS)
(POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new
GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to
June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud
mask product (MYD35).

1. Introduction

Clouds are one of the first difficulties encountered when studying land surfaces or atmospheric characteris-
tics using optical satellites. In terrestrial applications, clouds should be carefully removed to secure the inher-
ent spectral characteristics of a surface. In atmospheric fields, such as cloud physics and precipitation, the
reflected surface spectral characteristics are considered to be errors because they affect estimates of the
amount of inherent cloud radiation. In particular, it is difficult to distinguish thin clouds with surface and
cloud radiance, without analyzing their respective characteristics. When the radiant information of the sur-
face and the cloud is distinguished as thick cloud, there are few difficulties. However, in the case of thin
clouds, in which the surface and cloud radiation are mixed, it is difficult to detect thin clouds in both land
and atmospheric fields.

Clouds generally have higher reflectivity and lower temperature than other natural bodies [Ackerman et al.,
1998; Engel-Cox et al., 2004]. Due to the discrepancies in emissivity and temperature, thermal infrared obser-
vations indicate significant spectral contrasts between clouds and the underlying surfaces [Liu and Liu, 2013].
Some previous studies have proposed taking advantage of shortwave infrared (SWIR) bands to detect cirrus
clouds by comparison with near-infrared (NIR) reflectance [Gao and Kaufman, 1995; Wang and Shi, 2006].
Therefore, cloud masking methods with an optical satellite are generally categorized as using either visible
or IR channels [e.g., Di Vittorio and Emery, 2002; Lyapustin et al., 2008]. Rossow and Garder [1993] used these
two major components of visible and IR radiance to develop cloud detection schemes using International
Satellite Cloud Climatology Project satellite observations. The cloud detection method of the advanced

KIM ET AL. THIN CLOUD DETECTION BASED ON BRDF MODEL 8153

PUBLICATIONS
Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1002/2017JD026707

Key Points:
• Thin cloud detection algorithm over
land area was suggested with
geostationary ocean color satellite
imagery

• Background reflectance of the surface
underneath the cloud is simulated
with bidirectional reflectance
distribution function model

• Agreement between CALIPSO and
new cloud detection algorithm was
over 94% when detecting thin cloud
(altostratus and cirrus) during study
period

Correspondence to:
J.-M. Yeom,
yeomjm@kari.re.kr

Citation:
Kim, H.-W., J.-M. Yeom, D. Shin, S. Choi,
K.-S. Han, and J.-L. Roujean (2017), An
assessment of thin cloud detection by
applying bidirectional reflectance
distribution function model-based
background surface reflectance using
Geostationary Ocean Color Imager
(GOCI): A case study for South Korea,
J. Geophys. Res. Atmos., 122, 8153–8172,
doi:10.1002/2017JD026707.

Received 27 FEB 2017
Accepted 5 JUL 2017
Accepted article online 8 JUL 2017
Published online 10 AUG 2017

©2017. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and distri-
bution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications
or adaptations are made.

http://orcid.org/0000-0001-5898-1137
http://orcid.org/0000-0003-2321-731X
http://orcid.org/0000-0003-3469-6563
http://orcid.org/0000-0002-5031-0256
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8996
http://dx.doi.org/10.1002/2017JD026707
http://dx.doi.org/10.1002/2017JD026707
mailto:yeomjm@kari.re.kr


very high resolution radiometer is composed of two visible and three IR bands [Saunders and Kriebel, 1988;
Gesell, 1989]. The cloud masks for the Moderate Resolution Imaging Spectroradiometer (MODIS) are gener-
ated with 22 of 36 spectral bands of MODIS [Ackerman et al., 1998]. As previous studies have mentioned, sim-
ple visible and IR threshold methods offer considerable skill in cloud detection [Ackerman et al., 1998].
Nevertheless, when using conventional methods, it is still difficult to detect thin cloud with an optical sensor.

In this study, we conducted an assessment of thin cloud detection by interpreting surface spectral
characteristics using the Geostationary Ocean Color Imager (GOCI). We used the GOCI satellite, which is
mainly used for ocean observation, in the process of cloud removal for land applications, and obtained a
result that was more useful for thin cloud detection than the conventional method. Previous studies have
confirmed that GOCI or ocean color satellites have the potential to be utilized for land surface observations
[Nordkvist et al., 2009; von Hoyningen-Huene et al., 2011; Yeom and Kim, 2013]. However, there is no reliable
cloud mask satellite product that can be used for thin cloud, with limited GOCI or ocean color channel
specification. One of the main obstacles in cloud masking with an ocean color sensor is the absence of
IR channels.

GOCI, which is the one of three major payloads of the Communication, Ocean, and Meteorological Satellite
(COMS), was launched by the Ariane 5 launcher at the Guiana Space Center in Kourou, French Guiana, on
27 June 2010. The main purpose of the GOCI sensor is to observe oceanic phenomena surrounding the
Korean Peninsula. There are two points that should be considered for cloud removal over land surfaces using
ocean color satellites. First, unlike ocean color observation satellites, such as the Coastal Zone Color Scanner,
Sea-viewing Wide Field-of-view Sensor (SeaWiFS), MODIS, and Medium Resolution Imaging Spectrometer,
the geostationary GOCI satellite has different observational characteristics from polar orbiting satellites.
Polar orbiting satellites, using a solar-synchronous orbit, have a constant Sun angle during certain periods,
especially in midlatitude regions. This means that the degree of change of surface reflectance due to the
bidirectional reflectance distribution function (BRDF) effect caused by the solar angle is minimized; thus,
the variation of surface reflectance by relative Sun position would be lower than that for a geostationary
satellite. The effect of the Sun remains to some degree, based on the satellite viewing angle that exists within
the field of view. While GOCI provides images with high temporal resolution, it has the disadvantage of
having a high sensitivity to the solar angle, i.e., solar angle-dependent reflectance. Also, similar to the
SeaWiFS ocean color satellite, the GOCI sensor is not equipped with IR channels. These problems will even-
tually affect cloud removal, which is most important for land surface assessments with optical satellites.
For cloud removal, it is difficult to take into account both the absence of the IR channels of the existing ocean
color satellites and also the sensitivity of the surface reflectivity to the Sun’s angle, which appears in complex
surface characteristics. As a result, cloud masking with a geostationary ocean color imager is not easy with
conventional cloud masking methods; therefore, a new approach is needed.

In this study, an assessment of a new cloud masking method over the Korean Peninsula, with an emphasis on
the land surface, was undertaken using GOCI reflectance data. The new method had the advantage of
obtaining land cover data and also determining the cloud distribution. Furthermore, by comparing the rea-
listic surface reflectance from the satellite with the simulated background surface reflectance based on the
BRDF model, we could consider the probability of cloud detection, including thin clouds. In section 2, the
characteristics of GOCI observations and BRDF modeling are introduced. In addition, the advanced cloud
detection algorithm and cloud shadow detection are shown in detail. In section 3, results obtained by
applying the masking method are presented for several cases. Section 4 considers how the cloud masking
algorithm should be further developed. Finally, we summarize the results and present the conclusions of this
study in section 5.

2. Materials and Methods
2.1. Data Sets

GOCI, which is the ocean color imager of COMS, is located at an altitude of 36,000 km and has a geostationary
orbit. With a spatial resolution of 500 × 500 m, GOCI can cover a 2500 × 2500 km region centered on the
Korean Peninsula and monitors this region 8 times per day from 00:15 UTC to 07:45 UTC. Figure 1a shows
the red-green-blue (RGB) regular image of GOCI acquired on 3 May 2014. Because GOCI has a high temporal
resolution at the same position, it has the ability to investigate variations in ocean color, harmful algal blooms,
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marine ecosystem health, and the movements of suspended sediment and currents [Faure et al., 2008; Ryu
et al., 2012]. The spectral channels of GOCI comprise eight different channels in the visible and NIR spectral
range. The characteristics of each band are given in Table 1.

The study area was selected from full images by covering all of the Korean Peninsula (34.01°N to 37.05°N and
125.36°E to 129.78°E), except for the extreme northern parts (Figure 1b). Due to the computational burden of
simulating the semiempirical BRDF model with the high temporal resolution of GOCI, the study area should
be a limited region; thus, South Korea was considered appropriate. To estimate a single simulated back-
ground reflectance using the BRDF model, it is necessary to calculate 16 day composite satellite images,
i.e., a maximum of 128 GOCI images, given that a composite period was applied to BRDF modeling to secure
sufficient samples of cloud-free surface reflectances even in study areas with a rainy monsoon season. More
detailed descriptions of BRDF modeling are provided in section 2.2. The focus of this study was the detection
of clouds over land surfaces only. Therefore, land-sea masking was applied in all selected cases to remove the
ocean within the study area.

Figure 1. Geostationary Ocean Color Imager (GOCI) red-green-blue (RGB) images acquired on 3 May 2014. (a) RGB regular image and (b) cropped image of the
study area.

Table 1. Detailed Characteristics of the Communication, Ocean, and Meteorological Satellite (COMS) Geostationary
Ocean Color Imager (GOCI) Sensor

Satellite (Orbit Type) Sensor Band Wavelength (nm) Type

COMS (Geo-synchronous) GOCI B1 402–422 Visible
B2 433–453
B3 480–500
B4 545–565
B5 650–670
B6 675–685
B7 735–755 NIR
B8 845–885
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In this study, data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) were
used to validate the GOCI cloud mask. CALIPSO is in a 705 km Sun-synchronous polar orbit; the satellite
passes over the Korean Peninsula twice in a 24 h period, once in the day and once at night. In this study, day-
time CALIPSO data were used for validation by matching with the nearest GOCI observation time, usually
04:15 UTC. There are three distinctive sensors on the CALIPSO space-based platform: Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP), a Wide Field Camera, and an Imaging Infrared Radiometer. CALIOP,
which is a lidar providing high-resolution vertical profiles of clouds, was used to detect and classify the cloud
properties based on nadir viewing [Vaughan et al., 2005, 2009]. Especially, CALIOP can detect superthin
clouds within small parts of the atmosphere, whereas passive satellite instruments cannot [Sun et al.,
2015]. To reflect the observation differences between GOCI and CALIPSO, a parallax correction, which can
reduce the positional errors between two instruments, was applied to the CALIPSO data; the correction is dis-
cussed in more detail in section 2.5. The MODIS cloud product (MYD35) was used as a comparative data set to
check the accuracy of our suggested thin cloud masking algorithm [Ackerman et al., 2015]. MODIS is one of
the most widely used satellite data sets in the world. By comparing our results with the MODIS cloud mask
via time- and space-coincident lidar observations, we may verify the performance of the GOCI cloud mask
with that of another passive instrument. We selected Aqua MODIS because it passed the study area from
04:30 UTC to 05:00 UTC, which was close to the CALIPSO passing time. The detailed specifications of all satel-
lites utilized in the study are given in Table 2.

2.2. Semiempirical BRDF Modeling for Simulating Background Surface Reflectance

In this study, we used the semiempirical BRDF model [Roujean et al., 1992] to simulate background surface
reflectance in a cloudy area. In previous studies, with optical or IR sensors, the observed top of cloud physical
properties, such as cloud reflectance and brightness temperature of the cloud, have been used to discrimi-
nate cloud area with satellite imagery [Miller et al., 2000]. Alternatively, some studies have used the minimum
reflectivity technique to estimate background surface reflectance over land and turbid water [Herman and
Celarier, 1997; Koelemeijer et al., 2003; Choi et al., 2016]. The technique assumes that if the variation of surface
reflectance is insignificant within a 30 day period over a homogenous area, the lowest top-of-atmosphere
(TOA) reflectance can be considered as a clear day with the lowest atmospheric effect, as the atmospheric
effect by Rayleigh scattering and aerosol mostly increases the atmospheric reflectivity in the short-
wavelength region, e.g., the blue band (412 nm) of GOCI. Therefore, at least one clear day of surface reflec-
tance is produced by selecting a minimum reflectance value during a 30 day period. In the case of a polar
orbiting satellite, it would be effective to use the minimum reflectivity technique to reflect background
surface reflectance under a cloudy area, because the variation of surface reflectance induced by the Sun
position would reach a minimum within a 30 day period due to the satellite Sun-synchronous observation
mode. However, if the minimum reflectivity technique is used to determine background surface reflectance
using a geostationary satellite, it would be difficult to account for the diurnal variation of reflectance by solar
variation and would result in a reduced accuracy of cloud masking.

Therefore, in this study, we proposed a new cloud masking method by determining background surface
reflectance under a cloudy area based on the semiempirical BRDF model [Roujean et al., 1992]. Before apply-
ing the semiempirical BRDF model, a look-up table (LUT)-based atmospheric correction was performed to
estimate the surface reflectance of GOCI using the 6S radiative transfer model [Vermote et al., 1997; Wang,
2003; Nunes et al., 2008]. When simulating LUT for atmospheric correction, MODIS atmospheric products

Table 2. Detailed Characteristics of the COMS, Aqua, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIPSO) Satellites

COMS Aqua CALIPSO

Orbit type Geo-synchronous Sun-synchronous Sun-synchronous
Sensor GOCI MODIS CALIOP
Altitude 35,786 km 705 km 705 km
Local time in ascending node (LTAN) - Around 1:30 P.M. Around 1:30 P.M.
Horizontal resolution 500 m 1 km 333 m at �0.5–8.2 km altitude
Variable Cloud mask Cloud mask from MYD35 Vertical feature mask (VFM)
Comparable imaging time 04:15 UTC 04:25–04:55 UTC 04:00–04:35 UTC
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(MOD04, MOD05, and MOD07) from NASA’s Earth Observing System Data and Information System were used
as input parameters to reflect atmospheric conditions such as aerosol optical depth, ozone, and water vapor.
Also, if MODIS products were unavailable mainly due to cloud contamination, we substituted COMSMI atmo-
spheric products. We adopted the semiempirical BRDF model based on Ross-thick/Li-sparse reciprocal
(RTLSR) kernels to estimate the kernel coefficients and background surface reflectance [Roujean et al.,
1992; Wanner et al., 1995; Schaaf et al., 2002]. The original purpose of BRDF modeling with multitemporal
satellite imagery was to simulate specific geometry reflectance, especially in the nadir direction for
angular-dependent products. Using the BRDF model, the surface reflectance of specific angle geometry
can be simulated with multitemporal clear-sky surface reflectance. In this study, the BRDF model was used
to simulate the hourly BRDF-adjusted reflectance from 00:15 UTC to 07:45 UTC, with this time period having
the same duration as the GOCI operational mode [Lucht et al., 2000; Shuai et al., 2008]. The semiempirical
BRDF model suggested by Roujean et al. [1992] was expanded into a linear sum of kernels (isotropic, geo-
metric, and volumetric) as follows:

ρmeasured θs; θv ;∅ð Þ ¼ f iso þ f geokgeo θs; θv ;∅ð Þ þ f volkvol θs; θv ;∅ð Þ (1)

where θs and θv are the solar zenith and viewing zenith angles, respectively. The relative azimuth angle
between solar and sensor azimuth geometry is denoted as ∅, and ρmeasured is the surface reflectance in a
given spectral channel of GOCI. fgeo is the coefficient value of the Li-sparse-reciprocal geometric kernel kgeo,
and fvol is the coefficient value of the Ross-thick volumetric kernel kgeo. fiso is the Lambertian reflectance at
nadir view (θv= 0). The BRDF model kernel coefficients were estimated independently for each gridded pixel
location by inversion of equation (1), using available cloud-cleared observations for a 16 day composite
period to estimate daily rolling averaged products [Schaaf et al., 2002; Lucht et al., 2000]. Figure 2 shows
the concept of the composite period for BRDF modeling for simulating 8-hourly BRDF model-based back-
ground surface reflectance values, with modeled kernel coefficients. In this study, BRDF modeling from
GOCI was estimated by periodically using a daily rolling strategy to reflect the seasonal changes of surfaces.
When simulating BRDF model-based background surface reflectance (ρmodel) with 16 day GOCI surface
reflectance, at least seven observations of cloud-free surface reflectance are required for reliable simulation
results [Schaaf et al., 2002; Lucht et al., 2000]. For BRDF model-based background surface reflectance (ρmodel),
the RTLSR BRDF model was used based on GOCI observation geometry, with the same θs , θv, and ∅, and
using simulated BRDF model kernel coefficients.

2.3. Cloud Masking Algorithm

A cloud mask is a primary science algorithm that precedes a detailed analysis of cloud, aerosol, and land
surface/ocean parameters from global observing spaceborne sensors [Lyapustin et al., 2008]. However,
because semitransparent clouds include two signal types, both the cloud and surface underneath, the detec-
tion of thin clouds is quite complicated [Gao and Kaufman, 1995; Gao et al., 1998, 2002].

Figure 2. Concept of the composite period for bidirectional reflectance distribution function (BRDF) modeling for
simulating 8-hourly BRDF-adjusted reflectance with modeled kernel coefficients.
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Figure 3 shows the initial concept of the suggested cloud masking algorithm by showing examples of the
diurnal variation of TOA reflectance (solid line), surface reflectance (dashed line), and BRDF model-based
background surface reflectance (dotted line) from band 1 (402–422 nm) of GOCI for the clear case
(Figure 3a) and the cloud case (Figure 3b). The x axis of the plots is UTC time; reflectance is plotted on the
y axis. In Figure 3a for clear-sky conditions, the diurnal variations of each reflectance are well represented,
indicating that it is difficult to estimate the diurnal variation of geostationary satellite reflectance using the
minimum reflectivity determined for 30 days.

In Figure 3b, for the cloud case, TOA reflectance after 02 UTC increases until 04 UTC, with relatively high
reflectance until the end of the day. We noticed that cloud started to approach the target area at 02 UTC,
and cloud cover peaked at 04 UTC. Generally, in the case of a simple threshold method, it is easy to classify
thick cloud using only the threshold of TOA reflectance without having to infer under cloud reflectance,
because not only does thick cloud have a relatively higher reflectance than any other natural target but it also
blocks radiance reflected by the surface. This means that a satellite sensor would detect only the spectral radi-
ance reflected from a cloud, and not mixed values. However, the approaching cloud from 02 UTC to 03 UTC in
Figure 3b would be classified as thin cloud due to its relatively smaller cloud intensity. A mixed reflectance,
including that from both clouds and the surface underneath, would be expected due to transparent cloud.
Therefore, unlike with the thick cloud detection algorithm, the accuracy of thin cloud detection can be deter-
mined by how accurately the surface reflectance can be estimated from the total TOA reflectance, within a
mixture of the surface and cloud reflectance. In this study, we used a semiempirical BRDF model to simulate
the under cloud surface reflectance for thin cloud detection as shown by the dotted line in Figure 3b.

Figure 4 shows a flowchart of the cloudmasking procedure with GOCI imagery. There are three steps for thick
cloud, thin cloud, and shadow detection, respectively. The first step wasmainly based on conventional simple
reflectance and the ratio thresholds of TOA reflectance. As shown on the left in Figure 4, a total of four chan-
nels were used to perform the first step of cloud masking. The existence of cloud was checked using the
reflectance thresholds for each channel; cloudiness was detected according to the ratio between channels
6 and 8. If the pixel was not determined to be a “thick cloud” pixel in this step, the procedure advanced to
step 2 processing.

Step 2 is the new method proposed in this study. This method uses the difference in reflectance between
TOA and under cloud reflectance to detect the remaining cloud pixels that were not classified as thick cloud,
using the reflectance threshold method used in step 1. The method has the ability to determine “thin cloud”
pixels. First, we selected clear-sky areas which were referred to as “certainly clear” to determine the magni-
tude of the atmospheric effect between the surface and TOA. These certainly clear pixels are a necessary
baseline to separate the surface underneath cloud from mixed thin cloud reflectance. The certainly clear
pixels were determined from normalized difference vegetation index (NDVI) values among nonthick cloud
areas, including areas of potential thin cloud. The NDVI values were obtained using visible and NIR radiation
from band 5 (650–670 nm) and band 8 (845–885 nm) of GOCI, respectively. Land surface area with an NDVI

Figure 3. Examples of diurnal variation of top-of-atmosphere (TOA) reflectance, surface reflectance (SFC), and BRDF-based
reflectance for (a) the clear case and (b) the cloud case.
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value of more than 0.6, i.e., high NDVI in Lyapustin et al. [2008], could be used as a clear-sky area. The NDVI
threshold was empirically determined to establish the definite noncloud pixels. If we used a lower
threshold, nonland pixels (e.g., cirrus or cloud shadow pixels) had the potential be included in the certainly
clear category [Simpson and Stitt, 1998].

The RMS was calculated for all certainly clear pixels to determine the contribution of the atmospheric effect
without cloud contamination. The RMS equation is as follows:

DIFF ¼ TOA� BRDFð Þ; (2)

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

DIFFi2
s

; (3)

where DIFF is the difference between observed band 1 TOA reflectance and BRDF model-based surface
reflectance and n is the total number of certainly clear pixels. The RMS value was used as the criteria to
determine thin cloud or areas that were probably clear because we considered the RMS value to represent
the contribution of atmospheric effects without contamination from clouds at the corresponding time.

For cases where the NDVI was less than 0.6 and nonthick cloud was present, the DIFF was also calculated
for all undefined pixels to detect thin cloud. If the DIFF value was positive, the procedure to detect thin
cloud continued; however, if the DIFF value was negative, then step 3 was performed. When the algo-
rithm proceeded through step 2, pixels with a negative DIFF were considered to be “probably clear.” A
detailed description of the shadow detection process (step 3) is given in section 2.4. The BRDF model
can simulate surface reflectance within the limited Sun and satellite angular range with reasonable accu-
racy by securing at least seven clear-sky pixels [Han et al., 2004], but it still has some level of uncertainty.
Therefore, we calculated DIFF

0
to reflect the amount of BRDF modeling error (e), which can be estimated

by subtracting atmospherically corrected surface reflectance from BRDF model-based background surface
reflectance. DIFF

0
represents the total atmospheric effect, including the surface underneath clouds, cloud

contribution, and model uncertainty. Therefore, in this study, when compared with total TOA reflectance,
a value exceeding the sum of the certainly clear atmospheric effect and BRDF model uncertainty was
considered to be a cloud effect. If a difference value was larger than the RMS from certainly clear pixels,
the pixel was classified as thin cloud. After processing these methods, residual pixels, which were not
included in any categories (e.g., certainly clear, thick cloud, and thin cloud), were defined as probably
clear pixels by default.

Figure 4. Schematic diagram of the cloud masking algorithm using GOCI data.

Journal of Geophysical Research: Atmospheres 10.1002/2017JD026707

KIM ET AL. THIN CLOUD DETECTION BASED ON BRDF MODEL 8159



2.4. Cloud Shadow Masking Algorithm

Step 3 is the cloud shadow masking algorithm and is shown in Figure 4. The main procedure used in this
algorithm is exactly the same as that used in thin cloud detection, but band 8 is used instead of band 1
because the diffusive radiation in the shadows is relatively smaller at longer wavelengths (i.e., NIR and
SWIR bands), making the pixels in the shadowed area darker than their surroundings [Luo et al., 2008;
Zhu and Woodcock, 2012]. Thus, band 8 (845–885 nm) has the longest wavelength among all of the GOCI
channels and was selected for detecting the cloud shadow. Because cloud shadow pixels are usually darker
than noncloud shadow pixels, the negative DIFF value for band 8 was used, whereas the positive DIFF value
for band 1 was used for the thin cloud detection. The BRDF modeling error was also reflected in the cloud
shadow masking process. Based on a visual inspection, we determined a threshold value that was smaller
than the negative 2RMS to detect “shadow.” If the DIFF

0
values were larger than the threshold, it was con-

sidered that the pixels were not affected by shadow effects. It was confirmed that there was no influence
on cloud effects in step 2. Therefore, these pixels were defined as probably clear.

2.5. Parallax Correction for GOCI and MODIS

The validation of cloud masking using GOCI is necessary to verify our cloud masking result. However, with
regard to the satellite, the cloud location above the ground can be observed differently with a different
satellite zenith angle. When each satellite detects the same target in the air (such as cloud), parallax errors
between two satellites arise due to the different satellite locations. The input data sets used to modify the
parallax error are composed of cloud altitude, satellite zenith angle, and satellite azimuth angle. For
example, when the satellite zenith angle is assumed to be 70°, cloud height is 15 km, and the satellite
azimuth angle is 120°, the maximum cloud position error is about 60 km due to the parallax error [Lee et al.,
2011]. Because the CALIOP on board the CALIPSO satellite can detect a target from directly above it, the
actual position of a cloud is the same as the viewing position from the satellite. In contrast, GOCI on board
the COMS satellite detects a target over the Korean Peninsula from above the equator; therefore, a differ-
ence in position between the real location and satellite data is apparent. Thus, to collocate the ground
footprints of clouds for both satellites, a parallax correction has to be performed [Vicente et al., 2002;
Pešice, 2009; Wang et al., 2011]. Figure 5 illustrates the parallax correction between the CALIPSO and
COMS satellites.

In this study, the parallax correction method was applied in reverse to the approach presented by Lee et al.
[2011]. Lee et al. [2011] studied the parallax correction between the Multifunctional Transport Satellite-2
and MODIS on board the Terra satellite. They obtained θ

0
by being aware of the actual cloud position

(Figure 5). In the present study, the parallax correction was undertaken to convert θ to θ
0
for GOCI because

GOCI does not have information regarding the target cloud altitude. With the value of θ, the modified point
of the cloud footprint above ground as viewed from CALIPSO could be acquired. The altitude of cloud Mcld

was determined from Pc, i.e., the point where the ground footprint for the cloud could be obtained by the
CALIOP instrument. Re denotes the radius of the Earth. Applying the cosine rule to △PcOS and a quadratic
formula, d, the distance from point Pc to point S can be written as follows:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rsat þ Re sinθ

0� �
Rsat � Re sinθ

0� �q
� Re cosθ

0
; (4)

Figure 5. Schematic diagram of the parallax correction for the COMS and Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) satellites.
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where Rsat is the distance from the cen-
ter of the Earth to COMS and Msat is set
as 36,000 km. By applying the cosine
rule to △PcPc

0
S, the distance from the

cloud to COMS, Rc can be written as

Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mcld

2 þ d2 � 2dMcld cosθ
0
:

q
(5)

By applying the sine rule to △PcPc
0
S,

△PcOS, and △Pc
0
OS, ∅ can be written as

∅ ¼ arcsin
d
Rc

sinθ
0

� �

� arcsin
dRcld
RcRsat

sinθ
0

� �
; (6)

where Rcld denotes the distance
between the cloud and the center of
the Earth. Applying the sine rule to
△PoOS and △Pc

0
OS, we can finally

obtain θ as follows:

∴θ ¼ arcsin
RsatRcld
ReRc

sin∅
� �

: (7)

Using equations (4)–(7), the parallax correction could be applied and CALIPSO data for the point Po were
acquired. The corrected data for this point were used for the validation in section 3.3. Furthermore, MODIS
data are used for comparisons with the results of GOCI cloud masking; the parallax correction for MODIS
and CALIPSO based onWang et al. [2011] was performed. The concept of this parallax correction is shown in
Figure 6, which is reprinted from Wang et al. [2011]; a detailed description is not provided in this paper.

3. Results
3.1. Cloud Masking

One of four categories, i.e., certainly clear, probably clear, thin cloud, and thick cloud, was selected after pro-
cessing the whole cloud masking algorithm by step 2. In this study, several cases with seasonal variability
were selected to test the cloud masking procedure. Some significant meteorological phenomena were also
included in the cases, such as the Chang-ma (one of the East Asian summer monsoons) and yellow dust from
China in the spring season. The cloud mask maps and RGB images for the study area are shown in Figure 7.
Themeaning of each color is indicated by the color bar; detailed information of selected events is individually
described in Table 3.

The thick cloud category is the output processed by step 1 consisting of the simple threshold method and the
ratio method in the cloud masking algorithm. The thin cloud category is the result of the whole cloud mask-
ing algorithm used in step 2, which contains the method using the difference between TOA reflectance and
BRDF model-based background surface reflectance. As a result, more cloud areas, which were not classified
as cloud pixels by step 1, could be detected by step 2 of the cloud masking algorithm in all cases. Figure 7
indicates that cloud regions with a bright white color were easily detected by step 1 (deep blue). The cloud
areas surrounding thick cloud regions, which were white but appeared blurred, were determined to be thin
cloud by step 2 (light blue). In spring, as shown in Figure 7a, bright and thick clouds were present in the north-
west region of South Korea and could be easily detected by the conventional step 1 method due to the high
cloud reflectance according to the cloud mask map in Figure 7g. However, in the case of the thin cloud
located in the red circle in Figure 7a, the reflectance of the cloud was low and the transmittance was
sufficiently high to show the land surface form as shown in the RGB image. Therefore, it was not detected
by step 1 using the threshold and band ratio method. However, processing by step 2 revealed that it was thin
cloud, with a mixture of surface and cloud reflectance, due to the high transmittance obtained using BRDF
model-based background surface reflectance. The results in summer were similar to those obtained in

Figure 6. Schematic diagram of the parallax correction for Aqua and
CALIPSO satellites (from Wang et al. [2011], reprinted with permission).
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Figure 7. (a–f) RGB images and (g–l) cloud masking results for GOCI in (Figures 7a and 7g) spring (21 April 2014 00 UTC),
(Figures 7b and 7h) summer (12 August 2014 00 UTC), (Figures 7c and 7i) autumn (27 October 2014 01 UTC), (Figures 7d and
7j) winter (18 December 2014 03 UTC), (Figures 7e and 7k) a yellow dust case (22 March 2015 00 UTC), and (Figures 7f and
7l) a Chang-ma case (08 August 2014 00 UTC).
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Figure 7. (continued)
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spring. In the red circular area depicted in the cloud mask map in Figure 7b, thick clouds (dark blue) were
detected, but thin clouds (light blue) located between the thick clouds were difficult to detect and easy to
misrepresent as land pixels in step 1. However, it can be seen that step 2 also detected thin clouds despite
the high transmittance. As can be seen in the red circle in Figure 7c, clouds with high reflectance in
autumn were detected in step 1, but thin clouds were also detected after applying the step 2 process.

When using the cloud detection algorithm in the winter it is difficult to discriminate snow pixels from other
brightly colored pixels, such as cloud pixels [Lyapustin et al., 2008]. In the red circle of Figure 7d, it can be seen
that thin cloud pixels, located in the eastern part of the Korean Peninsula, are not actually thin clouds.
Through a visual inspection with the RGB image, the area can be assumed to be covered with snow particles
or melting snow. This is problematic because the reflectance from the snow-covered surface has a combina-
tion of characteristics similar to those of thin cloud. In a previous study, the reflectance at 3.7 μmwas used to
distinguish snow/ice pixels from cloud pixels during the day [Saunders and Kriebel, 1988; Hall et al., 1995].
Therefore, some uncertainties in cloud masking cannot be avoided in winter because spectral wavelengths
higher than the NIR channel cannot be adapted to the cloud masking algorithm used in this study.

3.2. Cloud Shadow Masking

Cloud shadow is considered to be a critical error factor in land surface applications using optical satellite data
due to its abnormal darker reflectance value compared with natural surface properties. If there were no cloud
shadow pixels in the scene, no shadow pixels were indicated in the cloud shadow masking map used in this
study. However, there was some ambiguity in defining which category to place dark, but nonshadow surface
pixels. Therefore, the criterion of a negative 2RMS was used to discriminate only definite cloud shadow pixels
in the cloud masking algorithm based on step 3.

The process of cloud shadow masking is similar to that of cloud masking, as shown in Figure 4 in section 2.3.
The only difference was that a shadow category was added to the cloud masking algorithm and band 8 was
used for cloud shadow detection, whereas the cloud detection used band 1. Figure 8 shows the results of
cloud shadow masking. To easily comprehend the result, the thin cloud and thick cloud categories were
merged into one “cloud” category (Figures 8d–8f), which was represented in light blue. Through RGB images,
it was recognized that cloud shadow areas were darker than other regions, even the actual surface, and the
shadows were positioned on the opposite side of the Sun relative to the cloud location. In the red circle of the
RGB image shown in Figure 8d, a dark cloud shadow can be seen on the left side of the cloud and its cloud
shadowmask map is well matched. Figures 8b and 8c show more clearly that cloud shadows exist on the left
side of clouds running both north and south. The two previous cases (Figures 8a and 8b) are images observed
on 30 April and 2 May 2014 at 9 A.M. local time, and indicate that the cloud shadow was located on the west
side of the cloud because the Sun was positioned to the east in the morning. The surface reflectance is dark
due to the shadow effect. The final figure is an image observed in autumn on 16 October 2014. The cloud
shadow located in the red circle in Figure 8c was classified using the cloud shadow detection algorithm pre-
sented in this study. In all three cases, the images were taken at 9 A.M.; however, because the final image was
taken in autumn, the average solar azimuth angle was 120°, whereas in the previous spring cases it was 103°.
Therefore, the position of the shadow shifted to the northwest of the cloud because the solar position was
further to the south than in the spring cases. To determine the location of cloud shadows more accurately,
it is necessary to know the elevation of the cloud; however, this is difficult to calculate with a GOCI image.
The position of the cloud shadow can be determined to some extent by visual inspection.

3.3. Validation

We used CALIPSO satellite products as a reference due to their accuracy in detecting, monitoring, and inter-
preting cloud properties with a lidar observation system [Winker et al., 2003; Winker et al., 2007]. To validate
the results of the cloud masking algorithm presented in this study using CALIPSO or MODIS data, a spatially

Table 3. Details of Selected Cases Used to Test the Cloud Masking Procedure

List Feature Date RMS List Feature Date RMS

(a) Spring 21/04/2014 00 UTC 0.11056 (d) Winter 18/12/2014 03 UTC 0.14676
(b) Summer 12/08/2014 00 UTC 0.12426 (e) Chang-ma 08/08/2014 00 UTC 0.12905
(c) Autumn 27/10/2014 01 UTC 0.12425 (f) Yellow dust 22/03/2015 00 UTC 0.11508
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Figure 8. (a–c) RGB images and (d–f) cloud shadow masking results for GOCI in (Figures 8a and 8d) 30 April 2014 00 UTC, (Figures 8b and 8e) 02 May 2014 00 UTC,
and (Figures 8c and 8f) 16 October 2014 00 UTC.
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and temporally collocated matchup data set was used to improve the validation result. Unfortunately, two
satellites with distinct observation characteristics cannot pass through the same orbit simultaneously, and
the validation of the cloud detection is generally problematic [Rossow and Garder, 1993]. A parallax
correction was applied to reduce the errors generated in images between two satellites, and the accuracy
of cloud detections in this study was relatively high. Therefore, based on section 2.5, we performed
parallax corrections for GOCI and MODIS to spatially match up with the CALIPSO projection. A temporal
matchup was also conducted by selecting the nearest observation time of a GOCI image to CALIPSO data.
The time discrepancy was a maximum of 30 min in the worst case, but in this study, it was assumed that
the collocated images from different satellites were observed at the same time. Figure 9 shows examples
of matchup validation data sets using the classified cloud mask map from GOCI and CALIPSO. The left
column of Figure 9 indicates CALIPSO trajectories (red line) on the GOCI cloud mask map, and the right
column shows the vertical profile of the CALIPSO vertical feature mask (VFM). In the VFM figures, the lines
in red (thick cloud) and light red (thin cloud) drawn at 15 km altitude indicate the GOCI cloud masking
results, geometrically corrected through a parallax correction. In Figures 9a and 9b, only the CALIPSO
trajectory region represented by the red line was compared with the GOCI cloud mask map. In Figure 9a,
there are thick clouds over all of South Korea, and thin cloudy areas in the southeast of the Korean
Peninsula. Compared with the VFM in Figure 9c, the thick cloud over the northern part at 36° latitude is well
matched, and the thin cloud below 36° latitude also generally agrees with GOCI (light red) and CALIPSO (blue)
data. In Figures 9b and 9d, the CALIPSO and GOCI cloud type and location clearly coincide. The thick clouds in
the north and the thin clouds in the latitudes between 36° and 37° also coincide. For the thick clouds
extending east to west at 35.5° latitude, the cloud masking results of GOCI and CALIPSO agree.

Using this validation method, we validated the results of GOCI cloud masking from 1 January 2014 to 30 June
2015 over South Korea. The MODIS cloud product (MYD35), which is a more widely used satellite data set
than CALIPSO, produced similar results to the GOCI cloud validation method considering the timing of its

Figure 9. (a and b) CALIPSO satellite trajectory (red line) on a GOCI cloud mask map and (c and d) the vertical profile for
CALIPSO vertical feature mask (VFM) on (Figures 9a and 9c) 19 July 2014 and (Figures 9b and 9d) 27 January 2015.
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passage and regional conditions, and would therefore be another way to objectively show the GOCI cloud
mask result derived from this study. The results of the validation of the cloud masking are given in Table 4.
When performing the validation of GOCI data or MODIS cloud product with CALIPSO cloud information,
we considered the different cloud types, i.e., all clouds (experiments 1 and 2) and thin clouds only
(experiments 3 and 4). The cloud detection algorithm proposed in this study was developed for the
purpose of thin cloud detection. Therefore, by considering different cloud types, it was possible to indicate
how thin cloud detection was improved by their separate representation. The CALIPSO products classify
various cloud types, such as overcast, stratocumulus, cumulus, altocumulus, altostratus, cirrus, and deep
convective. In this study, altostratus and cirrus were considered to be thin cloud and the remainder was
classified as thick cloud.

Experiments 1 and 3 involved GOCI cloud masking for detecting all cloud and thin cloud, respectively.
Experiments 2 and 4 detected all cloud and thin cloud with MODIS, with the results given in Table 4. In all
cloud cases for GOCI (experiment 1) and MODIS (experiment 2), the GOCI and MODIS probability of detection
(POD) values were 0.82 and 0.808, respectively. The cloud detection algorithm developed in this study had a
slightly higher accuracy than MODIS, which is equipped with various channels capable of cloud detection.
Some previous studies have evaluated MODIS cloud detection schemes compared with observations from
satellites such as CALIPSO [e.g., Holz et al., 2008; Hagihara et al., 2010]. It was found that the MODIS 1 km cloud
mask and the CALIOP 1 km averaged layer product agreement was better than 85% for both cloudy and
clear-sky conditions in August 2006 and February 2007 [Holz et al., 2008]. Mahesh et al. [2004] reported that
MODIS on Aqua and Geoscience Laser Altimeter System observations on the Ice, Cloud, and Land Elevation
Satellite agreed in 77% of all cases. The POD for MODIS was not identified due to the differences among study
areas, time periods, and observations. However, a comparison with previous studies indicated that the POD
values obtained for MODIS in this study were reasonable. According to the false alarm rate in GOCI (experi-
ment 1) and MODIS (experiment 2) data, the GOCI cloud masking method produced more overestimations
than MODIS compared with CALIPSO, but the difference was less than 0.02. The missing alarm rate (MAR)
of the GOCI cloud mask was lower than the MODIS value. After applying step 2 to the GOCI cloud masking
algorithm, the POD was improved, indicating that the method was effective for classifying thin cloud despite
GOCI being equipped with solar channels only. In the case of the thin cloud masking results, GOCI (experi-
ment 3) had a higher POD (0.945) than the MODIS (experiment 4) value (0.937), but the small difference indi-
cated that the GOCI cloud mask, with the BRDF model-based background surface reflectance, produced
reasonable results compared with most MODIS cloud products. The lowest MAR (~0.05) value was obtained
for experiment 4, which implied that the cloud masking algorithmwas slightly overestimated, although there
were few missing cloud pixels. Therefore, the proposed cloud masking algorithm was considered to be
suitable for thin cloud detection.

4. Discussion

The cloud masking algorithm of GOCI was developed over a limited study area due to the burden of
simulating the semiempirical BRDF model with high temporal resolution of GOCI. The problem of developing
an algorithm in such a limited area is the uncertainty related to what should be considered as an extension of
the domain. In the whole algorithm shown in Figure 4, the issue that needs to be considered when extending
to the GOCI full-disk image area is the certainly clear selection problem shown in step 2. We determined that

Table 4. Cloud Detection Model Skill for GOCI and Moderate Resolution Imaging Spectroradiometer (MODIS) Data Compared to the CALIPSO Satellite

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Sensor GOCI MODIS GOCI MODIS
Cloud type All cloud All cloud Thin cloud (altostratus and cirrus) Thin cloud (altostratus and cirrus)
POD (S1)a 0.797080 - 0.859001 -
POD (S1 + S2)b 0.819801 0.808269 0.944849 0.936828
FAR 0.099754 0.077984 - -
MAR 0.179035 0.191731 0.055150 0.063172
Sample number 75,281 8,692 29,519 3,631

aOnly step 1 was applied for calculating the POD.
bStep 1 and step 2 were applied for calculating the POD for experiments 1 and 3.

Journal of Geophysical Research: Atmospheres 10.1002/2017JD026707

KIM ET AL. THIN CLOUD DETECTION BASED ON BRDF MODEL 8167



the certainly clear area represents clear-sky conditions when determining the magnitude of the atmospheric
effect between the surface and TOA. These certainly clear pixels become a baseline for separating the
surface underneath cloud from mixed thin cloud reflectance. However, it can be assumed that spatial
variability is negligible for a limited area such as South Korea when a clear-sky area is selected. When
GOCI is extended to a full image (2500 × 2500 km), it is difficult to ignore spatial variation. This study focused
on the possibility of thin cloud detection in spectrally complicated terrestrial regions using the BRDF
model-based background surface. In future work, we plan to study the clear-sky calculation and its applica-
tion to an expanded research area.

When performing atmospheric correction with the 6S radiative transfer model for surface reflectance, the
input parameters of the atmospheric constituents such as aerosol optical depth (AOD), water vapor, and
ozone were mainly taken from the daily MODIS products (e.g., MOD04_L2, MOD05_L2, and MOD07_L2). As
a geostationary satellite, GOCI makes eight measurements each day covering the whole daytime, and there-
fore, hourly input atmospheric parameters were required to reflect the temporal variation of gases. However,
it is difficult to spatially input atmospheric products covering the whole daytime in the study area. Therefore,
we assumed that the daily variation in the atmospheric constituents from the MODIS atmospheric products
was negligible. Among the atmospheric constituents, AOD has more variation and makes a critical contribu-
tion to the atmospheric effects when estimating surface reflectance. Based on ground station particulate mat-
ter 2.5 data, the overall root-mean-square error (RMSE) of the AOD during the daytime was 0.123 according to
Green et al. [2009], indicating that the expected error in the surface reflectance using the MODIS daily AOD
would be less than 3% in the 6S radiative transfer model [Yeom and Kim, 2015]. The remaining atmospheric
constituents, including water vapor and total ozone, made less contribution to the atmospheric effects.

To improve the accuracy of cloud masking with GOCI imagery, we adopted BRDF model-based background
surface reflectance to reflect solar angle-dependent surface reflectance and to determine the contribution of
TOA reflectance to the total surface reflectance contribution, which is also included in the thin cloud reflec-
tance properties. However, the accuracy of the BRDF model, which uses cloud-free surface reflectance during
a 16 day composite, was also reduced by unremoved thin cloud or cloud shadows. Before we performed step
2 of the cloud masking algorithm, the BRDF model-based background surface reflectance was required to
determine the baseline reflectance of the surface underneath the cloud. Therefore, when simulating the
BRDF model using surface reflectance in the study, we only used step 1 to mask cloud, with unremoved
clouds still remaining and affecting the accuracy of the BRDF simulation. Although a sufficient number of
samples were acquired from the 16 day composite and the restricted threshold values for the cloud mask
algorithm would reduce the effects of removed cloud, the simulation accuracy was still affected by residual
cloud. Therefore, we used the estimated cloud masking results after processing all steps in the algorithm to
simulate BRDF model-based background surface reflectance again and to interpret the improvement in
accuracy. The improvement in accuracy could be determined indirectly by applying the proposed cloud
masking results to the land surface with GOCI.

Figure 10. Scatterplot of the RMSE of the optimized BRDFmodeling (x axis) and original BRDF (y axis) modeling for (a) band
1 and (b) band 8.
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Figure 10 shows scatterplots for the root-mean-square errors (RMSEs) between original surface reflectance
and BRDFmodel-based background surface reflectance, and the “optimized RMSEs” between original surface
reflectance and BRDF model-based background surface reflectance using the results of the new cloud mask-
ing procedure proposed in this study. Figures 10a and 10b correspond to bands 1 and 8, respectively. The
RMSE between surface reflectance (ρmeasured) and BRDF model-based background surface reflectance
(ρmodel) was calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX ρmeasured θs; θv ;∅ð Þ � ρmodel θs; θv ;∅ð Þð Þ2

N

s
(8)

where N is the number of clear-sky pixels over a land surface area. The RMSEs and optimized RMSEs were
calculated for every GOCI image during the study period. In Figure 10, the scatter generally follows a linear
trend for both bands. The accuracy of the optimized RMSEs based on BRDF modeling, with the results of
the new cloud masking procedure (also called optimized BRDF), was improved compared with the original
with the optimized RMSEs mostly lower than the original values in both bands (Figures 10a and 10b). The
RMSEs of the optimized BRDF were noticeably lower for band 1. This result had a positive influence on the
cloud masking algorithm because band 1 is the main channel for detecting thin clouds in the new algorithm.
For band 8, although the magnitude of the improvement was not as large, the optimized BRDF modeling still
produced an improved result compared with the original. Figure 11 shows the temporal variation of RMSEs
and optimized RMSEs. The improved performance of BRDF modeling is apparent from blue circles

Figure 11. Seasonal variation of diurnal root-mean-square error (RMSE) for the original BRDF and optimized BRDF model-
ing for (a) band 1 and (b) band 8.
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representing RMSEs and red circles representing optimized RMSEs. Most RMSE values for the optimized BRDF
modeling were less than the values of the original BRDF (Figures 11a and 11b). Through these plots, the
seasonal variations of the RMSEs, and hence the BRDF modeling, were also apparent. In the wet summer
(June-July-August) when there is a high probability of cloud cover, the temporal RMSE values for bothmodels
tended to increase. In contrast, the RMSE displayed a decreasing trend in the spring (March-April-May (MAM))
and autumn (September-October-November (SON)). Even if there were few convectional activities in winter
(December-January-February), RMSE values were slightly higher than in MAM and SON. This is likely to be
because snow cover in winter can be mistaken for cloud pixels. To discriminate cloud/snow cover, compar-
isons between visible and IR imagery are useful [Miller et al., 2005]. However, the detection of cloud against
snow cover was limited by the narrow spectral range of GOCI.

5. Conclusions

In this study, we developed a new cloud detection algorithm optimized for thin cloud detection using BRDF
model-based background surface reflectance as a key parameter to estimate the solar angle-dependent
surface reflectance over the study area. Although the semiempirical BRDF model was initially developed to
reduce the angular-dependent surface reflectance fluctuation induced by relative solar-target-Sun geometry,
it also can be used to simulate the background surface reflectance by representing specific sensor geometry.
Unlike previous cloud mask algorithms, the algorithm we proposed concentrated on possible surface effects
under clouds. Thus, the background surface reflectance derived from the BRDF modeling was computed to
interpret these surface effects for complex land surfaces. We focused on the cloud masking results because
cloud detection was implemented without IR channels and a comparable performance to that of MODIS was
achieved, indicating that the new method would be an effective alternative cloud masking method for opti-
cal satellites. To validate our result, CALIPSO products were used as a reference. The cloud detection results
over the Korean Peninsula were slightly better than those of MODIS, which was used for comparison. The
POD value of 0.945 indicated that this algorithm performed well in the detection of thin cloud compared with
the MODIS POD of 0.937. Compared with previous studies of MODIS cloud masking results [e.g.,Mahesh et al.,
2004; Holz et al., 2008; Hagihara et al., 2010], the new method was considered to be suitable for masking thin
cloud. By applying the new cloud mask data to a BRDF simulation, it was observed that the BRDF modeling
performance improved. Despite the advantages mentioned above, the cloud masking algorithm was unable
to detect cloud against a snow cover background due to lack of appropriate spectral channels. This problem
needs to be resolved in future studies. Although the study area was limited to the Korean Peninsula in this
study, it will be expanded to the whole GOCI imaging area, including Japan and the eastern part of China,
in the future.

We believe that the new thin cloud masking algorithm has the potential to be used by future satellites. GOCI-
II, which is the next-generation payload of GOCI, is under development by the Korea Aerospace Research
Institute and is scheduled to be launched in 2019. The cloud masking algorithm we have developed would
also be suitable for GOCI-II, because it has a similar spectral range as GOCI. Several ocean color satellites
are also planned to be launched in the near future by NASA, including Geostationary Satellite of Coastal
and Air Pollution Events and Plankton, Aerosol, Cloud, and ocean Ecosystem. In addition, the cloud masking
algorithm can be adapted to not only ocean color satellites but also other Earth observations that have a
short spectral range. The European Space Agency has developed Fluorescence Explorer, which acquires
vegetationmaps from across the world in the visible spectral range (500–880 nm) in a Sun-synchronous orbit,
and will be launched in 2022. Ocean color satellites and visible spectral sensors loaded on satellites are con-
stantly being planned for launch in the future. Therefore, we expect that our new cloud masking algorithm
using the background surface reflectance can be implemented to detect clouds effectively, including thin
cloud, by a range of satellites using visible spectral channels.
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