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A B S T R A C T

The Earth surface thermal infrared (TIR) radiation shows conspicuously an anisotropic behavior just like the bi-
directional reflectance of visible and near infrared spectral domains. The importance of thermal radiation di-
rectionality (TRD) is being more and more widely recognized in the applications because of the magnitude of the
effects generated. The effects of TRD were originally evidenced through experiments in 1962, showing that two
sensors simultaneously measuring temperature of the same scene may get significantly different values when the
viewing geometry is different. Such effect limits inter-comparison of measurement datasets and land surface
temperature (LST) products acquired at different view angles, while raising the question of measurement re-
liability when used to characterize land surface processes. These early experiments fostered the development of
modeling approaches to quantify TRD with the aim of developing a correction for Earth surface TIR radiation.
Initiatives for pushing the analysis of TIR data through modeling have been lasted since 1970s. They were
initially aimed at mimicking the observed TIR radiance with consideration of canopy structure, component
emissivities and temperatures, and Earth surface energy exchange processes. Presently, observing the Earth
surface TRD effect is still a challenging task because the TIR status changes rapidly. Firstly, a brief theoretical
background and the basic radiative transfer equation are presented. Then, this paper reviews the historical
development and current status of observing TRD in the laboratory, in-situ, from airborne and space-borne
platforms. Accordingly, the TRD model development, including radiative transfer models, geometric models,
hybrid models, 3D models, and parametric models are reviewed for surfaces of water, ice and sea, snow, barren
lands, vegetation and urban landscapes, respectively. Next, we introduce three potential applications, including
normalizing the LST products, estimating the hemispheric upward longwave radiation using multi-angular TIR
observations and separating surface component temperatures. Finally, we give hints and directions for future
research work. The last section summarizes the study and stresses three main conclusions.
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1. Introduction

Land surface temperature (LST) and sea surface temperature (SST)
are two of the 54 Essential Climate Variables (ECVs) of the Global
Climate Observation System (World Meteorological Organization,
2016). SST exerts a major influence on the exchanges of energy, mo-
mentum and gases between the sea and atmosphere, and largely gov-
erns the atmospheric response to the sea (Barton, 1992). LST value is
one of the most important parameters in the physical processes of
surface energy and water balance at both local and global scales
(Anderson et al., 2008). LST value is the direct driving force of turbu-
lent heat fluxes at the land surface and atmosphere interface. It is
widely utilized in the fields of radiation budget (Cheng et al., 2013) and
hydrological cycle (Jia et al., 2003).

Remote sensing observations offer the only possibility for measuring
LST at high spatial resolution and temporal frequency, thus ensuring a
wide area coverage (Li et al., 2013d). The LST estimation methods can
be classified into two categories. The first, which includes the single-
channel method (Qin et al., 2001), multi-channel generalized split-
window algorithms (Wan and Dozier, 1996) and the multi-angle
method (Sobrino, 1996), assumes that land surface emissivity (LSE) is
known. The second category aims at retrieval of both LSE and LST, as is
the case of simultaneous LST and LSE retrieval methods with known
atmospheric information (Borel, 1998; Cheng et al., 2010a; Gillespie
et al., 1998; Wan and Li, 1997), and simultaneous retrieval of LST, LSE
and atmospheric profile (Ma et al., 2002; Wang et al., 2010). All of
these methods generally assume that the land surface has an isotropic
thermal emission and also is at thermodynamic equilibrium.

Maximal view zenith angle (VZA) of moderate spatial resolution
thermal sensors onboard polar satellites (e.g. Terra/Aqua MODIS,
NOAA AVHRR and FY-3 VIRR) and geostationary satellites (e.g. GOES
ABI, MSG SEVIRI and FY-2 SVISSR) can be over 60°. Many studies re-
ported that large differences of temperature measurement may result
from different viewing angles, either on the ground (Kimes and
Kirchner, 1983), aircraft (Lagouarde et al., 2010) or satellite (Hu et al.,
2016a; Trigo et al., 2008). The thermal radiation directionality (TRD)
effect can be defined as the difference between off-nadir and nadir
(assuming this as a reference viewing geometry) brightness tempera-
tures. Depending on spatial resolution and environmental conditions,
such difference can reach 16 K over vegetation canopies (Kimes and
Kirchner, 1983) and 12 K over urban areas (Lagouarde et al., 2013,
2010), which demands to be considered in most applications. However,
until now, the TRD is ignored in operational LST estimation algorithms
(Sobrino and Romaguera, 2004; Wan and Dozier, 1996; Yu et al., 2009).
The presence of TRD effects seriously limits the inter-comparison of
measurement datasets and LST products acquired at different view
angles over the same scene at minimal observation time differences, but
also the time series analysis from different viewing angle observations
in the context of long-term monitoring, and the mapping over large
areas with changes in viewing angles.

The study of TRD can be traced back to a 1962 pioneered work on
energy balance (Monteith and Szeicz, 1962). Further in time, the con-
cern moved progressively to the area of thermal infrared (TIR) remote
sensing applications, like the assessment of directional variability of
TIR radiance for various vegetation canopies (Kimes et al., 1980). In the
last 40 years, several models have been proposed to simulate the di-
rectional brightness temperature (DBT) distribution or LSE distribution
over different surfaces. Usually, these surfaces were assumed to be
unique thematic surfaces. More recently, the DBT distribution of mixed
pixels has been addressed (Cao et al., 2015; Shi, 2011). The TRD models
were aimed at mimicking the observed thermal radiance with con-
sideration of canopy structure, component emissivities and tempera-
tures, and energy budget processes.

For inland water bodies (3.56% of land surface, according to FROM-
GLC dataset (Gong et al., 2013)), barren lands (16.51% of land surface)
(Garcia-Santos et al., 2012; Sobrino and Cuenca, 1999), and snow and

ice (12.81% of land surface) (Cheng et al., 2010b), most of the models
are trying to simulate the emissivity directionality, as this is the main
source of directional effects on LST over relatively homogeneous sur-
faces. The structure of such surfaces is simpler when compared with
those of vegetation and urban surfaces. The TRD attributed to emis-
sivity is also a main concern for sea surfaces (Masuda et al., 1988; Wu
and Smith, 1997). Although the proportion of urban landscapes is the
smallest (0.66% of land surface), many models were developed to si-
mulate the urban surface DBT (Fontanilles et al., 2008; Lagouarde et al.,
2010) because the thermal environment directly links to the human life
in cities, where an increasing larger share of the world's population now
resides (https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS).

More DBT models have been developed for vegetation canopies
(including croplands, forests, grasslands, and shrub lands), which cover
64.72% of the world land surface (see the review by Sobrino et al.,
2005). These models can be classified into four main categories: 1)
radiative transfer models (RTM), such as S&WVM (Snyder and Wan,
1998), FRA1997 (Francois et al., 1997), FRA2002 (Francois, 2002),
REN2015 (Ren et al., 2015a), CE-P (Cao et al., 2018b) and 4SAIL
(Verhoef et al., 2007). 2) geometric optical models (GOM), such as MGP
(Pinheiro et al., 2004; Rasmussen et al., 2010). 3) hybrid model (HM),
such as SLEC (Du et al., 2007). 4) 3D models, such as DART (Gastellu-
Etchegorry et al., 2017) and TRGM (Liu et al., 2007).

The physical TRD models can be used for estimating land surface
component temperatures (LSCT) of vegetated canopies (Bian et al.,
2016). However, most of the existing physical TRD models are not well
adapted for operational angular normalization of LST products since
they tend to require many input parameters that are generally not
available. On the other hand, TIR parametric models (PMs) are much
more suitable. Indeed, their degree of generality versus simplicity
makes them more appropriate to deal with cases in which fewer para-
meters are available over a short time period (e.g. Cao et al., 2019;
Duffour et al., 2016b; Liu et al., 2018). TIR PMs have other applica-
tions, such as improving the accuracy of surface upward longwave ra-
diation (SULR) (Hu et al., 2016b). The LSCT separation, LST product
angular normalization and angular integrated SULR estimation are
three main TRD related applications being widely discussed in recent
years.

Jacob et al. (2008) and Paw U (1992) reviewed the TRD models
over vegetated canopies. However, no comprehensive review for all
Earth surfaces has been reported until now. In addition, there are many
outstanding developments in the area of vegetated canopy TRD mod-
eling in the past ten years, such as mixed-pixel TRD modeling, dynamic
modeling and parametric modeling. The statement about the TRD effect
is presented diversely across different papers, including thermal ra-
diation directionality, thermal emission directionality, directional ani-
sotropy, angular anisotropy, thermal anisotropy, land surface tem-
perature anisotropy, etc. There are many quantities used to represent
the TRD amplitude, such as the absolute temperature value, the tem-
perature difference between off-nadir and nadir, the temperature ratio
between off-nadir and nadir, etc. Therefore, now, it is urgent and va-
luable to summarize the TRD related works for future development.
Considering that the LST and LSCT inversion works have been recently
reviewed by Li et al. (2013d) and Zhan et al. (2013), respectively, in
this paper, we aim at providing an overview of the historical develop-
ment and current status in the field of TRD observations and modeling,
starting with theoretical background (Section 2), followed by the multi-
scale observation (Section 3), TRD modeling works (Section 4), some
potential applications (Section 5) and future perspectives (Section 6). A
brief summary is given at the end of this paper in Section 7.

2. Basic theoretical background

For a non-isothermal landscape, the definition of LSE and LST be-
comes difficult from both a theoretical and practical point of view. In
this section, we present the basic equations for the simulations of the
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radiative transfer processes in the TIR range, and we also recall the
basic definitions of LSE and LST. Finally, no less than fourteen different
approaches that were proposed to describe the TRD effects are sum-
marized.

2.1. Basic radiative transfer equation

In our analysis of the radiative transfer equation below, we assume
that the contributing terms from solar beam and atmospheric scattered
solar energy within the TIR are negligible. Based on the simplistic as-
sumption of isotropy for LST and LSE, the radiative transfer equation
can be written as shown in Eq. (1) in which only the atmospheric
transmittance and upwelling radiance related to optical path length
need to be considered as dependent on the viewing angle:

= + +I B T R R( , ) ( , )( ( ) (1 ) ) ( , )v v v v at at v v (1)

where I is the top of atmosphere (TOA) radiance received at the sensor
level for a given channel central wavelength (λ), θv is the view zenith
angle, φv is the view azimuth angle, ε is the land surface emissivity, T is
the land surface temperature, Rat↓ is the downward atmospheric ra-
diance at λ, Rat↑ is the upward atmospheric radiance at λ, and τ is the
atmospheric transmittance at λ. B(T) is the radiance calculated by the
Plank's law as Eq. (2) at λ.

= ×
×( )

B T( ) 1.191 10

exp 1T

8

5 1.439 104

(2)

Note that the symbol for wavelength, λ, is omitted in Eq. (1) and
other following equations for the sake of simplicity. Actually, LST and
LSE are anisotropic quantities mostly due to the non-isothermal tem-
perature distribution combined with the 3D architecture of these sur-
faces. This is accounted for in Eq. (3), where Ioutgoing is the directional
surface outgoing radiance at the bottom of atmosphere (BOA) for λ. It
includes the surface emission term and the surface reflected downward
atmospheric emission term.

= +

= +

+

I I R

B T

R R

( , ) ( , ) ( , ) ( , )

( , )( ( , ) ( ( , )) (1 ( , ))

) ( , )

v v v v outgoing v v at v v

v v v v v v v v

at at v v (3)

The estimation of LST primarily relies on the retrieval of the T(θv,
φv) value from the sensor observed I(θv, φv) after a correction of the

atmospheric effects and also LSE. The goal of TRD modeling is to es-
tablish a relationship between B−1(Ioutgoing(0,0)) and B−1(Ioutgoing (θv,
φv)) or T(0,0) and T(θv, φv) or ε(0,0) and ε(θv, φv). This corresponds to
the BOA DBT modeling or LST modeling or LSE modeling, respectively.
Meanwhile, research work on TRD is focused on revealing the re-
lationship between canopy structure, distributions of component tem-
peratures and directional radiance. For geometric models, the challenge
is in calculating the contribution of each component and the con-
tribution of their mutual scattering, as shown in Eq. (4).

= + +

+

=

=

I a B T R

R R

( , ) ( , ) [ ( , ) ( )] (1 ( , ))

( , )

v v v v
k

k K

k v v k k scattering v v

at at v v

1

(4)

where k is the component index, K is the total component number, ak is
the area fraction of k component in a specific viewing direction, εk and
Tk are the supposedly isotropic emissivity and temperature of the k
component, respectively, ΔRscattering is the radiance component due to
mutual scattering of components, and ε(θv, φv) is the composite di-
rectional emissivity of a pixel which will be introduced in detail in next
sub-section.

2.2. Basic definition of LSE

The emissivity at a given wavelength λ (units, μm) and temperature
T (units, K), is defined as the ratio of the radiance emitted by a body at
the temperature T and the radiance emitted by a black body at the same
temperature T. The surface emissivity is well defined for a homo-
geneous surface in thermal equilibrium. However, this traditional de-
finition will face several problems when used on non-isothermal het-
erogeneous scenes. Therefore, several new definitions of emissivity for
any viewing direction (θ, φ) were developed to suit remote sensing
applications, as listed in Table 1.

In Table 1, ak is the area fraction of k-th component among the K
components. (θ, φ) represent the view direction in zenith and azimuth.
The increment Δε in Eq. (6) represents the interaction (i.e. multi scat-
tering) between the components in the pixel. The temperature of k-th
component is Tk. T0 is the pixel reference temperature, and K(T0) is
equal to B′(T0)/B(T0). f(λ) is sensor spectral response within wave-
length bounded by λ1 and λ2. All the parameters are listed in the
glossary.

Table 1
List of definitions of LSE.

Name Equation Number References

r-emissivity
=

=

=
a( , ) ( , ) ( , )r

k

k K
k k

1

(5) (Norman and Becker, 1995)

effective
r-emissivity = +

=

=
a( , ) ( , ) ( , )r

k

k K
k k x k

1

(6) (Chen et al., 2004)

e-emissivity

= =

=

=

=( , )e
k

k K
ak k B Tk

k

k K
ak B Tk

1
( , ) ( , ) ( )

1
( , ) ( )

(7) (Norman and Becker, 1995)

apparent emissivity
= +

=

=
K T a T T( , ) ( , ) ( ) ( , ) ( , )( )app r

k

k K
k k k0

1
0

(8) (Li et al., 1999)

channel
r-emissivity

= =

=

( , )channel r

f
k

k K
ak k d

f d
,

1
2 ( )

1
( , ) , ( , )

1
2 ( )

(9) (Wan and Dozier, 1996)

channel
e-emissivity

= =

=

=

=( , )channel e

f
k

k K
ak k B Tk d

f
k

k K
ak B Tk d

,
1
2 ( )

1
( , ) , ( , ) ( )

1
2 ( )

1
( , ) ( )

(10) (Wan and Dozier, 1996)

broadband emissivity
=( , )bb

B T d
B T d

0 ( , ) ( )

0 ( )

(11) (Cheng et al., 2013; Wang et al., 2005)
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It is worth mentioning that all definitions of spectral emissivity are
more or less ambiguous. This arises from the fact that there are many
ways for defining the two parameters (LSE and LST) from a single
equation (ensemble radiance). The definition makes sense only if the
defined parameters are measurable from space. The e-emissivity relies
on an emission mechanism where LST derived from it changes with
wavelength for nonisothermal pixel. In turn, the r-emissivity relies on
reflection mechanism obeying Kirchhoff's law (Jacob et al., 2017). It
remains that a precise description of the components' temperature
distribution is difficult to be known. Considering this criterion, effective
r-emissivity defined by Eq. (6) is particularly appropriate for LSE and
LST retrievals from space measurements because it can be directly de-
termined by the radiance measured over visible and near infrared
(VNIR) spectral domain (e.g. NDVI (Valor and Caselles, 1996)).

The broadband emissivity is a critical parameter in the Earth surface
radiation budget estimation and LST validation using pyrgeometer
observations (Cheng and Liang, 2014). In applications, the broadband
emissivity is often approximated as a linear combination of some nar-
rowband estimate (Cheng et al., 2013; Ogawa et al., 2003; Wang et al.,
2005). It should be noted that the linear equations are derived from
spectral libraries and field measurements with a fixed temperature
value and the land surface is assumed to be homogeneous and iso-
thermal during the regression of coefficients.

2.3. Basic definition of LST

As for LSE, LST may also correspond to different definitions de-
pending on the context it is being referred to Fontanilles et al. (2010).
Norman and Becker (1995) provided a quite comprehensive review of
the terminology used in thermal remote sensing, some of which are
summarized in the sections below, such as directional radiometric
temperature (DRT) and DBT, LSCT, etc.

2.3.1. Aerodynamic temperature
Aerodynamic temperature is the air temperature at the thermal

roughness length. It is the physical temperature to be used with single
source soil–vegetation–atmosphere transfer (SVAT) models based on
excess resistance (Kustas and Anderson, 2009). It is a key parameter in
models simulating land-atmosphere processes, which are relevant in
numerous applications (e.g., climate, hydrology, agriculture). However,
remote sensing methods cannot directly measure aerodynamic tem-
perature. Several studies have attempted to derive relationships be-
tween aerodynamic temperature and LST which can be classified into
statistical approaches (Benali et al., 2012; Cresswell et al., 1999),
temperature–vegetation index approaches (Czajkowski et al., 2000;
Prihodko and Goward, 1997) and energy-balance approaches (Sun
et al., 2005; Zhang et al., 2015). Zakšek and Schroedter-Homscheidt
(2009) reviewed the types of methods commonly used to estimate

aerodynamic temperature based on LST.

2.3.2. Thermodynamic/kinetic temperature
Thermodynamic temperature is a macroscopic quantity thought to

be constant throughout any group of subsystems that are in thermo-
dynamic equilibrium, assuming therefore no heat transfer. A statistical
interpretation of the thermodynamic temperature is referred to as the
kinetic temperature. It is a macroscopic quantity defined on a micro-
scopic scale in terms of the mean kinetic energy of particles. Remote
sensing also cannot measure the thermodynamic or kinetic temperature
directly. Instead, DRT is used as a proxy, once it is derived from the
observed DBT.

2.3.3. Directional brightness temperature (DBT)
The DBT is the temperature of a black body that would have the

same radiance as that actually observed from the target with the
radiometer considering its sensor response function. It is a directly
measured parameter in TIR remote sensing depended on the viewing
angle, channel band and the sensor used. The TOA DBT and BOA DBT
are widely discussed, but the TRD physical models usually aims to si-
mulate the BOA DBT patterns.

2.3.4. Directional radiometric temperature (DRT)
The surface-leaving radiance always includes the reflected emission

of atmosphere and surroundings because LSE is not unity. After the
removal of reflected radiance and emissivity normalization, the DRT
can be obtained. The value of DRT depends on the selected definition of
LSE (Ren et al., 2014). DRT provides the best approximation for a
thermodynamic/kinetic temperature based on remote sensing mea-
surements. DRT is the quantity to estimate from satellite observations in
the domain of LST inversions.

2.3.5. Land surface component temperature (LSCT)
Soil and vegetation temperatures are input variables of two-source

SVAT models (Kustas and Anderson, 2009). They correspond to kinetic
or radiometric temperatures. Several studies have focused on meth-
odologies to derive the temperature of such components, e.g., by se-
parating the sunlit soil temperature and shaded soil temperature (Bian
et al., 2016), and distinguishing the sunlit leaf and shaded leaf tem-
peratures (Timmermans et al., 2009). Canopy temperature profiles from
the soil surface to the top of canopy are considered in some models (van
der Tol et al., 2009), which may be determined through inversion
techniques if the appropriate DBT observations are available (Kimes,
1981).

2.4. Ways to describe TRD

There are 14 methods for describing TRD in models, as indicated by

Table 2
Fourteen methods for describing TRD effect.

ID Quantity Physical meaning

1 ε(θv, φv) Absolute directional emissivity
2 B−1(Ioutgoing (θv, φv)) BOA DBT
3 T(θv, φv) DRT
4 ε(θv, φv)/ε(0, 0) Relative directional emissivity
5 B−1(Ioutgoing (θv, φv))/B−1(Ioutgoing (0, 0)) Ratio of off-nadir to nadir DBT
6 T(θv, φv)/T(0, 0) Ratio of off-nadir to nadir DRT
7 B−1(Ioutgoing (θv, φv))-B−1(Ioutgoing (0, 0)) Difference between off-nadir and nadir DBT
8 T(θv, φv)-T(0, 0) Difference between off-nadir and nadir DRT
9 DBTmax-DBTmin Difference between maximum and minimum DBT
10 DBTmax-DBTnadir Difference between maximum and nadir DBT
11 DBTnadir-DBTmin Difference between nadir and minimum DBT
12 DBT_55_AVE Average of the DBT values for all VAA directions with VZA equal to 55°
13 DBT_55_STD Standard deviation of the DBT values for all VAA directions with VZA equal to 55°
14 DBT_SPP_STD Standard deviation of DBT values in the solar principal plane for VZA within [−50°, +50°] range
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the quantities shown in Table 2. The most widely used is BOA DBT
(quantity 2 in Table 2) because it can be easily obtained after applying
atmospheric correction and the inverse Planck function to satellite or
airborne observations (Cao et al., 2015). If the absolute directional
emissivity and the downward atmospheric radiance are known, the
DRT (quantity 3) can be further obtained to describe the TRD effect. For
example, the DRT is considered in the process of LST product angular
normalization (Ren et al., 2014). A homogeneous scene, such as one of
water, snow or soil, is always treated as an isothermal surface, thus its
TRD is always attributed to the absolute directional emissivity. There-
fore, quantity 1 in Table 2 is also used to describe TRD (Sobrino and
Cuenca, 1999).

Errors of absolute values are usually restrained by using quantities
such as the ratio of off-nadir to nadir absolute emissivities (quantity 4)
(Sobrino and Cuenca, 1999; Sun et al., 2015), the ratio of off-nadir to
nadir DBT (quantity 5) and the ratio of off-nadir to nadir DRT (quantity
6) (Vinnikov et al., 2012). In addition, the difference between off-nadir
and nadir DBT/DRT (quantity 7/8) is usually defined as directional
anisotropy to express the TRD effect. It is widely used in urban TRD
modeling studies (Lagouarde et al., 2010). Another advantage of
quantities 5–8 is that they can be used to describe the TRD pattern
which can be further assumed steady within a time period. This will
benefit to the multi-angle dataset construction. All quantities 1–8 have
different values in different directions.

In addition, six indicators were proposed to describe the TRD effect
with a unique value for one scene, including the difference between
maximum and minimum DBT (DBTmax-DBTmin, Cao et al., 2019), the
difference between maximum and nadir DBT (DBTmax-DBTnadir, Bian
et al., 2018), the difference between nadir and minimum DBT (DBTnadir-
DBTmin, Chehbouni et al., 2001), the average of the DBT values for all
VAA directions with a 55° VZA (DBT_55_AVE, Huang et al., 2011), the
standard deviation of the DBT values for all VAA directions with a 55°
VZA (DBT_55_STD, Huang et al., 2011) and the standard deviation of
DBT values in the solar principal plane for VZA within [−50°, +50°]
range (DBT_SPP_STD, Duffour et al., 2016a).

3. TRD measurement and observation

Multi-scale measurements and observations were performed over
homogeneous and heterogeneous scenes, including a laboratory mea-
surement of one sample, in-situ measurements of possibly mixed sam-
ples, airborne observations of a patchwork of different objects and sa-
tellite observations of a patchwork of different areas.

The characterization and evidence of the TRD phenomenon have
been originally reported from ground measurements (Monteith and
Szeicz, 1962; Sutherland and Bartholic, 1977). Later, the impact of TRD
was studied in the laboratory by measuring temperature and emissivity
properties of homogeneous samples (Labed and Stoll, 1991; Snyder
et al., 1997). Usually, the directionality of homogeneous surfaces is
attributable to the emissivity. Since 2000, equipment and facilities with
more view angles and better efficiency have been developed to obtain

in-situ multi angle datasets over heterogeneous vegetated landscapes
(Li et al., 2004). For TRD observations over urban canopy, a scientific
protocol of airborne measurements was proposed to overcome the
footprint limitation of ground measurement equipment (Lagouarde
et al., 2004). Multi-angle datasets of vegetation and urban canopies
were obtained with a trade-off between viewing angles and time-con-
sumption of the experiments. ATSR series are space-borne sensors of-
fering more variability in viewing angles (the same scene is sampled at
0° and 55°) in the TIR band, and are reliable data sources for studying
the effects of TRD at the satellite scale, although caution must be taken
concerning the small differences in the dual-view observation times.
Recently, Hu et al. (2016a) presented a first satellite-based assessment
of urban TRD (>10 K) using ten years of the MODIS LST product.
Equally high values were reported over other types of surfaces, espe-
cially in moderately vegetated areas (Ermida et al., 2014; Guillevic
et al., 2013). In this section, the main TRD measurements obtained from
laboratory, field, aircraft and satellite are summarized.

3.1. Laboratory and in-situ measurements of homogeneous samples

TRD effects have been reported for both heterogeneous (such as
wheat, cotton, and sunflower crops) and homogeneous surfaces (such as
water, snow and soil). The latter are attributed to the sample emissivity
properties. The early works that measured the TRD in the laboratory
can be divided into two categories. One focused on the creation of
spectral libraries of emissivity, such as the UCSB MODIS library (Snyder
et al., 1997) and USGS ASTER library (Salisbury et al., 1994), and the
other focused on the determination of emissivity properties for accurate
estimation of LST, taking into account the TRD effect of emissivity
(Sobrino and Cuenca, 1999). Table 3 lists the main TRD measurements
collected in laboratory and in-situ conditions for homogeneous samples,
including soil, sand, snow, water and ice. In this table, the relative di-
rectional emissivity (i.e. the 4th quantity in Table 2) is used to describe
the TRD effect amplitude. This is defined as the ratio of off-nadir to
nadir emissivities. The maximum relative directional emissivity is equal
to one appearing in the nadir. There are different degrees of decreases
in the oblique directions for different surfaces as shown in Table 3.
Results show that ice, water, snow and agricultural soils have sig-
nificant TRD effects while least effects arise for slime, gravel, clay and
silt-loam. The TRD amplitude of sand is between agricultural soils and
clay (about 3% of decrease from 0° to 70°). Some of the measurements
(e.g. Cuenca and Sobrino, 2004; Hori et al., 2006; Sobrino and Cuenca,
1999) were performed outside of the laboratory, and other measure-
ments were obtained in laboratory.

3.2. In-situ measurements

The main difficulty of in-situ measurements is in making observa-
tions of multiple viewing geometries during a time period short enough
(usually< <30min) such that temperature changes can be neglected.
In this section, we provide a summary of well-documented in-situ TRD

Table 3
List of main TRD measurement for homogeneous samples.

Surface type VZA TRD amplitude (relative emissivity, the 4th quantity in
Table 2)

Authors and year

Ice 0°-65° 10% Rees and James, 1992
Water 0°-65° 7% Cuenca and Sobrino, 2004; Masuda et al., 1988; Rees and James, 1992; Sobrino and

Cuenca, 1999
Coarse grain snow 0°-70° 4.5–6.8% Hori et al., 2006
Agricultural soils 0°-70° 3–9% Labed and Stoll, 1991
Sand 0°-70° 3% Cuenca and Sobrino, 2004; Labed and Stoll, 1991; Sobrino and Cuenca, 1999
Slime, Gravel 0°-65° 2% Cuenca and Sobrino, 2004; Sobrino and Cuenca, 1999
Clay 0°-65° 1% Cuenca and Sobrino, 2004; Sobrino and Cuenca, 1999
Silt-loam 0°-65° 1% Snyder et al., 1997
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measurements (see Table 4). They show that the TRD amplitude for
heterogeneous surfaces (cotton, wheat, sunflower, forest, corn and
furrowed soil) is significantly larger than that of homogeneous surfaces,
such as grass and soybeans. In order to obtain directional measure-
ments, most of the radiometers in Table 4 have narrow field-of-view
(FOV). Furthermore, four kinds of measurement protocols (see Fig. 1)
are introduced, including circular trace average method, fixed target
average method, circular trace segmentation method and straight trace
segmentation method.

In the very first experiments, ground-based multi-angle observation
systems were implemented manually. Data were acquired by rotating
the arm of the goniometer on which the TIR radiometer was fixed to
change the viewing zenith angle (Barton and Takashima, 1986;
Lagouarde et al., 1995) and by moving along a track of the goniometer
to change the view azimuth angle (VAA). Then, the TIR data acquired in
a certain view angle was usually averaged to represent the directional
emission of the scene in this view direction (we call it as circular trace
average method). To increase the automation and speed of measure-
ment acquisition, Yan et al. (2012) developed a portable Multi-Angle
Observation System (MAOS) which can provide the bi-directional re-
flectance factor (BRF) and DBT distributions concomitantly. As shown
in Fig. 1b, it is composed by a spectroradiometer (FOV=25°), a TIR
radiometer (FOV=28°), a video camera and a two-dimension auto-
matic goniometer. The improved system is able to make> 13 zenith
measurements in 6min at an arbitrary azimuth direction.

The circular trace average method observes different areas in dif-
ferent viewing directions which may reduce the quality of the mea-
surement dataset (Zhang et al., 2000). Therefore, Li et al. (2004) de-
signed an automated system to improve the accuracy of TIR
measurements consisting of two identical thermal cameras and a metal
ring to fix the view areas for different viewing directions (we call it the
fixed target average method). As shown in Fig. 1a, it is composed of: (1)
a semicircular roadway of 2m diameter; (2) an elevator of 1m height;
(3) a 2m rotating arm equipped with one thermal camera for changing
the view zenith angle (VZA); and (4) a fixed arm equipped with another
thermal camera to record the target nadir temperature variation with
time during the measurements. The pixels within the metal ring of
thermal camera image were extracted and averaged to ensure the area
of research target is fixed. The system needs only 2min to make di-
rectional measurements from about −70° to 70° for a given azimuth.
For completing one hemispheric measurement, it needs about 20min if
the multidirectional measurements are conducted with a 30° interval in
the azimuth direction.

Measurements with the circular trace average method and fixed
target average method are influenced by the radiometer FOV. In order
to reduce this effect, which means different pixels have different spe-
cific view angles. Du et al. (2007) segmented the observed TIR images
into small images with narrow FOV according to the VZA and VAA
values (we call it the circular trace segmentation method). The ob-
servation protocol is the same as the circular trace average method.

Table 4
List of the typical in-situ TRD measurements. The (*), (&) and (#) in the sixth column represent the 9th, 10th, and 11th quantities in Table 2 respectively. They are
used to show the measured in-situ TRD amplitude over soils or vegetations. Worth outlining here that the sensor used in Monteith and Szeicz (1962) is a Linke-
Feussner pyrheliometer with a quartz filter.

Earth surface Height
/LAI

Sensor FOV Sensor wavelength Sensor VZA TRD amplitude Authors and year

Grass 0.25m 10° > 3 μm 0°-80° 3 K (*) Monteith and Szeicz, 1962
Semiarid grass – 15°/60° 8–14 μm 0°-55° 5 K (#) Chehbouni et al., 2001
Sudan grass – 7°, 30° 8–13 μm 15°-75° 0.6 K (*) Fuchs et al., 1967
Alfalfa – 7°, 30° 8–13 μm 15°-75° 1.8 K (*) Fuchs et al., 1967
Soybeans – 7°, 30° 8–13 μm 15°-60° 1.7 K (*) Fuchs et al., 1967
Soybeans – 5° 10.5–12.5 μm 0°-75° 1.5 K (*) Nielsen et al., 1984
Wheat 0.53m 4° 10.5–12.5 μm 0°-80° 13 K (#) Kimes et al., 1980
Cotton rows 0.55m 15° 8–14 μm 0°-80° 16.2 K (#) Kimes and Kirchner, 1983
Sunflower 1.5 m 4° 8–14 μm 0°-90° 9.3 K (*) Paw et al., 1989
Leafless forest 21.5m 2° 8–12 μm 0°-70° 8 K (*) Balick and Hutchinson, 1986
Oak-hickory forest 21.5m 2°; 3° 8–12 μm 10°-85° 3.2 K (*) McGuire et al., 1989
Corn 1.1 m 5° 8–14 μm 0°-60° 4 K (#) Lagouarde et al., 1995
Ploughed soil 0.25m 35° 8–14 μm 0°-60° 3.5 K (&) Lagouarde et al., 1995
Furrowed soil 0.08m 5° 8–14 μm 0°-60° 5 K (#) Verbrugghe and Cierniewski, 1998
Coarse rough soil 0.055m 18°× 24° 8–13 μm 0°-70° 4 K (#) Li et al., 2004
Wheat LAI= 1.5 18°× 24° 8–13 μm 0°-70° 5.5 K (#) Li et al., 2004
Wheat LAI= 4.1 18°× 24° 7.5–13.5 μm 0°-60° 3 K (*) Du et al., 2007
Corn H=2.2m 28° 8–14 μm 0°-60° 6.5 K (*) Ren et al., 2013
Corn LAI= 1.2 54°× 68° 7.5–14 μm 0°-50° 4 K (&) Bian et al., 2018

Fig. 1. Information of four kinds of ground-based multi-angle measurement protocols.
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However, the process of averaging is changed to segmentation with a
critical sector size. Time normalization was done using nadir data of
different azimuthal plane observations. Indeed, as shown in Fig. 1b, no
TIR camera was fixed in the nadir direction to correct the time shift of
temperature.

All the above three protocols are limited by the viewing footprint
which is smaller than 2.5×2.5m2. Cao et al. (2018a) mounted the TIR
camera on a tower to overcome this problem during experiments (see
Fig. 1c). A tower crane was constructed for near-surface observations
with height ranging from 1.0m to 26m above the ground (the target
size is 15m×20m when the height is 15m). The directional radiance
of the TIR band can cover −1° to 53° using an oblique FLIR 655sc
camera with a FOV equal to 54°× 68° and an oblique angle equal to
26°. The tower can move straight on the slideway and a turntable de-
vice changes the observation azimuth. The high frequency of the sen-
sors is aimed at acquiring datasets with a high overlap rate to extract
multi-angle values. It provides the spatio-temporal averaged result of
different directions by segmenting the acquired images into small sec-
tors according to the viewing angles (we call this the straight trace
segmentation method). The information extraction method is similar to
the circular trace segmentation method. However, their observation
protocols are different. In addition, this system also can also observe the
BRF as MAOS.

3.3. Airborne observations

The ground measurements are limited by the target spatial size and
the target height. For example, it is difficult to observe TRD variations
of forest and urban canopies using ground measurements. This explains
the development of airborne observation approaches, including the
cross track and parallel track protocols.

Lagouarde et al. (2014, 2000) extracted the DBT TRD of pine forest
and row-planted vineyards using a thermal camera (INFRAMETRICS
Model 760) mounted on a small aircraft at an oblique angle of 20°. They
extracted DBT with VZA up to 60° from nearly half hour of observations
with four pairs of cross flight lines in opposite directions (Fig. 2a-b).
The lines contain the solar principal plane, the cross solar principal
plane and two transitional planes. In this type of experiments, the target
area must be large enough to be representative of the considered
landscape. Then, the spatio-temporal averaged multi-angle DBT dataset

can be obtained after sensor calibration, lens distortion correction,
geometric correction, viewing angle retrieval, and atmospheric cor-
rection. Such experiments were also carried out over the cities of
Marseille and Toulouse (Lagouarde et al., 2012, 2010, 2004) with ob-
served maximum TRD effect of 7 K and 10 K, respectively. Voogt and
Oke (1998) used a helicopter to assess quantitatively the magnitude of
TRD in different districts of the city of Vancouver. The results stressed
strong TRD effects in all urban zones with a maximum value of 9 K over
the high-rise downtown area near midday. The results illustrate that the
DRT of urban areas is closely related to the sun-surface-sensor geo-
metry. Compared to the hypothesis of isotropic brightness tempera-
tures, the actual brightness temperature anisotropy leads to a very
different upward longwave radiation. Sugawara and Takamura (2006)
found that the TRD effect leads to about 8% error in the urban SULR
estimates based on the airborne observations over Sapporo and Tokyo.

Liu et al. (2012) carried out multi-angle observations over key ex-
perimental areas of the middle reaches of the WATER (Li et al., 2009)
and HiWATER (Li et al., 2013c) comprehensive experiments. They used
the airborne Wide-angle Infrared Dual-mode line/area Array Scanner
(WiDAS) in WATER and HiWATER which was developed on the basis of
Airborne Multi-angular TIR/VNIR Imaging System (AMTIS) (Fan et al.,
2004). A thermal infrared camera (FLIR A655sc), equipped with
68°× 54° wide-angle FOV lens, was placed aboard the aircraft with a
forward inclination of 12°. The flight protocol consisted of several long
parallel flight lines that were flown in opposite directions (Fig. 2c). One
track in one direction took about 4min, and the turning took about
4min. The overlap between two sequential WiDAS images is larger than
85% in the TIR band, indicating that the same ground point can be
almost simultaneously observed in several sequential images, as shown
in Fig. 2d. They extracted 15 observations with different viewing angles
(from −50° to +20° with a step equal to 5°) in one track. The TIR
images were resampled to 5m spatial resolution after the preprocessing
steps. Observations with a wide VZA range can be obtained for target
areas close to the track line center. Until now, these datasets were not
used to produce hemispherical DBT distribution due to the relatively
long time interval between adjacent tracks. The airborne multi angle
observations of a single flight were used for LSCT estimation studies
(Bian et al., 2016; Liu et al., 2012).

Fig. 2. Protocols of two kinds of airborne multi angle observations.
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3.4. Space borne observations

Only the ATSR series of sensors (ATSR, ATSR2, AATSR, SLSTR) can
supply near-simultaneous observations at different angles (0° and 55°)
(Ghent et al., 2017). Their characteristics (spectral bands, spatial re-
solution, swath and working time) are summarized in Table 5. Com-
pared to ATSR, the ATSR-2 and AATSR have three additional bands in
the visible and near infrared domains for vegetation monitoring. Two
more channels were added in SLSTR for cloud detection. In addition,
the spatial resolution of the VNIR and shortwave infrared bands of
SLSTR were enhanced to 500m from 1 km in the past. A conical scan
was used to give a dual directional viewing of the Earth's surface for
these sensors. Coll et al. (2019) extracted the BOA DBT difference be-
tween the nadir observation and the forward observation using an au-
tomated, pixel-by-pixel atmospheric correction method and found that
the maximum difference can be up to 8 K for sparsely vegetated land
surface (LAI ranging from 0.5 to 2.0) during summer whereas the dif-
ference of over sea water surfaces was uniform and independent on the
season, with an average of about 0.7 K.

Other TIR sensors onboard polar orbiting satellites do not have near-
simultaneous two-angle observations as ATSR series. More information
about them can be found in Jacob et al. (2008). Their maximum VZA
can be up to 60° due to their FOV scanning and the Earth's curvature.
The VZA and VAA over a single pixel in certain locations change de-
pending on day of the observation. Fig. 3a shows the daytime viewing
angles of Terra MODIS and Aqua MODIS over a year (2012) for the
HiWATER superstation (Li et al., 2013c). For geostationary satellites,
the viewing angle of each pixel is fixed. The VZA of a pixel located on
the edge of the image will be over 60° with a footprint that is much
larger compared to central pixels as shown in Fig. 3b (Rasmussen et al.,
2011, 2010). On the other hand, the illumination geometry, solar zenith
angle (SZA, θs) and solar azimuth angle (SAA, φs), change both during
the day and seasonally for geostationary satellites and the virtual
constellation of these can supply a series of multi-angle observations
within a limited time interval (Minnis and Khaiyer, 2000). Therefore,
both the polar orbiting and geostationary satellites are influenced by
the TRD effect. They can also be used as a data source of TRD empirical

modeling.
For MODIS, besides the LST products of split window algorithm

(Wan and Dozier, 1996), the day/night algorithm (Wan and Li, 1997)
and the TES algorithm (Malakar and Hulley, 2016) are regularly used to
generate LST and LSE products simultaneously. Ren et al. (2011) gen-
erated the empirical relationships between the directional emissivity,
land cover, and seasonal variations by performing a statistical analysis
of 5-year MOD11B1 emissivity products. They found that the emissiv-
ities increased with increase of VZA in the MODIS MIR bands and de-
creased in the TIR bands with angular variation of emissivity around
0.01–0.02. Hu et al. (2019) did a similar work based on MYD21 pro-
ducts and found that the angular variation of directional emissivity in
Band 29 (8.55 μm) could reach up to 0.03, but was<0.01 for Bands 31
(11 μm) and 32 (12 μm). García-Santos et al. (2015) obtained the LSE
dependence on VZA over arid regions based on simulated MOD21
products. Results showed that band 29 LSE decreased by up to 0.038
from nadir to a zenith angle of 60°, whereas LSEs for bands 31 and 32
did not show significant variation.

4. TRD modeling over Earth surface

Atmospheric effects can be considered rather accurately using at-
mospheric codes such as MODTRAN (Berk et al., 2005), provided the
input data are well known. Therefore, most TRD models were devel-
oped at the BOA level to simulate the Ioutgoing(θv, φv) or B−1(Ioutgoing(θv,
φv)) patterns of Earth surface. For homogeneous surfaces, such as
water, ice, sea, snow and soil, the TRD effect is always attributed to the
emissivity. Therefore, TRD models were developed to simulate the ε(θv,
φv) patterns for them. The existing TRD models can be classified into
five classes: radiative transfer models (RTM), geometric optical models
(GOM), hybrid models (HM), 3D models and parametric models (PM).
Table 6 summarized the typical models of different surfaces. A review
of the 70 TRD models will be introduced one by one below. The 9
models underlined in Table 6 (Cupid, SCOPE, THERMO, TRGMEB,
BAI2016, DARTEB, SEB, TUF-3D, SOLENE) are radiative transfer
models coupled with an energy budget module to generate the com-
ponent temperature via an iterative process. Most TRD models were not

Table 5
Main parameters of ATSR, ATSR2, AATSR and SLSTR.

Sensor Satellite Year Bands and nadir spatial resolution Swath

ATSR ERS-1 1991–2000 (1.613; 3.742; 10.85; 12.02) 1 km 500 km
ATSR2 ERS-2 1995–2011 (0.554; 0.659; 0.868; 1.613; 3.742; 10.85; 12.02) 1 km 500 km
AATSR ENVISAT 2002–2012 (0.554; 0.659; 0.868; 1.613; 3.742; 10.85; 12.02) 1 km 500 km
SLSTR SENTINEL-3 2016- (0.554; 0.659; 0.868 1.374; 1.613; 2.25) 500m; (3.742; 10.85; 12.02) 1 km >1400 km

(Nadir)

Fig. 3. Viewing angle ranges of typical polar orbiting and geostationary satellites.
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named. For the sake of simplification, the first three characters of the
surname of the first author and the year of publication were combined
to refer to them.

4.1. TRD modeling over water bodies, ice and sea

Inland water bodies are always treated as specular surfaces. Their
directional emissivity can be calculated by Fresnel's and Snell's laws if
they are assumed to be homogeneous with plane surfaces and the
imaginary parts of their refractive indices are neglected. Rees and
James (1992) suggested a refractive index of l.43 ± 0.03 for water in
TIR band. Then, the simulated water emissivity is equal to
0.969 ± 0.003 and 0.893 ± 0.06 for nadir and 65° oblique viewing
direction, respectively. The Fresnel's law (Eq. (12)) and Snell's law (Eq.
(13)) are shown below where the θin is the incident angle, θout is the
refractive angle and n is the refractive index (Masuda et al., 1988). Eqs.

(12)–(13) show that the larger the refractive index, the smaller the
emissivity value. For ice specular surfaces, the directional emissivity
can be calculated by Fresnel theory and Snell's law as water with a
larger refractive index (1.60 ± 0.09) suggested by Rees and James
(1992). Then, the simulated nadir emissivity and emissivity of 65° equal
to 0.947 ± 0.012 and 0.863 ± 0.015, respectively, which is always
smaller than that of a water surface.
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The uncertainty of sea surface emissivity must be within 0.005 in
the TIR domain in order to obtain SST with an error< 0.3 K (Wu and
Smith, 1997). The main differences between sea and inland water
bodies include the surface roughness caused by the wind, and the

Table 6
Models classification for different surface types.

RTM GOM HM 3D model PM

Inland Water/Ice • MAS1988 – – – –
Sea – • MAS1988• WU1997• MAS2006• BOU2006• LI2011A• LI2011B• LI2013• LI2012• LI2014• CHE2017

– HEN2003 –

Snow • Mie/DW• WAL1994• MIS1997• Mie/Conel• Mie/Hapke• Mie/DISORT• HOR2013

– – – –

Sand/soil • HAP1981• BEK1985• HAP1993• Mie/Hapke• Mie/Conel• Mie/DISORT• Mie/DW• T-matrix/Conel• T-matrix/Hapke

• VER1998 – – • NER1991• GAR2012

Continuous Vegetation • KIM1980• PRE1985• FRA1997• FRA2002• SAIL-Thermique• TSAIL• 4SAIL• Cupid• SCOPE• REN2015• CE-P

– – • THERMO• XU2002• Extended-DART• TRGM• TRGMEB• BAI2016

• LSF-LI• ROSS-LI• VIN2012• RL• VIN2012-RL

Row-planted vegetation – • SUT1977• JAC1979• KIM1983• CAS1989• SOB1990

• CHE2002• YAN2003• YU2004• SLEC• Fovmod
Discrete vegetation – • MGP –

Urban – – – • SUM• SUMVEG• LAG2000• TITAN• Extended-DART• DARTEB• SEB• TUF-3D• SOLENE

• VIN2012• USEA• RL• GUTA-sparse• GUTA-osg
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whitecaps resulting from wave-breaking at the crest. In addition, the
temperature and salinity dependence should be considered in sea sur-
face emissivity modeling (Embury et al., 2012). According to Cox and
Munk (1954), the facet slope distribution of a wind-roughened sea
surface can be approximately normal and isotropic with a Gaussian
probability density function. However, until now, only a few studies
have investigated the effects of foam and whitecaps on the simulation in
the TIR band (Branch et al., 2016; Cheng et al., 2017). Measurements
show that foam can reduce the angular variation of sea surface emis-
sivity up to 0.04 for VZA equal to 65° (Niclòs et al., 2007). Typical
models of sea surface emissivity are listed in Table 7.

The pioneering modeling work for sea surface was conducted by
Masuda et al. (1988). They designed the MAS1988 emissivity model by
coupling the Cox-Munk function and the Fresnel's law of specular water
surface. Then, a directional emissivity look-up-table (LUT) for water
and sea surface with different wind speeds (< 15m/s) was generated
and widely used. Results show that the relative difference of emissiv-
ities between pure water and sea water is< 0.1% for VZA<50° for
wind speed<15m/s. François and Ottlé (1994) validated the simu-
lated emissivity of MAS1988 model ranging in 52°–55° by the retrieved
emissivity from ATSR.

Smith et al. (1996) measured the sea surface emissivity with dif-
ferent wind speeds and compared it with the simulated result of Masuda
et al. They found that the emissivity computed by MAS1988 is smaller
than that observed for view angles larger than 60°. In order to improve
this situation, Wu and Smith (1997) designed an improved model that
considers the surface-reflected surface-emission based on the modeling
works of Watts et al. (1996). In addition, the improved model showed
that the computed sea surface emissivity is only weakly dependent on
wind speed for most view angles (< 60°) used in practice. This is be-
cause the roughness structure tends to reduce the direct emission and to
increase the surface-reflected emission for small to moderate view an-
gles. Niclos et al. (2005) measured sea radiance of four channels within
the 8–14 μm region using the CIMEL CE-312 radiometer in five direc-
tions (25°, 35°, 45°, 55°, 65°) and at two wind speeds (4.5m/s and
10.3m/s). They confirmed the advantage of the WU1997 model for
simulating sea surface emissivity for observation angles larger than 50°,
compared to MAS1988 model.

In the WU1997 model, a specific cutoff angle was introduced to
distinguish the sea leaving radiation and the sky radiation, for calcu-
lating surface-reflected emission. However, using the ambiguous cutoff
angle, the dependence of the probability function on a surface wind
speed cannot be taken into account. Masuda (2006) overcame this issue
by using a weighting function which is expressed as a function of the
surface wind speed by way of the probability distribution function of
sea surface slope. They proved that a difference of 5° in cutoff angle
causes the surface-reflected emission fluctuation approximately by
0.01∼0.02 for VZA equal to 75°. The MAS2006 model was simplified

into a fifth degree polynomial fitting model, referred to as SEMIS (Islam
et al., 2016).

Bourlier (2006) developed a statistical illumination function instead
of the weighting function of MAS2006 to calculate surface reflections.
To overcome the significant overestimation (underestimation) of first-
order reflection of MAS2006 (BOU2006) model when taking the Monte
Carlo ray-tracing sea emissivity model (Henderson et al., 2003) as re-
ference, Li et al. (2011a) developed a unpolarized emissivity model
with first-order reflection based on Smith illumination function (Smith,
1967) and further a polarized emissivity model with first-order reflec-
tion (Li et al., 2011b) based on LI2011A and BOU2006 models. Then, a
polarized emissivity model with second-order reflection was considered
by introducing an improved bistatic illumination function (Li et al.,
2013b) based on LI2011B. LI2011B and LI2013 models are only sui-
table for the one-dimensional sea surface. They were extended into two-
dimensional versions (3D problems) in 2012 and 2014, respectively (Li
et al., 2012; Li et al., 2014a) to model real sea surface conditions.

4.2. TRD modeling over snow surface

According to (Hori et al., 2006), snow can be divided into five types
according to the snow particle radius: frost, fine new dendrite snow,
medium granular snow, coarse granular/grain snow and welded sun
crust snow. Keck et al. (2017) proposed a method for retrieving these
snow/ice types by remotely sensed spectral and directional emissivity
from AATSR. In general, snow particles are expressed as aggregated ice
crystals. Emissivity modeling of snow is similar to that of soil. However,
the texture and roughness are simpler. As demonstrated by Hulst
(1957), the distances between neighboring particles must be at least
three particle radii for the independent scattering approximation to be
valid. This requirement is not met in most cases. Therefore, the main
difficulty in modeling is in calculating the scattering efficiency of a
single particle of close-packed snow. The typical TRD models of snow
are listed in Table 8.

The pioneering work was performed by Dozier and Warren (1982)
who proposed a DBT model (Mie/DW model) of snow surfaces with Mie
scattering theory for single scattering and delta-Eddington approxima-
tion for single scattering albedo (ω) and asymmetry factor (g) based on
the snow albedo model in the solar spectrum (Wiscombe and Warren,
1980). The directional-hemispheric reflectance was converted to di-
rectional emissivity (corresponding to r-emissivity) via Kirchhoff's law.
Simulation results showed that the directional emissivity has a sig-
nificant angular dependence which will produce differences between
thermodynamic temperature and brightness temperature as large as 3 K
at wavelengths 12–14 μm when VZA equals to 75° but< 0.5 K in the
nadir direction.

In the Mie theory, all types of photo-particle interactions such as
reflection, refraction and diffraction are included. However, Wald

Table 7
List of typical water/sea TRD models. Here, and in subsequent tables describing existing models, we also include the models' main features, most relevant publication
and the citation number at the moment of writing this article to indicate their usage in general.

Name Authors Year Main features Basic model Cited time

MAS1988 Masuda et al. 1988 Considering surface roughness, no scattering Cox-Munk 493
WU1997 Wu and Smith 1997 Considering scattering using a specific cutoff angle MAS1988 212
HEN2003 Henderson et al. 2003 A Monte Carlo ray-tracing model considering polarization Monte Carlo 67
MAS2006 Masuda 2006 Considering scattering using a wind speed dependent weighting function WU1997 49
BOU2006 Bourlier 2006 Considering scattering using a statistical illumination function MAS1988 14
LI2011A Li et al. 2011 Calculate first-order scattering by a monostatic statistical illumination function Smith illumination function 13
LI2011B Li et al. 2011 Considering polarization and first-order scattering LI2011A;

BOU2006
14

LI2013 Li et al. 2013 Considering polarization and second-order scattering LI2011B 6
LI2012 Li et al. 2012 Considering polarization, first-order scattering and non-Gaussian surface slope distribution LI2011B 9
LI2014 Li et al. 2014 Considering polarization, second-order scattering and non-Gaussian surface slope distribution LI2012

LI2013
4

CHE2017 Cheng et al. 2017 Considering foam cover WU1997 1
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(1994) found that these phenomena are dependent for media with
close-packed particles. Then he proposed a term of “diffraction sub-
traction” to modify the scattering cross section of close-packed large
opaque spheres to account for the effect of close packing on the dif-
fraction cross section of a scattering particle. Besides the diffraction
subtraction solution, Mishchenko and Macke (1997) developed a static
structure factor correction to simulate the asymmetry parameters of the
phase function for isolated and densely packed composite spherical
particles. Both the diffraction subtraction and static structure factor
correction were widely used in snow emissivity modeling.

Cheng et al. (2010b) combined the Mie scattering theory for single
scattering and three different solutions for multiple scattering (Conel
model, Hapke model and DISORT model). They further cross-compared
the combined models with Mie/DW through in-situ measurement of
Hori et al. (2006). They found that only the Mie/DW cannot simulate
the emissivity dependence of the particle radii and all four models are
not accurate enough because of the assumption of independence be-
tween particles. After having corrected the Mie scattering component of
close-packed particles, the Mie-corrected/Hapke model was found to
perform the best to mimic the snow directional emissivity, with a
RMSE<0.009 in the 8–11 μm spectral region. The role of diffraction
subtraction and static structure factor correction in improving the
modeling was clearly confirmed.

To improve the accuracy of the angular dependence of emissivity
spectra for different snow and ice types. Hori et al. (2013) proposed a
semi-empirical model with a weighted sum of two emissivity compo-
nents: one each for specular and blackbody surfaces. The calibrated
weighting parameters (effective areal fraction of specular surface) for
fine new dendrite snow, medium granular snow, coarse granular/grain
snow, welded sun crust snow and bare glaze ice are equal to 0.22, 0.29,
0.41, 0.53 and 0.95, respectively. This model was used to improve the
retrieval of mountain glacier surface temperatures from Landsat-ETM+
TIR observations (Wu et al., 2015).

4.3. TRD modeling over barren lands

Most barren lands are pure soil surfaces. Several measurements
showed that soil emissivity is angular dependent as introduced in
Table 1. Ignoring its angular effects will lead to± 0.4 to about± 1.3 K
error in estimated LST from the split window algorithm and a further
2% to 8% error to the estimated SULR (Garcia-Santos et al., 2012).
Labed and Stoll (1991) found that directional dependence of soil
emissivity arises from geometrical effects of grain size, roughness and
porosity. Table 9 lists the typical soil TRD models. Some of them were
initially proposed to simulate the directional emissivity of mineral
samples (such as quartz, gypsum, enstatite) rather than exactly soil
samples.

There exist two empirical models for directional soil emissivity si-
mulation. The first one was proposed by Nerry et al. (1991) based on
the assumption of totally incoherent scattering by a rough medium at
10.6 μm accounting for slope distribution and shadowing effects.
However, the backscattered peak was not yet addressed, which limited
its wide usage. Garcia-Santos et al. (2012) measured 12 inorganic bare
soil samples to obtain a more powerful empirical relationship between
the emissivity and view angle, sand and clay percentage. Their particles
sizes are limited to 0.2–1 cm to achieve a low roughness. Results show
that emissivity of all samples studied is almost isotropic in azimuth and
also in zenith, up to VZA=40°. This decrease of emissivity with larger
VZA is most pronounced in sandy soil, while clayey samples did not
show a significant decrease.

Two physical models were proposed based on Hapke's reflectance
theory and Hapke's emission theory to simulate soil directional emis-
sivity. For the first one (HAP1981 (Hapke, 1981)), the reflectance was
simulated to convert to emissivity based on Kirchhoff's law. One major
assumption in Hapke's theory is that the particles are large compared to
the wavelength and closely packed. As a result, the particle crossTa
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sections used in calculating the magnitude of absorption and scattering
are geometrical optics cross sections and diffraction can be ignored. In
1993, Hapke developed the emission theory (HAP1993 (Hapke, 1993)),
which can be used to simulate the directional emissivity with only two
parameters, including single scattering albedo and view angle. It also
does not include the diffraction effects. A two-stream approximation
was used to get the scattering efficiency of a particle which can be
converted to the single scattering albedo. The Mie/Hapke model
(HAP1981; HAP1993) and Mie/Conel model were proposed by Moersch
and Christensen (1995) to simulate the directional soil emissivity
without removing the diffraction contribution. Wald and Salisbury
(1995) proved the necessity to remove the diffraction for Mie/Hapke
model (HAP1993), which finally led to the Mie-corrected/Hapke
model. Pitman et al. (2005) proposed the Mie/DISORT model to si-
mulate soil emissivity with a suggestion of 4-stream solution.

Mie/DWmodel was developed to simulate the directional emissivity
of snow with a δ correction for diffraction removal. García-Santos et al.
(2016) evaluated its accuracy for soil emissivity spectrum and com-
pared it with Mie/Hapke model (HAP1993). The diffraction subtraction
(Wald, 1994), static structure factor (Mishchenko and Macke, 1997)
and δ correction method (Joseph et al., 1976) were used to perform the
Mie scattering correction to take into account the closely packing
conditions for these two models. They found that the Mie-corrected/
Hapke performs relatively better but depends on the mean diameter of
the grains for angular effect simulation. The results show that these
models describe well the decrease of soil emissivity with viewing angle
if the compactness correction of the soil grains formulated by the δ
correction or diffraction subtraction methods is taken into account
(García-Santos et al., 2018). The Mie-δ correction/Hapke model was
also used to simulate the Regolith emissivity of Saturn's rings
(Morishima et al., 2012). Ito et al. (2017) explored the ability of the T-
matrix and radiative transfer models (Conel model and Hapke model) to
produce emissivity spectra of enstatite particles of different sizes and
obtained improved results compared to the combination of Mie theory
and radiative transfer models. However, the diffraction parameter
correction is still required in the T-matrix/Conel and T-matrix/Hapke
models. The superposition of the T-matrix method with the ability to
compute the scattering properties of an elementary volume (a cluster of
particles) can produce relatively better agreement with the measure-
ments than the sole use of the T-matrix method (Ito et al., 2018).

The roughness of the soil surface is another challenge in modeling.
Lagouarde et al. (1995) found that the directional effects are highly
dependent upon the structure of the observed surface, such as whether
the soil is ploughed or not. Becker et al. (1985) extended the Leader's
two-scale roughness model (Leader, 1976) using a new shadowing

function to simulate the directional emissivity. The improvement ac-
counts for the macrostructure (cavity effect) of the surface, which was
shown to be responsible for a major part of the angular distribution,
especially of the backscattering peak. For strong shadowing effect si-
mulations, the Gaussian distribution (Cox and Munk, 1954) of soil
surface slope was assumed. The modified model is then able to fit the
measured data qualitatively and quantitatively in most situations.
Verbrugghe and Cierniewski (1998) proposed a parallel trihedron
structure geometric model to simulate the DBT of furrowed soil with the
inputs of precise soil micro-relief geometry configuration, the illumi-
nation and viewing conditions of the surface and the radiative tem-
peratures of the shaded and sunlit soil facets. They found that the TRD
can reach up to 6 K while the VER1998 model can simulate the DBT
with a coefficient of determination equal to 0.949.

Above all, many studies focused on directional soil emissivity si-
mulation by considering the roughness, and the sand and clay percen-
tage for dry inorganic bare soils. However, the influence of soil
moisture (Lesaignoux et al., 2013; Wang et al., 2015) and soil organic
matter contents was not analyzed comprehensively. In addition, the
spectral soil model without considering the angular effect is still a
challenge to the thermal infrared community. One limitation is that the
measurements of the complex index of refraction of soil particles are
rarely reported.

4.4. TRD modeling over vegetation

Compared to water, sea, snow and soil, more studies reported pro-
gress in TRD modeling over vegetated surfaces. The RTM, GOM, HM,
3D model and PM of vegetation canopies are discussed in this section.
In the end, the roadmap of vegetation TRD model development is given
in Section 4.4.6.

4.4.1. RT models
The grassland and mature cropland (e.g. soybean) are frequently

abstracted as homogeneous scenes formed by many layers (see Fig. 4).
The DBT of homogeneous scene is functioned with leaf area index (LAI),
leaf angle distribution (LAD), leaf/soil emissivity, leaf/soil temperature
profile and solar-target-sensor geometry. Each layer is described as a
homogeneous medium with an infinitely thin thickness. The contribu-
tion of each layer is calculated by the directional gap fraction in Eq.
(14) (Nilson, 1971). The definition of G in Eq. (14) can be found in the
glossary. The DBT is calculated after an integration of the TIR con-
tribution from all layers. The largest difficulty is to calculate the mu-
tual-scattering between the different leaf layers, and the scattering
between the leaf and background inclusive. In addition, the reflected

Table 9
List of typical soil TRD models, as in Table 7.

Name Authors Year Main features Category Cited time

HAP1981 Hapke 1981 Only modeled reflected light; the particles are large compared to the wavelength and closely
packed

physical model 1742

BEK1985 Becker et al. 1985 Improve the Leader's two-scale roughness model using a new shadowing function physical model 35
HAP1993 Hapke 1993 Based on emission theory; It is a ray model that does not include diffraction effects. physical model 1962
Mie/Hapke Moersch and Christensen 1995 Using Mie theory to calculate single-scattering albedo for HAP1993 physical model 153
Mie/Conel Moersch and Christensen 1995 Mie scattering theory for single scattering and a two-stream approximation for multiple

scattering
physical model 153

VER1998 Verbrugghe and
Cierniewski

1998 A parallel trihedron structure geometric model physical model 5

Mie/DISORT Pitman et al. 2005 Mie scattering theory for single scattering and 4-stream DISORT for multiple scattering physical model 35
Mie/DW Garcia-Santos et al. 2016 Mie scattering theory for single scattering and delta-Eddington approximation for single

scattering albedo ω and asymmetry factor g
physical model 4

T-matrix/
Conel

Ito et al. 2017 T-matrix for single particle scattering and a two-stream approximation for multiple scattering physical model 2

T-matrix/
Hapke

Ito et al. 2017 Using T-matrix to calculate single-scattering parameters for HAP1993 physical model 2

NER1991 Nerry et al. 1991 Only one variable: VZA Empirical model 18
GAR2012 Garcia-Santos et al. 2012 Three variables: VZA, sand content, clay content Empirical model 25
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atmospheric radiance should also be considered in the BOA DBT si-
mulation.

=pgap e( , )v v
G LAI( , ) /cosv v v (14)

The pioneering RT model devoted to homogeneous vegetation ca-
nopies was developed by Kimes (1980). The directional gap fraction is
the main solution of this model as shown in Eq. (15). For a vegetation
canopy with n layers, the BOA thermal radiance, Ioutgoing, depends on the
mean component emissivity (εi) and temperature (Ti) of each layer i,
and the component proportion which is determined by the canopy
structure (LAI, LAD) and the viewing angle (θv, φv). σ in Eq. (15) is the
Stefan-Boltzmann constant.

=
=

=

=

=
I pgap pgap T( , ) ( , ) 1 (outgoing v v

i

i n

ii

ii i

ii v v i v v i i
1

1 0

1
4

(15)

This model (referred to as KIM1980) explains the main causes of
TRD including two points: the architecture of the whole vegetation
canopy and the temperature vertical profile. However, the scattering
between layers and the reflected atmospheric radiance are omitted in
this model. Prévot (1985) tried to overcome this shortcoming and
proposed a new model (referred to as PRE1985). This model calculates
canopy radiance as resulting from radiative interactions between the
soil and the surrounding vegetation, plus interactions between the
leaves within the vegetation. Iterations are performed to simulate the
multiple reflections within the canopy and between the ground and the
canopy. Fortunately, two iterations are generally sufficient for the
model to converge since the leaf and soil emissivities (εv and εs) are
close to unity in the TIR domain. The iteration solution hinders its wide
application. Therefore, Francois proposed two parameterized models
(Francois, 2002; Francois et al., 1997) based on PRE1985 model. The
cavity effect factor was first introduced in the FRA1997 model to de-
scribe the multi-scattering effect within the canopy. It is defined as the
ratio of (1-εlimit) and (1-εv) whereas εlimit is the limiting value for canopy
emissivity corresponding to very large LAI, which can be calibrated by
PRE1985 model. A LUT of cavity effect factor for different VZA was
built. This concept is widely accepted by the TIR modeling community
because of its simplicity. For FRA2002 model, the main consideration is
the multiple scattering at the interface of the soil and vegetation layers,
not the factor of cavity effect that describes the scattering effect within
leaf layers. FRA2002 model was further improved by (Shi, 2011) to
simulate the thermal radiance over a cropland and bare soil patch
mixed scene.

The SAIL model (Verhoef, 1984) was first proposed to simulate the
BRF of vegetation canopies in the VNIR band. It is a four-steam
(downward, upward, solar and sensor) radiative transfer model. Then,
it was later extended to the TIR domain with the same modeling fra-
mework but considering the temperature differences between the sunlit
and shaded leaves/soils (named 4SAIL model (Verhoef et al., 2007)).
The emission terms of leaf and soil were added into the four differential
equations of SAIL. This extension enables the simulation of the TRD

while considering multiple scattering inside the vegetation canopy. Liu
et al. (2003) achieved a similar work (named TSAIL model) but only
considering two components (leaf and soil) without separating their
sunlit and shaded status. Therefore, the TSAIL model cannot simulate
the hot spot effect. Thanks to Kirchhoff's law, the SAIL-Thermique
model also has the potential to simulate directional canopy emissivity
(DCE) of homogeneous canopy accounting for multiple scattering since
it can compute directional-hemispherical reflectance based on SAIL
formalism (Jacob et al., 2017; Olioso, 1992; Olioso et al., 2018, 2014).
Ren et al. (2015a) evaluated the FRA1997 model taking 4SAIL simu-
lated emissivity as reference and found that the cavity effect factor in
FRA1997 was obviously overestimated. Then, they recalibrated the
LUT. Cao et al. (2018b) found that the cavity effect factor should not
only be angle-dependent but also LAI-dependent. This means that the
cavity effect should change with LAI and canopy architecture (i.e., LAI
3D distribution). They developed the CE-P model based on the concept
of spectral invariants in PARAS model (Rautiainen and Stenberg, 2005;
Stenberg et al., 2016) to simulate the DCE and also DBT (Guo et al.,
2019) with the ability to separate different orders of scattering.

Aforementioned models require to have a knowledge of the com-
ponent temperatures in order to use them as inputs. But such in-
formation is generally difficult to obtain accurately. Coupling with
energy balance model is a potential solution to determine the compo-
nent temperature distributions. In this domain, the Cupid model is the
most widely used as a multi source SVAT model (Norman, 1993, 1988,
1979) with the ability to simulate a wide variety of physiological and
environmental processes simultaneously occurring at the soil/canopy
interface. In Cupid, profiles of thermal radiant flux density and leaf
temperature distributions are obtained from the simultaneous solution
of radiative, convective and conductive equations. 4SAIL can predict
both albedo and DBT in a coherent manner based on comprehensive
radiation transfer processes devoted to homogeneous canopies. van der
Tol et al. (2009) coupled the 4SAIL model and convective and con-
ductive models, which led to the SCOPE model. This model can simu-
late the dynamic patterns of DBT using meteorological driven data. It is
widely used in the TRD modeling community (Duffour et al., 2015).

Table 10 summarizes eleven typical radiative transfer models. It
gives their names, authors, years of publication, main features, basic
models and their citation count at the moment of writing this article, as
an indication of their usage in general. The first parameterized model
FRA1997 and the first four component model 4SAIL are the most cited
by the community. In addition, the Cupid and SCOPE model are also
widely cited because they can be used for research studies in domains of
the TRD, and also the latent/sensible heat flux.

4.4.2. GO models
Three types of scenes (see Fig. 5) are abstracted as geometric objects

to simulate DBT using GO models. These include, respectively, a dis-
crete forest scene, a row-box scene, a crop and road mixed scene. The
discrete forest scene considers four components (Pinheiro et al., 2004),
which encompass sunlit/shaded leaf and sunlit/shaded soil. For a row-
box scenes, some models consider three components (soil, box top and

Fig. 4. Homogeneous scene examples: (a) grassland, (b) cropland, and (c) side view of the abstract scene.
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box side) (Sobrino and Caselles, 1990) whereas other authors treat such
a scene as a combination of four components (Jackson et al., 1979).
Within the crop and road mixed scenes, six components are considered
(Cao et al., 2015) to distinguish a sunlit/shaded road from sunlit/
shaded soil and sunlit/shaded vegetation. The emissivity of each com-
ponent takes a unique value, independently of whether it is sunlit or
shaded.

GO models treat vegetation as opaque objects without considering
the radiative transfer process of light inside these objects. They can
simulate and interpret the hot spot effect that is associated to the
shading effects between the opaque objects. Given information on ca-
nopy structure as well as illumination and viewing geometries, these
models can estimate the relative abundances (projected fractional
cover) of each component of the simulated landscape. By assuming the
components to be Lambertian emitters and reflectors, these models can
estimate the DBT of the composite surface. This is formulated by Eq.
(16–17) where Ak is the component fractional cover in different viewing
directions of component k, which is difficult to assess, K is the total
number of components, εk and Tk are the broadband emissivity and
radiometric temperature of kth component, respectively, and BTk is the
brightness temperature of component k.

=
=
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B I A BT( ( , ))outgoing v v
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k k
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1

4
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The pioneering work about GO modeling was reported by
Sutherland and Bartholic (1977). These authors measured the row-
planted grove using a TIR sensor and found that the geometric structure
of the scene can lead to an increase of canopy emissivity which is re-
ferred to as the cavity effect. An infinite long box structure for the
medium and the view factors were first proposed to explain the varia-
bility as the most basic concept. Jackson et al. (1979) improved the
original model from the nadir direction to the cross-row plane con-
sidering four components: sunlit leaf, shaded leaf, sunlit soil and shaded
soil. Further in time, the model suitable for all planes was developed by
Kimes (1983). Caselles and Sobrino (1989) proposed view factors of
ground to box side, box side to ground and box side to another box side
to properly simulate the single scattering resulting from the row
structure. The FOV effect of the thermal radiometer was also considered
later (Sobrino et al., 1990).

In pixels of satellite thermal images, non-vegetation endmembers
(such as buildings, water bodies, roads) are always mixed with vege-
tation. Cao et al. (2015) attempted to build a new DBT model (CCM) to
consider the contributions of roads. The road zone consists of the road
itself together with adjacent crop sides. The KIM1983 model was se-
lected to simulate DBT of a road zone with four components: sunlit/
shaded leaf and sunlit/shaded road. The KIM1983 model can be con-
sidered as a special case of CCM. Pinheiro et al. (2004, 2006) designed

Table 10
List of typical canopy radiative transfer models, as in Table 7.

Name Authors Year Main features Basic model Cited times

KIM1980 Kimes 1980 No inter-scattering NIL1971 73
PRE1985 Prévot 1985 Consider inter-scattering by iteration solution KIM1980 29
FRA1997 Francois et al. 1997 Introduced the cavity effect factor PRE1985 121
FRA2002 Francois et al. 2002 Considering the multi-scattering at the boundary of soil and leaf PRE1985 80
SAIL-Thermique Olioso 1992 Considering the multiple scattering SAIL 36
TSAIL Liu et al. 2003 Only consider two components SAIL 30
4SAIL Verhoef et al. 2007 Considering four components to simulate hot spot effect SAIL 131
Cupid Norman 1979 Considering energy balance Energy balance Equation 429
SCOPE van der Tol et al 2009 Considering energy balance 4SAIL 166
REN2015 Ren et al 2015 Recalibration of cavity effect factor by 4SAIL 4SAIL and FRA1997 13
CE-P Cao et al. 2018 Give a new equation of cavity effect by spectral invariants PARAS –

Fig. 5. Three typical scenes: (a) discrete forest, (b) row-planted cropland (c) crop and road mixed scene and their virtual scenes (d-f).
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the MGP model to simulate DBT of discrete tree canopies, such as sa-
vanna landscapes in Africa. Four components were considered in this
model. It was extended from the geometric optics part of the Geometric
Optical–Radiative Transfer (GORT) model in the VNIR band (Li and
Strahler, 1992). This model has been used to analyze the angular effects
of AVHRR (Pinheiro et al., 2004), MODIS (Yu et al., 2006) and SEVIRI
(Rasmussen et al., 2011, 2010).

Table 11 lists seven typical GO models, including their names, au-
thors, publication years, main features, basic models and their cited
times. The row structure models were more widely concerned. The
solution of calculating the component fractions in any plane achieved
by Kimes (1983) was a landmark progress in the GO model series.

4.4.3. Hybrid models
The GO models of a row-planted scene in Section 4.4.2 assume that

the row box is opaque. However, the existing gap within the rows will
offer space leading to some light transmittance and also the inter-
scattering increment as introduced in Section 4.4.1. Hybrid models
were developed to improve the simulated accuracy of row-planted
scenes through the combination of RT and GO modeling approaches.
They consider the gap within row, the limit distance from soil layer to
bottom leaf layer, the growth stage, the FOV effect etc (see Fig. 6).

The pioneering work was reported by Chen et al. (2002) who took
into account the gaps along illumination and viewing directions. They
proposed a bi-directional gap model on the basis of the idea of gap
probability (Li and Strahler, 1988) of discrete vegetation canopy plus
the inter-correlation of continuous vegetation developed by Kuusk
(1985). This model can be used to explain the “hot spot” phenomenon
in the TIR region. The improvement was achieved based on the
KIM1983 model (Kimes, 1983). Yan et al. (2003) proposed a similar
work to simulate the hot spot effect of row-planted vegetation with the
idea of gap probability (Li and Strahler, 1988) for a discrete vegetation

canopy. This includes notably the overlap index (Li and Strahler, 1986)
of conifer forest canopy introduced by “Li-Strahler” to express the
correlation between the sun and view directions. It should be noted that
the Li-Strahler GO models were originally aimed to simulate the BRF in
the VNIR band.

Yu et al. (2004) further improved the row model with gaps to be
able to consider a limiting distance between the soil and leaf. This made
the position of the hot spot phenomenon more accurate and widely
accepted by the TRD modeling community. The Fovmod model (Ren
et al., 2013) was developed to simulate the radiance with finite FOV
based on the YU2004 model, the SOB1990 model (Sobrino et al., 1990)
and the Extended DART model (Guillevic et al., 2003). Du et al. (2007)
found that wheat ears will change the DBT pattern in the field experi-
ment and proposed a new model considering the soil layer, leaf layer
and ear layer (SLEC model). For SLEC, the leaf layer contribution is
simulated based on the RT model KIM1980, and the ear contribution is
simulated by the Li-Strahler GO model (Li and Strahler, 1986).

Table 12 summarizes the five typical hybrid models. The most cited
one is YU2004 which considers the gap within the row and also the
limiting distance between the soil and leaf layer. However, the number
of cited times is obviously lower than that of landmark papers about the
RT or GO models. Their complexity limits their practicability in fact. It
can be seen that the KIM1983 model in Table 11 is cited by almost all of
the hybrid models in Table 12 as it is used as the basis model.

4.4.4. 3D models
All the models in Sections 4.4.1–4.4.3 are physically-based models

based on very simplified landscape. For instance, classic RTM considers
that the vegetation canopy is a homogenous and continuous medium.
Therefore, it is hardly extendable to discrete vegetation canopies. On
the other hand, GOM model neglects the multiple-scattering mechan-
isms within canopy (Eq. (17)) or just uses a component brightness

Table 11
List of typical GO models for discrete and row-planted canopies, as in Table 7.

Name Authors Year Main features Basic model Cited time

SUT1977 Sutherland and Bartholic 1977 Abstract the row-planted scene to infinite long box – 87
JAC1979 Jackson et al. 1979 Calculate the component fraction in the cross row plane SUT1977 155
KIM1983 Kimes 1983 Calculate the component fraction in any plane JAC1979 150
CAS1989 Caselles and Sobrino 1989 Propose three view factors to calculate single scattering KIM1983 149
SOB1990 Sobrino and Caselles 1990 Considering the FOV effect CAS1989 131
MGP Pinheiro et al. 2004 First GO model for discrete forest canopy Li-Strahler GO model 82
CCM Cao et al. 2015 First GO model considering contribution of roads KIM1983 10

Fig. 6. Three typical row-planted scenes for hybrid TRD models: (a) no space between soil and leaf, (b) a limit distance from soil to leaf (c) wheat with ears and their
virtual scenes (d-f).

B. Cao, et al. Remote Sensing of Environment 232 (2019) 111304

15



temperature concept (Eq. (16)) to circumvent the simulation of the
multiple scattering effects. The hybrid model is a compromise scheme
which combines the advantages of the RTM and the GOM. However,
this is at the cost of strong simplifications considering the vegetation
canopy 3D architecture. Instead, 3D models can make it possible to
precisely describe the radiation regime and the DBT pattern over a
virtual heterogeneous scene owing to a detailed simulation of vegeta-
tion morphology and growth characteristics.

In the TIR region, three categories of 3D models are widely used:
Monte Carlo, Radiosity and Ray-tracing. Xu et al. (2002) proposed a
matrix expression of the thermal radiative characteristics for an open
complex medium in considering the scattering effect between compo-
nents. The scattering increment was simulated by reverse Monte Carlo
approach. The DART model (Gastellu-Etchegorry et al., 1996) was ex-
tended to the TIR domain by Guillevic et al. (2003). The radiation
propagation of DART is tracked with a ray tracing approach combined
with the discrete ordinate method. The Extended TIR DART model can
also consider the contribution of atmospheric emission. It was further
extended to DARTEB (Gastellu-Etchegorry, 2008) to simulate the en-
ergy budget over urban surfaces by a combination of the radiative
transfer module and energy balance module. The RGM model (Qin and
Gerstl, 2000) was even extended as TRGM (Liu et al., 2007) to simulate
the DBT pattern. It was coupled with the Cupid model to simulate the
dynamic component temperatures automatically (Huang et al., 2011)
and further extended to be TRGMEB model (Bian et al., 2017b) with
combination of the energy balance module as SCOPE. To determine the
leaf level temperature distributions of a 3D canopy, the THERMO
(Dauzat et al., 2001) and BAI2016 (Bailey et al., 2016) models were
achieved by coupling with radiation budget and energy balance mod-
ules.

Table 13 lists the six typical 3D models. All of them were developed
in the 2000's, which can be explained in terms of computational lim-
itation in the past. Most of the 3D models are used to cross validate
other models or to simulate images for future satellite missions because
of their high accuracy.

4.4.5. Parametric models
As noted above, many physical models were designed to simulate

the TRD pattern of vegetation canopies. However, the introduction of
too many input parameters hindered their operational use. Indeed, for
satellite remote sensing applications, there exists a real difficulty in
obtaining all these input parameters in an accurate way. Therefore,
parametric models were primarily invented to be a trade-off between
physical accuracy and operational implementation. Recently, four
kernel driven models have been proposed: ROSS-LI (Peng et al., 2011)
and RL (Duffour et al., 2016b; Lagouarde and Irvine, 2008) are exten-
sions of VNIR kernel models to TIR region, whereas LSF-LI (Su et al.,
2002) and VIN2012 (Vinnikov et al., 2012) were specially designed for
the TIR region. These models are summarized in Table 14. It can be
seen that the VIN2012 is the most cited one. In addition, VIN2012 and
RL were combined by Ermida et al. (2018b) to form a new parametric
model with the ability to simulate the shadowing effect in daytime and
the emissivity anisotropy in nighttime.

The kernel driven model was originally proposed by Roujean et al.
(1992) to simulate the directional signatures of land surface reflectance.
However, the TIR kernel driven models can be used to fit the hemi-
spherical pattern of BOA thermal radiance, BOA DBT and also DRT. The
LSF-LI, ROSS-LI and VIN2012 are linear combinations of three kernels
as shown in Eq. (18–20), where Kgeo, Kvol are the two kernels depending
on the solar-target-view geometry, and fgeo, fvol, fiso are three kernel
coefficients to be estimated. The isotropic kernel Kiso is omitted in the
equations. For these three linear kernel models, the Kgeo kernel is Li-
DenseR (Li and Strahler, 1992), LiSparseR (Li and Strahler, 1986) and
Solar (Vinnikov et al., 2012) kernels, the Kvol is LSF (Li et al., 1999),
RossThick (Ross, 1981) and Emissivity (Vinnikov et al., 2012), re-
spectively. Noting that these kernels are a simplification of physics with
some necessary assumptions but still preserving the essence of their
basic physical modeling ability. The combination of three kernels with
different basic signatures allows describing almost all observed sig-
natures thanks to an inversion procedure of kernel coefficients that
provides the contribution for each of the basic signatures.

= + +I f K f K f( , , , ) ( , , , ) ( , , , )outgoing v v s s geo geo v v s s vol vol v v s s iso

(18)
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= + +DRT f K f K f( , , , ) ( , , , ) ( , , , )v v s s geo geo v v s s vol vol v v s s iso

(20)

Roujean (2000) proposed a non-linear parametric model to simulate
surface BRF in the VNIR with a focus on the simulation of the hot spot
effect. Roujean and Lagouarde et al. extended this model to the TIR
band by replacing the reflectance by the DBT (named as RL model
(Duffour et al., 2016b; Lagouarde and Irvine, 2008)). The RL model is
the only one with a non-linear expression, as shown in Eq. (21). There
are also three parameters to be estimated: the nadir brightness

Table 12
List of typical canopy hybrid models, as in Table 7.

Name Authors Year Main features Basic models Cited times

CHE2002 Chen et al. 2002 Consider the gap within row KIM1983,
Li-Strahler, 1988
Kuusk, 1985

26

YAN2003 Yan et al. 2003 Consider the gap within row KIM1983,
Li-Strahler, 1988
Li-Strahler, 1986

28

YU2004 Yu et al. 2004 Consider a limit distance between soil and leaf CHE2002 and
GANIS, 1997

54

SLEC Du et al. 2007 Consider the ear of wheat KIM1980 and
Li-Strahler, 1986

25

Fovmod Ren et al. 2013 Consider the FOV effect YU2004,
SOB1990,
DART, 2003

17

Table 13
List of typical 3D models, as in Table 7.

Name Authors Year Basic model Cited time

THERMO Dauzat et al. 2001 Energy balance Equation 135
XU2002 Xu et al. 2002 Monte Carlo 18
Extended DART Guillevic et al 2003 DART, 1996 47
TRGM Liu et al. 2007 RGM, 2000 43
TRGMEB Bian et al. 2017 TRGM, 2007 1
BAI2016 Bailey et al. 2016 Energy balance Equation 21
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temperature BTN, the temperature difference (ΔTHS) in the hot spot
geometry compared to nadir observation, and a scale factor k to de-
scribe the width of the hot spot. The RL model also can be used to
simulate the DRT by changing the left item to be DRT(θv,φv,θs,φs) as in
Eq. (20).

= +
+
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Until now, they have been used to correct the angular effect of GOES
EAST and GOES WEST LST products (Vinnikov et al., 2012) and MODIS
and SEVIRI LST products (Ermida et al., 2018a, 2017). Liu et al. (2018)
compared the ROSS-LI, VIN2012 and RL kernel models using 4SAIL as
the reference and found that they underestimate the hot spot effect for
continuous scenes. Ermida et al. (2018b) attempted to combine the
VIN2012 model and RL model to overcome this problem. This problem
should be improved before being applied to thermal infrared satellite
acquisitions in order to achieve accurate angular effect corrections for
LST products (Cao et al., 2019).

4.4.6. A roadmap of vegetation TRD model development
As reviewed in Sections 4.4.1–4.4.5, BRF models play an important

role in the development of TRD models. Parts of them were even ex-
tended into the TIR band directly, such as the ROSS-LI and RL para-
metric models. Most of them have been improved by considering the
self-emission of components while keeping the ability to deal with

reflectance and transmittance for the BRF simulation. Fig. 7 shows the
relationship between the typical RTM, GOM, HM, 3D and PM and
corresponding BRF models (in blue font).

Fig. 7 illustrates the fact that the 4SAIL and KIM1983 models were
two meaningful TRD models in the physical model development road.
For 4SAIL, it successfully inherited the four stream radiation transfer
solutions from SAIL model, so it can simulate multi-scattering in a
homogeneous canopy precisely. The 4SAIL was often used as a bench-
mark to validate other analytical RTMs, such as the CE-P model, and it
was also used to renew the LUT of the cavity effect factor, which has
been the main parameterized solution for DBT simulation of a homo-
geneous canopy. In addition, it is coupled with an energy balance
module to become a comprehensive SVAT model (SCOPE). For
KIM1983, it firstly gave a solution of the component fraction in any
plane of an infinitely long row box. It is the basic model of further
development of GO models and also plays as the basis of hybrid models.
In addition, the first GO model (CCM) that could simulate a mixed pixel
with crop and road also referred to the KIM1983 model.

A striking feature to be observed from Fig. 7 is that most of the
physical TRD models were developed before 2010 and that the devel-
opment of parametric models is more recent. This is mostly due to the
two following reasons: (1) the classical physical solutions of homo-
geneous and discrete scenes were judged mature enough to support the
development of the parametric models; (2) the demand for an angular
correction of LST products matches the criterion of operational effi-
ciency. However, too many input parameters limited the operational
use of physical models, meanwhile inverting parametric models

Table 14
List of typical semi-physical models, as in Table 7.

Name Authors Year Basic model Cited time

LSF-LI Su et al. 2002 LSF, 1999 and Li-Strahler, 1992 7
ROSS-LI Peng et al 2011 Ross, 1981 and Li-Strahler, 1986 8
VIN2012 Vinnikov et al. 2012 Mathematical statistical model 29
RL Duffour et al. 2016 Hot spot BRF model 9
VIN2012-RL Ermida et al. 2018 VIN2012 and RL models 1

Fig. 7. The relationship between TRD models and BRF models.
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behaved better numerically in virtue of their linear formulation.

4.5. TRD modeling over urban scenes

Urban surface temperature plays an important role in the in-
vestigation of urban climate and environment (Voogt and Oke, 2003).
The TRD effect leads to variations of urban surface brightness tem-
perature in different directions up to 10 K (Lagouarde et al., 2010;
Voogt and Oke, 1998). The major challenges of urban TRD modeling is
related to the complex 3D urban surface form, material temperature
heterogeneity and emissivity properties that are similar to a vegetation
canopy. Until now, four comprehensive experiments were carried out in
different cities to study the urban energy budget, including the
UBL-ESCOMPTE (Cros et al., 2004), BUBBLE (Rotach et al., 2005),
CAPITOUL (Masson et al., 2008) and one in Vancouver (Voogt and Oke,
1998). There are two kinds of TRD models (3D and PM) over urban
areas, as summarized in Table 15 and described below.

4.5.1. 3D models
A visualization model for interpolating 2D thermal satellite data

over a 3D urban surface is developed by Nichol (1998) to study the
difference between nadir temperature and complete temperature
(Adderley et al., 2015; Voogt and Oke, 1997) over urban surfaces. The
SUM model aimed at calculating the surface-sensor-sun relations was
proposed by Soux et al. (2004). The urban canopy unit of SUM was
abstracted as a building-street-building-alley combination in both the x-
and y- directions, with the possibility of street and alley widths chan-
ging between the x- and y-directions. All surface elements within the
sensor's FOV that are not blocked by other buildings contribute to the
sensor-detected radiance weighted by their view fractions. The view
fractions of 7 components (roofs, sunlit and shaded walls, and sunlit
and shaded streets and alleys) are calculated by a contour integration
based on Stokes theorem while all roofs are treated as flat in this model.
The urban road network is usually not explicitly described, but is de-
scribed as an equivalent medium, for example, a gridded distribution of
roads with different widths and densities. The SUMmodel was extended
(Voogt, 2008) to be suitable for actual building structure and validated
by in-situ measurements in a light industrial district of Vancouver of
British Columbia (Voogt and Oke, 1998). Ma (2009) proposed a similar
computer model to simulate the thermal infrared radiation of 3-D urban
targets (CoMSTIR) which was used to assess the thermal anisotropy on
remote estimation of urban thermal inertia (Zhan et al., 2012). Dyce
and Voogt (2018) investigated the influence of trees on urban TRD by
considering the tree crown in the SUM model. They found the trees will
both decrease and increase anisotropy as a function of tree crown plan
fraction and building plan fraction.

To simulate the TRD over an urban canopy, Lagouarde et al. (2010)
proposed a simple linear aggregation model with 6 components (sunlit/
shaded walls/streets/roofs) weighted by their corresponding surface
ratios in the viewed urban scene. The surface ratios are calculated by
POV-Ray software based on the real 3D form of the city of Toulouse.

The component directional brightness temperatures are simulated by
the SOLENE urban energy budget model (Hénon et al., 2007) while the
city is described by 18 canyon streets oriented in all directions in 10°
steps. Results showed that TRD effect was underestimated by about
15–30%.

The scattering contributions of environment and atmosphere are
simulated exactly in the TITAN model (Fontanilles et al., 2008). Here,
the total incident signal is composed of solar reflection from the ground,
atmosphere, ground emissions, and neighboring environmental effects.
Therefore, the model can simulate the signal in the infrared spectral
domain from 3 to 14 μm. The sensor level simulation is achieved
through a coupling with the MODTRAN model. The street canyon
structure is used in this model while the roofs of houses are slightly
inclined to be more realistic. Each synthetic scene is modeled by tri-
angular facets whose size is chosen by the user. This model was eval-
uated by the measurements in the CAPITOUL experiment (Masson
et al., 2008) with radiative temperature anisotropy amplitude up to
10 K.

The DART model (Gastellu-Etchegorry et al., 2017) can simulate
radiative transfer of heterogeneous areas, taking into account detailed
3D surface architecture. It has been widely used for vegetation and
urban canopy simulations. It simulates the main mechanisms of inter-
actions between surface and atmosphere from VNIR to TIR domain
(Gastellu-Etchegorry et al., 2004) by a ray-tracing method. The outputs
are reflectance, radiance, radiative temperatures, directional images at
any latitude in the atmosphere, and also the urban 3D radiative budget.
Kanda et al. built an outdoor micro-scale model (named COSMO) of an
urban canopy with 32× 16 blocks within 100×50m2 in Japan
(Kanda et al., 2007). Morrison et al. (2018) proposed a method to ex-
tract the component brightness temperature from near surface TIR
camera observations over COSMO and simulate the directional aniso-
tropy by DART. They found that the maximum difference between off-
nadir and nadir directions can be up to 6.18 K at 13:00. Recently, DART
was coupled with energy models for mapping the anthropogenic fluxes
of Basel, London and Heraklion (Chrysoulakis et al., 2018). For that,
DART combined with urban geometric database and BOA irradiance to
obtain urban radiative budget fluxes from time series of Landsat-8
images at 100m spatial resolution.

The distribution of the component temperature for an urban canopy
is a stringent requirement by users eager to use this information as
inputs for most analytical models (such as TITAN and DART). However,
these TIR properties may vary rapidly in time, according to the local
meteorology. It is an outcome of the urban surface energy budget.
Asano et al. (1996) developed a spherical thermography technique to
better sample the 3D temperature distribution of urban areas. Many
microscale and mesoscale three-dimensional urban energy balance
models have been developed with the aim of determining the tem-
perature distribution and also the component fluxes (net radiation flux,
sensible heat flux, latent heat flux, storage heat flux and so on). The
most widely used urban energy budget models in TRD related research
include the TUF-3D model (Krayenhoff and Voogt, 2007), the SOLENE

Table 15
List of typical urban TRD models, as in Table 7.

Name Authors Year Main features Cited time

SUM Soux et al. 2004 building-street-building-alley structure; no scattering 89
SUMVEG Dyce and Voogt 2018 Considering the tree crowns 7
LAG2010 Lagouarde et al. 2010 Linear combination of sunlit/shaded walls/streets/roofs 58
TITAN Fontanilles et al 2008 Considering the singe scattering 22
Extended DART Guillevic et al 2003 Considering the multi scattering 47
VIN2012 Vinnikov et al. 2012 Containing a emissivity kernel and a hot spot kernel 29
USEA Sun et al. 2015 Aimed at simulation urban surface emissivity anisotropy based on VIN2012 model 4
RL Duffour et al. 2016 Good performance for hot spot effect 10
GUTA-sparse Wang et al. 2018 sparse urban canopy without mutual shadowing effect –
GUTA-osg Wang et al. 2018 dense urban canopy with mutual shadowing effect –
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model (Hénon et al., 2011, 2007), the DARTEB model(Gastellu-
Etchegorry, 2008) and the TEB model (Masson, 2000). The TUF-3D
model was also used to evaluate the urban emissivity model based on
sky view factor (Yang et al., 2016, 2015). Within these models, the
radiation module, the conduction module and the convection module
are considered with different degrees of complexity. Most of them use
the canyon street model with flat roof while some models use the
regular cubic block model (Krayenhoff and Voogt, 2007). Grimmond
et al. (Grimmond, 2010) performed a comparison of 33 widely used
urban energy budget models using a dataset containing net all-wave
radiation, sensible heat, and latent heat flux observations for an in-
dustrial area in Vancouver, British Columbia, Canada. They found that
the models simulate well net all-wave radiation but poorly the latent
heat flux.

4.5.2. Parametric models
Parametric models for urban canopies have been increasingly con-

sidered in recent years. At first, they aimed to simulate directly the TIR
signal by kernel driven models developed for a vegetation landscape.
For instance, the RL model was used to describe the urban TRD effect
over an urban surface (Duffour et al., 2016b; Lagouarde and Irvine,
2008). Results show that the R2 of RL model can be up to 0.80 for
airborne multi angle dataset collected over the city of Toulouse
(Lagouarde et al., 2010). The VIN2012 model (Vinnikov et al., 2012)
was also used to fit the limited observations over urban canopy (Jiang
et al., 2018) in order to study the estimation of complete temperature of
urban surface (Adderley et al., 2015; Voogt and Oke, 1997) by different
DRTs.

Wang et al. proposed two new parametric models. One for a sparse
urban canopy without mutual shadowing (Wang et al., 2018b) and one
for a dense urban canopy with mutual shadowing effect (Wang et al.,
2018a) respectively. The GUTA-sparse model was validated with air-
borne multi angle dataset over the city of Marseille (Lagouarde et al.,
2004). The RMSEs obtained for four flights were between 0.40 and
0.56 K while the anisotropy amplitudes at the four flight times all ex-
ceeded 8 K. The GUTA-osg model was evaluated based on the aniso-
tropy of airborne measurements of temperature over the city of Tou-
louse (Lagouarde et al., 2010), which gives RMSEs<0.8 K and
R2 > 0.85. To describe the urban surface emissivity anisotropy, Sun
et al. (2015) developed a parametric model (USEA) with three kernels
referenced to the VIN2012 kernel model.

In summary, two conclusions can be drawn. The first one is that the
energy budget coupling model is widely discussed for urban canopies.
The other tendency is that more and more parametric models were
developed in recent years. Model accuracy versus practicality appears
to decide how to retain the best model. Clearly, a better trade-off be-
tween these two factors should be achieved in the future.

5. Potential applications of TRD models

Applications of TRD models may be grouped into two clear ten-
dencies. (1) The development of practical parametric models for im-
plementation at the scale of satellite observations to improve the pre-
cision of LST/LSE and SULR products. For instance, a possible option is
to perform an angular normalization for the LST product, including
correcting the off-nadir value to be the nadir value (Ren et al., 2014) or
the hemispherical-integrated value (Vinnikov et al., 2012). In addition,
integrating the ground leaving radiance in the upper hemispherical
space results in a high-quality SULR product by considering the TRD
effect (Hu et al., 2016b, 2017). However, the existing parametric
models are still deficient, particularly as they underestimate the hot
spot effect (Liu et al., 2018). (2) An enhanced consideration of surface
structural elements and environmental conditions. Some physical
models were used to separate the LSCT based on ground and airborne
measurements and satellite observations (Zhan et al., 2013). In this
section, background, difficulties, solutions and effectiveness will be

summarized for three potential applications of TRD models, including
LST products angular normalization, SULR estimation and LSCT se-
paration. No global products of LST, SULR and LSCT considering TRD
effect have been generated until now since there are still many chal-
lenges to overcome.

5.1. LST products angular normalization

The TRD effects place a severe limitation for comparing LST re-
trievals from different pixels in the same image and also for comparing
LST derived from different images acquired under different viewing
configuration. Ultimately, differences among satellite products due to
the viewing geometries pose a serious limitation to the combined use of
those products (Ermida et al., 2017). The reported absolute difference
(mean bias) between the MODIS LST and SEVIRI LST can reach 12 K
(4.5 K) over sparse vegetation canopies if observation geometries are
disregarded (Ermida et al., 2014; Guillevic et al., 2013; Trigo et al.,
2008), which emphasizes the need to account for illumination and
viewing configurations for LST product. The MODIS sensor, mounted
onboard a sun-synchronous orbit platform, does not see the surfaces
with a unique viewing direction, conversely to SEVIRI that is mounted
on a geostationary platform. Ideally, both MODIS and SEVIRI LST
products should be normalized to a reference viewing geometry. It
should be pointed out that angular normalization of LST products will
not account for all existing differences among the products (i.e., dif-
ferences induced by spectral or temporal or spatial configurations),
which need to be characterized by considering collocated values ob-
tained with similar view and illumination directions. Therefore, in the
LST comparison of MODIS and VIIRS (Liu et al., 2015), the SNOs Tool
(Simultaneous Nadir Overpasses (SNOs) Tool, 2014) was proposed to
restrain their temporal and viewing angle differences. The SNOs Tool
selection can make sure that the difference between LST products is
coming from sensor calibration or the estimation algorithm, not from
the TRD effect.

DART, MGP and SVAT models were used to account for the TRD
effect in LST product inter-comparison or validation (Ermida et al.,
2014; Guillevic et al., 2013, 2012), with difficulties induced by model
requirements of many input parameters. Fortunately, parametric TRD
models can normalize the angular effect for existing LST products, in-
cluding correction to the nadir direction and hemispherical direction.
Ren et al. (2014) corrected the estimated DRT to the nadir direction for
WiDAS airborne multi angle dataset by using the ROSS-LI model. They
found that the temperature difference between the normalized nadir
temperature and the minimum temperature of the observing directions
was 0.5–2.0 K for most vegetated pixels and always several Kelvin for
most non-vegetated pixels. The VIN2012 model was used to correct the
LST product of MODIS and SEVIRI to the nadir direction by Ermida
et al. (2017). Their daytime difference decreases from 3.5 K to 2.3 K
after adjustment to the nadir direction. The RL model was also used to
achieve the angular normalization coupled with VIN2012. Better per-
formances were obtained by VIN2012-RL compared to RL model,
especially for the nighttime data and low tree coverage (Ermida et al.,
2018b). In addition, Vinnikov et al. identified the difference between
estimated DRT and hemispherical measurement of pyrgeometer and
proposed the VIN2012 model (Vinnikov et al., 2012) to obtain hemi-
spherical temperature from two observations of GOES-EAST and GOES-
WEST, to be compared with the in-situ temperature from a pyrge-
ometer. The corrected difference between the LST product and pyrge-
ometer measurement estimated values can be better than 0.5 K
(Vinnikov et al., 2012).

The corrected nadir LST have a closer correspondence to the nadir
radiometer measurement (Duan et al., 2019; Li et al., 2013a; Niclòs
et al., 2011) in the experiments. The corrected hemispherical LST has a
better correspondence to pyrgeometer measurements in the field. The
corrected hemispherical LST has the physical meaning of upward
hemispherical integrated LST value while the pyrgeometer obtains the
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downward hemispherical integrated value (Allen et al., 2017). The
pyrgeometer measurement is most widely used because this observation
is available for almost all flux stations, such as SURFRAD stations in the
USA (Duan et al., 2019; Li et al., 2014c; Liu et al., 2015; Wang and
Liang, 2009; Yu et al., 2009), HiWATER and CERN stations in China (Li
et al., 2014b).

As already mentioned, physical TRD models and parametric models
can be used to perform angular normalization. However, detailed
structural information and component temperature distribution are
difficult to obtain, which restricts the implementation of physical
models. On the other hand, the lack of quasi-synchronous multi-angle
datasets at the satellite scale limits the implementation of parametric
TRD models. In order to decrease this constraint, multi-observations at
different times in the same location (Ermida et al., 2017) and multi-
pixels of different location with the same land cover type (Liu et al.,
2018) are combined to form an equation system of multi-angle ob-
servations that can be used to estimate the kernel coefficients. Until
now, only the GOES and SEVIRI disks are normalized by parametric
models. Further work is needed to make the algorithms more practical
and the LST product more consistent.

5.2. SULR estimation considering the TRD effect

SULR is an essential component of Earth surface radiation balance.
The meteorological, hydrological, and agricultural research commu-
nities require an accuracy of 5–10W/m2 for SULR retrieved from sa-
tellite data. However, the RMSE of existing products (e.g. CERES-FSW,
ISCCP-FD and GEWEX-SRB) ranges from 19.92 to 33.6W/m2 (Cheng
and Liang, 2016). The methods for estimating SULR can be divided into
three main categories: 1) the physical temperature emissivity algorithm
(Tang and Li, 2008; Wang et al., 2005) with inputs of broadband
emissivity, radiometric temperatures and downward longwave radia-
tion (DLR); 2) the hybrid method (Cheng and Liang, 2016; Jiao et al.,
2015; Wang et al., 2009), with a relationship between clear-sky TOA
radiance and SULR built using an artificial neural network model or a
multivariate linear model based on an extensive simulated database.
The separation between LST and LSE is avoided in order to improve the
accuracy; 3) hemispherical integration methods with consideration of
the Earth surface TRD effect (Hu et al., 2017, 2016b).

The importance of the TRD effect of SULR estimate over vegetation
and urban canopies had been reported long before (Otterman et al.,
1997; Sugawara and Takamura, 2006). Cheng and Liang (2014) pro-
vided error ranges of surface longwave net radiation incurred by ig-
noring TRD of non-vegetated surfaces (water, snow, sand, soil and
minerals). These works led to the pioneering development of con-
sidering the TRD effect in SULR estimation by Hu et al. (2016b). In this
work, the 4SAIL model was used to simulate the multi angle DBT and
also SULR dataset coupling with the MODTRAN atmospheric radiation
transfer model as a support. Based on the ROSS-LI model, a selection of
five angles was suggested to do the fitting in the upper hemispherical
space. Firstly, the FRA1997 model helped to simulate the LSE TRD of
continuous canopies with prior information about component emis-
sivity and LAI. DRT was estimated for each viewing direction by a
single channel algorithm. Then, the SULR considering TRD can be ob-
tained by hemispherical integration of SULR in each direction. Thanks
to this improvement, the RMSE and MBE are decreased about 7.5W/m2

and 10.5W/m2 at most (Hu et al., 2016b), compared to the traditional
SULR algorithm that does not consider the TRD effect.

In extending this approach to discrete and row-planted scenes, the
FRA1997 model should be improved to be able to simulate the direc-
tional canopy emissivity of these scenes, such as Bian et al. (2018) did
recently. However, up to this date, no similar LSE directionality model
for non-vegetated surface exists. Hu et al. (2017)) attempted to develop
a direct physical algorithm by skipping the step of DRT and directional
emissivity separation. At first, the goal was to simulate the directional
surface outgoing spectral radiation in all upward directions by ROSS-LI

kernel driven model with inputs from multi-angle observations. Then
the directional surface outgoing spectral radiation was converted to
directional longwave radiation by a linear regression equation. The
SULR is finally obtained by integrating the directional longwave ra-
diation. The main idea is similar to the hybrid method of traditional
SULR solutions in omitting the process of LST/LSE separation. This is
simpler to achieve and also more accurate, with further improvement of
RMSE (MBE) equal to about 0.6 (1.7) W/m2 (Hu et al., 2017). The
largest asset of this direct physical algorithm is the potential to be ap-
plied in multiple land surface types, although it has been evaluated only
over vegetation canopies and houses. More work needs to be done to
evaluate its accuracy over other land covers and also to construct input
multi angle datasets based on existing TIR satellite sensors.

5.3. Generating global LSCT product

LSCT has a clearer physical meaning compared to the pixel-aver-
aged temperature. Demand for LSCT product is increasing for many
diverse applications, such as land surface heat flux estimation based on
two source energy balance (TSEB) model (Norman et al., 1995). The
LSCT can be estimated from multi-angle, multi-spectral, multi-pixel,
multi-resolution and multi-temporal observations. The multi-angle so-
lution is relatively more mature than others because the band depen-
dent emissivity is very difficult to determine for multi-spectral methods
(Song and Zhao, 2007), the multi-pixel and multi-resolution methods
cannot achieve pixel to pixel estimation (Zhan et al., 2011) and the
temporal model parameters of multi-temporal method are difficult to
determine (Zhan et al., 2013; Zhao et al., 2014). Here, only the multi-
angle LSCT estimation methods are summarized since they strongly rely
on TRD modeling progress. Reports about retrieval of LSCT over urban
areas are scarce since they have a more complex 3D architecture (in-
cluding roofs, walls, roads, vegetations and so on) than a vegetated
canopy (Fontanilles and Briottet, 2011). This section will focus on the
multi-angle LSCT estimation methods of vegetation.

For the continuous vegetated canopies, assuming that the number of
sensor viewing angles (m) is not less than the number of canopy layers
(n), the brightness component profile can be obtained by a least squares
approach based on the KIM1980 model (Kimes, 1981) as shown in Eq.
(22). Liu et al. (2012) retrieved the brightness temperature of leaf and
soil components using a semi-physical approach that links them to the
VNIR reflectance.
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where the matrix PBT4 shows the brightness temperature profile of dif-
ferent height (x1 and xn represent the top and bottom layer of the ca-
nopy, respectively), the component proportion matrix A is determined
by the canopy 3D structure and the viewing angle, and MBT is the
matrix of BOA DBT measured by the TIR sensor in multi directions.
Here, n is the total layer number and m is the total observation number.

In order to further estimate the radiometric temperature of each
component, Xu et al. (2002) derived an improved matrix equation (see
Eq. (23)), with separation of the component temperatures and emis-
sivities. The innovative solution was to propose a matrix formed by
component effective emissivity, which is determined by the component
emissivity and the canopy structure to consider multi scattering be-
tween the components. It provides a generic framework to address LSCT
estimation for continuous, discrete and also row-planted scenes (Fan
and Xu, 2005). Bian et al. (2016) separated the leaf, sunlit soil and
shaded soil temperatures from airborne WiDAS data based on Eq. (23)
and further discussed the importance of considering a clumping index
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in the LSCT estimation over discrete and row-planted scenes (Bian
et al., 2017a) within this generic framework.
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where L represents the multi angle measured radiance vector without
the atmospheric effect, PT represents the blackbody thermal radiance
vector with the component radiometric temperatures (Tn), and W re-
presents the matrix of component effective r-emissivity (i.e. Eq. (6) in
Table 1) which is determined by the component emissivity and the
canopy structure. Jia et al. (2003) and Li et al. (2001) retrieved the
radiometric temperatures of leaves and soil at the satellite pixel scale
using two angular observations from ATSR. Only two component
temperature values can be obtained from two viewing angles, such as
the ATSR series. However, component temperatures distinguishing
sunlit and shaded status (Timmermans et al., 2009), even temperature
profile from canopy top to bottom, can be retrieved from observations
with more viewing angles. Most LSCT estimation studies were done
based on airborne observations (Bian et al., 2016; Fan et al., 2004; Liu
et al., 2012) and ground-based multi-angle measurements (Chehbouni
et al., 2001; Francois et al., 1997; Kimes, 1983; Menenti et al., 2001;
Merlin and Chehbouni, 2004; Xu et al., 2001). Unmanned Aerial Ve-
hicle (UAV) multi-angle observations potentially permit to estimate
LSCT with better temporal and spatial resolutions, and supplement
traditional ground-based and airborne observations. The LSCT can even
be extracted directly from UAV images acquired from low flying alti-
tude (Hoffmann et al., 2016).

However, hitherto, no global LSCT product has been published. For
the satellite LSCT inversion, the fraction of vegetation cover (FVC) is
widely used to express the contribution of different components while
the scattering effect is simplified. The atmospheric effects make the
LSCT estimation from both airborne and spaceborne sensors more dif-
ficult (Coll et al., 2019; Jacob et al., 2003). The ATSR series sensor can
supply observations with two viewing angles and two TIR bands. The
split window band configuration can ensure accuracy of atmospheric
correction. The two viewing angles approach has the potential to se-
parate the leaf and soil temperatures, at least in theory. The TRD
models have made a lot of progress, also the atmospheric correction
algorithms (Li et al., 2013d) and LSE estimation methods (Li et al.,
2013e). For example, the recently developed CE-P radiative transfer
model (Cao et al., 2018b) directly links the LAI and viewing angle to the
directional brightness temperatures with the ability to separate the
zero, first, and second order scattering analytically. It potentially im-
proves the accuracy of LSCT estimates compared to the former FVC
solution. Furthermore, the two SLSTR sensors onboard Sentinel-3A and
Sentinel-3B can jointly cover the Earth surface within one day. The
virtual satellite constellation of polar and geostationary sensors can
contribute multiple observations for any location within one day. De-
veloping an operational LSCT estimation algorithm and generating the
associated global product would be valuable. A new integrated retrieval
method that combining multi-angle, multi-spectral, multi-pixel, multi-
resolution and multi-temporal methods by using observations from
virtual satellite constellation is a promising solution.

6. Future development and perspectives

6.1. TRD modeling over complex Earth surface

As reviewed in Section 4, most of the existing TRD models show
high performance for pure pixels on flat ground. The topographic effect
and pixel mixture are not widely discussed although the rugged terrain
covers approximately 24% of the Earth land surface (Wen et al., 2018)
and about 65% of the 1 km scale pixels of the Earth land surface are
mixed (Yu et al., 2018).

Topography may change the TRD pattern of mountain forest ca-
nopies significantly. Lipton and Ward (1997) simulated the surface
temperatures using a mesoscale numerical weather prediction model
with high-resolution digital elevation data (30m) from the USGS Di-
gital Elevation Map datasets. The TRD effect reached as much as 9 K
while assuming a satellite sensor resolution of 14 km. Even larger biases
were found with finer sensor resolutions. The brightness temperature
difference was up to 6 K over mountain forest canopies and varied as a
function of the time of day, as indicated by GOES 8, 9, 10 simultaneous
observations (Minnis and Khaiyer, 2000). Yan et al. (2016) proposed a
longwave topographic radiation model considering all possible radia-
tion-affecting factors over rugged terrain, including terrain obstruction,
shadows, sky shielding by surrounding terrain, radiation contributed by
the nearby terrain and invisibility of some pixels in observing direction.
They found that topographic effects can result in longwave net radia-
tion differences as high as 100W/m2. Even on the flat ground, the TIR
pixel always contains different end-members, such as water bodies,
leafy and woody material, and man-made material (Cao et al., 2015).
The linear spectral mixture model could not consider the mutual sha-
dowing and scattering effect at the boundary. The spatial resolutions of
TIR sensors are relatively coarser than those of VNIR sensors, with
larger probability of mixed pixels. It is, therefore, expected that the
enhancement of TRD modeling over complex terrain and mixed scenes
in the near future will improve our understanding and application of
remotely sensed LST fields over those surfaces. Such understanding may
also support the comparison of LST estimates from sensors with dif-
ferent spatial resolution over the same region.

6.2. Two ways for developing dynamic TRD model

Multi-angle datasets can be organized by removing cloudy day data
from several day observations in the VNIR band (Zeng et al., 2016).
This approach is based on the assumption that the land surface re-
flectance properties remain unchanged within a time frame (Jiao et al.,
2014). However, for the land surface TIR properties, this is certainly not
true, especially for the LST. Compared to the VNIR region that shows
more inertia in the signal variability, rapid TIR temporal variations
represent a major difficulty to correctly include the directionality issue
in the satellite-derived LST/LSE products. The full potential of the TIR
satellite-based network is limited by the close coupling that exists be-
tween the angular dependence and time dependence. It is almost im-
possible to exploit the angular information without dealing with the
temporal issue. Therefore, for the angular normalization of GOES-EAST
and GOES-WEST network, the observation time difference is always
limited within 15min to restrain the error caused by time shift
(Vinnikov et al., 2012). In addition, analyzing the LST temporal trend
without considering the angular effect is also physically confusing. The
diurnal temperature cycle (DTC) modeling works based on 4-time
MODIS observations within one day were limited by the hypothesis of
isotropy LST (Duan et al., 2014). Recently, the existing nine four-
parameter DTC models were compared to in-situ thermal observations
and LST values from the geostationary MSG and FY-2F sensors without
considering the TRD effect (Hong et al., 2018). The GOT09-dT-τ model
with day-to-day change of residual temperature equal to zero and at-
mospheric optical thickness equal to 0.01 shows the best performance
of the nine models.
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Developing a dynamic TRD model is a potential solution to separate
the close coupling between the angular dependence and time depen-
dence. It can further be split into two aspects. The first one is the
coupling of a TRD model with energy budget models to simulate DBT in
any direction and at any time, such as SCOPE, TRGMEB and DARTEB
models (Bian et al., 2017b; Gastellu-Etchegorry, 2008; van der Tol
et al., 2009). Such category of models requires the tuning of numerous
parameters, which is mathematically and numerically challenging.
Multi-angle observations of different viewing times have the potential
to determine these with supporting of meteorological driving data. The
second solution is assuming dynamic LST results from the dynamic
LSCT (Quan et al., 2014). Then, the angular anisotropy of LST can be
explained by the view fraction variation of components. The TRD and
DTC effects have the potential to be successfully separated. Therefore,
for vegetation canopies with two components (soil and leaf), only the
eight parameters of LSCT DTC models are unknown. These can be easily
estimated using available observations within a given time period, no
matter the viewing time and angle differences, which makes the second
way simpler and more practical. However, for other land surfaces, such
as urban canopies, at least six components have to be considered
(sunlit/shaded roof, road and wall), and the subsequent estimation of
24 unknown LSCT DTC parameters remains challenging. On the other
hand, the error of data pre-processing (geolocation, calibration) will
make the solution of dynamic TIR satellite network very difficult.

6.3. Developing TIR kernel driven models aiming at LST product
harmonization

The parametric model supports the angular normalization and SULR
estimation by considering the TRD effect as discussed in Sections 5.1
and 5.2, respectively. To deal with instantaneous multi-angle observa-
tions, a parametric model offers a more practical use than a physical
model because it does not require inputs of scene structure and com-
ponent temperature distributions. Only the solar and sensor geometries
are needed for a retrieval of the kernel coefficients. There are five ex-
isting TIR kernel models for vegetated surfaces (see Section 4.4.5). The
ROSS-LI and LSF-LI models were selected to correct for the angular
effect of DBT/LST of airborne sensors (Peng et al., 2011; Ren et al.,
2014; Su et al., 2002) while RL, VIN2012 and VIN2012-RL models were
adopted to correct for satellite-derived LST products (Ermida et al.,
2018a, 2017; Vinnikov et al., 2012). The two DBT kernel models for
urban targets (in Section 4.5.2) were also evaluated by airborne mea-
surements, showing RMSE<0.56 K and 0.8 K respectively (Wang et al.,
2018a, 2018b).

The ROSS-LI and RL models were extended to the thermal domain
without considering the physical mechanisms in the TIR region, such as
the zero transmittance of components. The VIN2012 model is a math-
ematically statistic model. The accuracy of existing parametric models
should be evaluated comprehensively by ground and airborne multi-
angle measurements and simulated results of a physical model before
being used to correct the directional anisotropy of TIR satellite ob-
servations. It is reported that all of the existing kernel driven models
will underestimate the hot spot effect for homogeneous canopies (Liu
et al., 2018) which should be overcome in the future to achieve a re-
latively better accuracy for both continuous and discrete canopies (Cao
et al., 2019). The accuracy of existing kernel models for heterogeneous
land surfaces was not discussed until now. To overcome these dis-
advantages, a new kernel driven model suitable for a complex surface
should be developed based on recent progress of TRD physical models.
Maybe some structure relevant information can be extracted from the
VNIR band as a priori knowledge to improve the TIR kernel driven
model. Developing a new heterogeneous kernel is a potential way to
achieve this goal. But more kernels mean more viewing angles in
practice to justify their contribution. Therefore, in terms of accuracy
and practicality, the question will still remain in many cases.

The development of efficient models that can describe satellite-

derived TRD at different spatial scales may be used to move towards a
true harmonization of LST products derived from different sensors. This
is a relevant issue since a global coverage with high temporal sampling
will necessarily require the use of several platforms and, ideally, well
inter-calibrate sensors.

6.4. Designing simultaneous multi-angle multi-band satellite sensors

Current multi-angle observations of a satellite network are con-
strained by differences in viewing time because the LST has significant
temporal variability. The coupling of angular change and temporal
variation makes a high-quality multi-angle dataset very difficult to
obtain and further limits TRD related applications at the satellite scale.
Ideally, there should be a TIR satellite sensor with simultaneous multi-
viewing angles and high revisit frequency. TIR measurements usually
change rapidly at the landscape scale. This is in favor for having high-
resolution pixels clearly. Thus, ideally a constellation of polar orbiting
satellites would appear to be the best solution to meet these require-
ments, which is potentially able to achieve with the onboard ECOST-
RESS, GF-5, foreseen TRISHNA (Lagouarde et al., 2018) and LSTM
(Koetz et al., 2018) missions. A geostationary satellite constellation will
allow to supply high quality multi-angle multi-band observations with
moderate spatial solution.

In this regard, parametric models may represent suitable tools to
devise optimal angular configuration (Hu et al., 2016b; Ren et al.,
2015b). For the minimum angle configuration, Ren et al. (2015b)
suggested a protocol with three values (0, +30, −50) based on the
4SAIL generated dataset and ROSS-LI parametric model with three
kernel coefficients to be estimated. Hu et al. (2016b) further discussed
the best angle configuration using the same dataset and parametric
model. They found that a five angle (0,± 30,± 50) configuration is
preferable compared to the three angle (0, +30 and− 50) or even
seven angle (such as 0,± 10,± 30 and± 50) configurations. Lessons
learned remain nevertheless too limited to decide on a design, as the
4SAIL model is only suitable for depicting a homogenous scene. Be-
sides, the ROSS-LI model is a direct extension of the VNIR model with
limited accuracy in the representativeness of TRD simulation (Liu et al.,
2018). Furthermore, the analysis of Hu et al. (2016b) does not consider
the FOV effect of the linear array imaging mode, which is the main-
stream solution for satellite sensors.

For the scope of developing the best configuration of spectral bands,
Sobrino and Jiménez-Muñoz (2014) proved there exists a minimum
number of TIR bands required to separate the LST and LSE without any
prior knowledge about the land surface. It should be at least 8.9, 10.6
and 12.0 μm. Beyond the NDVI dependent bands, also the water vapor
dependent bands, the fire detecting bands and the cloud identifying
bands should be included to ensure a high-quality dataset. For the best
band configuration, the forthcoming TRISHNA (8.6, 9.1, 10.3 and
11.5 μm (Lagouarde et al., 2018)) and HyspIRI (3.98, 7.35, 8.28, 8.63,
9.07, 10.53, 11.33 and 12.05 μm (Lee et al., 2015)) missions can be
referenced. They are aimed at monitoring the climate change, water
cycle, terrestrial and aquatic ecosystems, Earth surface composition and
change, extreme events, natural disasters, and human health through
high spatio-temporal TIR observations (50–60m resolution and
3–5 days revisit). The spatial resolution is also critical because high
resolution will benefit TRD research but will also lead to a certain delay
in the time of revisit. Launching a simultaneous multi-angle multi-band
TIR sensor will bring new insights in the exploitation of TIR observa-
tions and applications, thereby forming a booster for more compre-
hensive research works in the near future.

6.5. Establishing multi-angle datasets from ground and UAV observations

Multi-angle datasets over different underlying surfaces are im-
portant for evaluating TRD models. However, the amount of accurate
datasets reported in the literature is limited. Most of them were
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obtained from airborne observations supported by comprehensive
outdoor experiments which face two main difficulties: 1) they are fi-
nancially expensive and therefore challenging for the community; 2)
The time acquired for TIR images collection impacts the quality of
multi-angle datasets. Thus, most of the existing TIR multi-angle datasets
consist of spatio-temporal averaged values.

In recent years, UAV platforms provide new solutions to study the
land surface thermal environments. Such platforms have been widely-
used to identify crop frost, to analyze crop water stress index of dif-
ferent vegetated species, etc. Even the thermal point cloud of 3D tree
canopies has been captured using UAV based photogrammetry
(Webster et al., 2018). However, no TRD study based on UAV ob-
servations has been published, although UAV based solutions have the
advantages of being low cost and not time-consuming, when compared
with traditional airborne multi-angle observations. More efforts should
be conducted to generate multi-angle datasets over different underlying
surfaces by using UAV platforms in the future.

As a more common approach, ground-based and tower crane-based
observations can acquire TIR multi-angle datasets. However, the foot-
print area and the experimental location are limited, which makes this
approach difficult to be performed over tree canopies, urban canopies
and sea surfaces. In addition, ground measurements are also influenced
by both the LST temporal drift and the FOV effect. The simultaneous
acquisition of component temperatures is vital to TRD models. Taking a
tree canopy as an example, it is difficult to measure the shaded crown
temperature in practice. More multi-angle datasets of canopy radiance
and related component temperatures would be valuable, especially
long-time series observations. Multi-angle datasets from ground and
UAV observations will benefit the evaluation of TRD models and the
development of new simultaneous multi-angle multi-band satellite
sensors.

7. Summary

Besides atmospheric correction and temperature/emissivity se-
paration, the TRD effect is another challenging issue in the thermal
infrared domain. Most of the operational satellite LST and LSE products
assume that the land surface radiation is isotropic, which leads to large
uncertainties in the validation and/or inter-comparison. Many physical
models (see Section 4) have been proposed to link land surface struc-
ture, component emissivities, temperature distribution and sensor-
target-sun geometry to the satellite-recorded directional radiance.
However, they are difficult to be used for angular correction since the
temperature distribution is always unknown. Only two-angle TIR sen-
sors are available onboard spaceborne platforms, which makes the
impossibility of estimating more component temperature distribution
beyond soil and leaf temperatures. Multi-angle observations have the
potential to determine more component temperatures. However, multi-
angle datasets from TIR satellite-based virtual network is limited by
geolocation and radiometric calibration uncertainties and the close
coupling between angular dependence and time dependence. It is al-
most impossible to exploit the angular information without dealing
with the temporal issue. This is the main difference between the BRDF
in the VNIR spectral domain and the TRD in the TIR spectral domain.
Therefore, the parametric TRD model is a potential solution for LST
angular correction and SULR accurate estimation since the exact tem-
perature distribution is not required.

More works need to be conducted to develop comprehensive phy-
sical TRD models for complex land surfaces, and then some simplifi-
cations need to be done to propose a better parametric model as a trade-
off between physical accuracy and operational use. Multi-angle TIR
satellite sensor after optimizing the angle and spectral configurations
will surely benefit TRD models and applications in the future. Some
near surface, airborne and especially UAV experiments should be car-
ried out to evaluate the sensor parameters at the regional scale and thus
establish multi-angle datasets as an important support to future

researches on TRD. The global LST, LSCT, SULR satellite products
considered the TRD effect are widely expected by the TIR community
and also the follow-up application areas. We can draw the following
three conclusions.

(1) The TRD effect is evidenced with laboratory, ground, airborne and
satellite observations. It seriously limits further improvements of
LST accuracy. A true harmonization of LST products is significantly
required and more cooperation between the TRD modeling and LST
estimation communities should be carried out to achieve this goal.
The TRD modeling is the most potential solution, and it is time to
leave out the hypothesis of isothermal surface in LST estimation.

(2) Among physical models, existing models of water bodies, ice, sea,
snow and vegetation are relatively more mature than those of
barren lands and urban scenes. In addition, parametric TRD models
are not as mature as physical TRD models although they have
greater potential to achieve LST harmonization. Complex surface
modeling, dynamic modeling and parametric modeling are three
important directions for TRD model developments.

(3) It has been proved that multi-angle TIR observations permit to
normalize the LST angular effect, to separate the LSCT and estimate
SULR more accurately. More time series of ground-based and air-
borne multi-angle datasets over different surfaces are valuable to
improve the TRD models. Such datasets can also help in de-
termining optimal configurations for the future multi-angle satellite
sensor, which will provide a more robust solution of the TRD effect
in the TIR domain.

Glossary

AMTIS Airborne Multi-angular TIR/VNIR
Imaging System

ak Area fraction of k com-
ponent

ASTER Advanced Spaceborne Thermal
Emission and Reflection
Radiometer

B Planck function

ATSR Along-Track Scanning
Radiometer

B′ First derivative of
Planck's function

AVHRR Advanced Very High Resolution
Radiometer

B−1 Inverse Planck function

BT Brightness Temperature G(θv,φv) Mean projection of unit
leaf area in direction
(θv,φv)

BRF Bi-directional Reflectance Factor I TOA radiance
BOA Bottom Of Atmosphere Ioutgoing Surface outgoing radi-

ance of BOA
DBT Directional Brightness

Temperature
k Component order

DRT Directional Radiometric
Temperature

K Total component number

DLR Downward Longwave Radiation i Layer order
DCE Directional Canopy Emissivity n Total layer number
UAV Unmanned Aerial Vehicle m Total observation

number
ECV Essential Climate Variable pgap Directional gap fraction
FOV Field-Of-View Rat↓ Downward atmospheric

radiance
GOM Geometric Optical Model Rat↑ Upward atmospheric ra-

diance
GOES Geostationary Operational

Environmental Satellite
T Temperature

HM Hybird Model T0 Pixel reference tempera-
ture

LST Land Surface Temperature Ti Mean temperature of
layer i

LSE Land Surface Emissivity Tk Temperature k compo-
nent

LSCT Land Surface Component
Temperature

θv View Zenith Angle

LAI Leaf Area Index φv View Azimuth Angle
LAD Leaf Angle Distribution θs Solar Zenith Angle
LUT Look-up-table φs Solar Azimuth Angle
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MAOS Multi-Angle Observation System τ Atmospheric transmit-
tance

MODIS Moderate Resolution Imaging
Spectroradiometer

λ Wavelength

NDVI Normalized Difference Vegetation
Index

λ1 Start wavelength of
sensor

PM Parametric Models λ2 End wavelength of sensor
RTM Radiative Transfer Model σ Stefan-Boltzmann con-

stant
SEVIRI Spinning Enhanced Visible and

Infrared Imager
ε Emissivity

SSE Sea Surface Emissivity εk Emissivity of k compo-
nent

SST Sea Surface Temperature εi Mean emissivity of layer i
SAA Solar Azimuth Angle εr r-emissivity
SZA Solar Zenith Angle εr’ effective r-emissivity
SULR Surface Upward Longwave

Radiation
εe e-emissivity

SVAT Soil–Vegetation–Atmosphere
Transfer

εapp apparent emissivity

SLSTR Sea and Land Surface
Temperature Radiometer

εchannel,r channel r-emissivity

TIR Thermal InfraRed εchannel,e channel e-emissivity
TRD Thermal Radiation Directionality εbb Broadband emissivity
TOA Top Of Atmosphere εlimit Canopy limit emissivity
VZA View Zenith Angle εv Leaf emissivity
VAA View Azimuth Angle εs Soil emissivity
VNIR Visible and Near InfraRed Δεx→k Scattering from compo-

nent x to k
WiDAS Wide-angle Infrared Dual-mode

line/area Array Scanner
ΔRscattering Mutual scattering of

components
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