
HAL Id: hal-02354401
https://hal.science/hal-02354401v3

Submitted on 21 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimized Sampling Strategies to Model the
Performance of Virtualized Network Functions

Steven van Rossem, Wouter Tavernier, Didier Colle, Mario Pickavet, Piet
Demeester

To cite this version:
Steven van Rossem, Wouter Tavernier, Didier Colle, Mario Pickavet, Piet Demeester. Optimized
Sampling Strategies to Model the Performance of Virtualized Network Functions. Journal of Network
and Systems Management, In press. �hal-02354401v3�

https://hal.science/hal-02354401v3
https://hal.archives-ouvertes.fr


Cover Page

Optimized Sampling Strategies to Model the Performance of Virtualized Network Functions

Corresponding author

Steven Van Rossem

Albert Lienartstraat 13, B-9300 Aalst, Belgium

stevenvanrossem@gmail.com

+32485750365

Other authors

Wouter Tavernier

Didier Colle

Mario Pickavet

Piet Demeester

Ghent University - imec, IDLab

iGent Tower - Department of Information Technology

Technologiepark-Zwijnaarde 126, B-9052 Ghent, Belgium

{firstname}.{surname}@ugent.be

+32 9 33 14920



Noname manuscript No.
(will be inserted by the editor)

Optimized Sampling Strategies to Model the Performance of
Virtualized Network Functions

Steven Van Rossem · Wouter Tavernier · Didier Colle · Mario Pickavet ·
Piet Demeester

Received: date / Accepted: date

Abstract Modern network services make increasing

use of virtualized compute and network resources. This

is enabled by the growing availability of softwarized

network functions, which take on major roles in the

total traffic flow (such as caching, routing or as firewall).

To ensure reliable operation of its services, the service

provider needs a good understanding of the performance

of the deployed softwarized network functions. Ideally,

the service performance should be predictable, given a

certain input workload and a set of allocated (virtual-

ized) resources (such as vCPUs and bandwidth). This

helps to estimate more accurately how much resources

are needed to operate the service within its performance

specifications. To predict its performance, the network

function should be profiled in the whole range of possible

input workloads and resource configurations. However,
this input can span a large space of multiple parameters

and many combinations to test, resulting in an expen-

sive and overextended measurement period. To mitigate

this, we present a profiling framework and a sampling

heuristic to help select both workload and resource con-

figurations to test. Additionally, we compare several

machine-learning based methods for the best prediction

accuracy, in combination with the sampling heuristic.
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As a result, we obtain a reduced dataset which can still

model the performance of the network functions with

adequate accuracy, while requiring less profiling time.

Compared to uniform sampling, our tests show that the

heuristic achieves the same modeling accuracy with up

to five times less samples.

Keywords Sampling Heuristic · Network Function
Virtualization · Performance Profiling · Machine

Learning · Regression

1 Introduction

In the telecom industry, there is an increasing adoption

of cloud-native services and network functions based

on Software Defined Networking (SDN) and Network

Function Virtualization (NFV) techniques. By virtual-

izing compute and network resources, a very flexible

environment can be created to deploy Virtual Network

Functions (VNFs) with an optimal amount of allocated

resources, adapted to the realtime incoming workload.

The recent rise of 5G enabled services further advocates

the use of cloud-native functions, which are deployed
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Fig. 1 The profiling framework can use a similar infrastruc-
ture compared to operations, as part of a DevOps workflow.
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over a virtualized infrastructure [1] [2]. This illustrates

the growing need to map the amount of allocated re-

sources and incoming workload to the Key Performance

Indicators (KPIs) of the deployed network service, spe-

cified in the Service Level Agreement (SLA). To charac-

terize this relation as good as possible, we propose that

the virtualized function is profiled on the targeted in-

frastructure, before being deployed in production. This

is illustrated in Fig. 1 as a DevOps inspired workflow.

Cloud-native techniques enable a very flexible use of

the Infrastructure as a Service (IaaS) for a wide vari-
ety of use cases, as envisioned in [3]. This enables the

profiling framework (Dev) to do its testing on a repre-

sentative (but isolated) part of the IaaS, compared to

the operational environment (Ops).

In this paper, we propose an optimized sampling

procedure to shorten the profiling time as much as pos-

sible, without losing modeling accuracy. This optimized

profiling procedure greatly benefits a DevOps-inspired

deployment cycle: frequent VNF updates can be quickly

and representatively validated, before the updated VNF

is handed over to the service provider for deployment in

production. We hereby consider the VNF as a black-box,

with no formal way to deterministically calculate the

performance metrics. VNF Profiling is then basically a

form of load testing, where representative workloads are

emulated and performance is recorded. The data anal-

ysis investigated in [4], shows further that the output

data of the profiling tests can be poured into a model;

such a model can predict from the resource allocation

and expected workload, the performance level of the

profiled VNFs. The validation of this model in the profil-

ing environment, brings additional trust when deploying

the profiled VNF in the production environment. The

research goal of this article is to optimize the data gath-
ering part of the profiling procedure as much as possible.

This is done by investigating whether the total test space

of possible workloads and resource allocations can be

limited, without losing too much prediction accuracy.

We compare several machine-learning based methods for

the best performance modeling accuracy, in combination

with several sampling heuristics.

But first, in Section 2, we compare our work to state-

of-the-art approaches in VNF performance modeling.

Next, in Section 3, we present the architecture and im-

plementation of our automated profiling tool, which we

used to gather the profiling data. In Section 4 we present

the VNFs used in our experiments. Then in Section 5,

the general performance trends we witnessed on the

tested VNFs are analysed. Finally, Section 6 uses the

profiled data to evaluate several machine-learning-based

methods for the best performance modeling accuracy,

in combination with multiple sampling heuristics.

2 Related Work

In this paper we unite two different domains: On one

hand, platforms for automated VNF testing and on the

other hand, multi-variate sampling to model a certain

response function as efficiently as possible. Efficiency

in the context of this paper means as little samples

as needed, to obtain an accurate model of the VNF

performance, in the shortest time frame possible. In

Table 1, we give an overview of the related research in

these two domains. Our presented method builds further

upon this previous work, and achieves a higher sampling

efficiency. The problem of efficient performance sampling

is not unique for the NFV domain, related work can

be found in other application fields, as indicated in

the table. For each referenced related work, we shortly

describe if a sampling heuristic was used or not, and

any drawbacks we see, compared to our method.

Various base principles for profiling virtual environ-

ments were first discussed in [5]. Some the main conclu-

sions in this reference also apply to our use case: Profiling

tests must be able to apply a range of representative

workload intensities and should run in nearly-identical

environments compared to production. Additionally, lin-

ear regression is exemplified to be a good modelling

method for CPU usage. Further work is however needed

to expand the methodology in [5] to non-linear regions,

where resources such as CPU get saturated. It is also

possible to optimize the sampling procedure, by pro-

actively defining significant workloads to test.

Every reference in the NFV domain in Table 1, makes

use of a platform to automate VNF performance mea-

surements. Generic architectures for profiling frame-

works have been described earlier in [6, 7, 8, 9, 11, 12],

where also the relation to DevOps related workflows is

highlighted. We extend this previous work with more

insights for using a Service Oriented Architecture (SOA)

and integration of both sampling and modeling methods.

Also we exemplify VNF profiling in a more elaborate

parameter space of both workload and resource metrics.

The VNF profiling platforms in the first two rows of

Table 1 exhaustively executes a list of input benchmark

tests, without trying to optimize the test time. Seve-

ral sampling strategies for VNF performance profiling

have been studied before and combined with automated

profiling, in the last seven rows of Table 1:

In [13], it is experimentally observed that VNF per-

formance shows a trend break when resources are getting

saturated. During profiling, this approach increases the

workload in fixed steps until resource saturation occurs.

We argue that our approach, based on bisection, pro-

vides a faster way to model the VNF performance trend,

needing less samples (as we will see in Section 5.1).
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Reference Domain
Sampling

Effi-
ciency

Sampling heuristic Drawbacks

Wood [5]
Cloud
computing

-

Exhaustive sampling using CPU, net-
work and disk intensive microbench-
marks. Post process the training set to
filter anomalous measurements.

Not time-efficient, covers only part of
the operational space.

z-Torch [6]
NFV-vital [7]
NFV-inspector [8]

NFV +
Manually selected parameters and val-
ues

Covers only part of the operational
space.

SONATA SDK [9, 10]
Gym [11]
Probius [12]

NFV - Exhaustive sampling Not time-efficient, not scalable.

ORCA [13] NFV +
Stepwise increase workload until re-
source saturation + exhaustive re-
source combinations.

More time-efficient but not scalable.

Duplyakin [14]
Cloud
computing

++
Multi- variate Gaussian Process to se-
lect the next samples.

Needs many initial samples, less scal-
able.

GEIST [15]
Cloud
computing

+
Random uniform in selected areas via
CAMLP (label propagation).

Not fit for trend modelling since only
global optimum finding.

Sumo [16] Generic ++
Voronoi partitioning of the parameter
space + KPI gradient-based selection
of interesting partitions.

Very generic, needs large pool of initial
uniform samples.

PANIC [17]
Cloud
computing

++
Greedy, KPI gradient- based bisection
on all parameters.

Less scalable.

Peuster [18] NFV +++

Set parameter weights via KPI gradi-
ent + random sampling on weighted
parameters. Fixed workload over mul-
tiple resource combinations.

Less scalable to many workload pa-
rameters, can outperform PANIC but
marginally outperforms random uni-
form sampling.

Giannakopoulos [19]
Cloud
computing

+++
Use piecewise linear functions to model
the KPI trends, bisect areas with high-
est linearity deviation.

Can outperform PANIC but
marginally outperforms random
uniform sampling.

This paper NFV ++++
Scalable PLS-based parameter selection (phase1) + KPI gradient-based bisec-
tion (phase2) on selected workload metric + curve fitting accuracy as sampling
stop criterium. Outperforms uniform sampling.

Table 1 Related VNF perfomance sampling approaches and drawbacks.

The authors in [14] recommend the use of Gaussian

Processes (GP) as a flexible method to both model per-

formance and choose the next configurations to sample.

Our tests show however that the trends witnessed in

VNF profiling are not efficiently captured by GPs. Also

when we let the GP model determine the next samples,

the method remains sub-optimal compared to generic

uniform sampling (see Section 6.2). Likewise, in [15],

it is experimentally tested that uniform sampling and

Gaussian Processes are not the best methods to sample

the large parameter space of compute intensive algo-

rithms. The used method is however aimed at finding a

global optimum, which is not applicable to our use case,

which tries to model the complete response surface.

Another commonly used adaptive sampling method

is based on surrogate modeling using a gradient based

approach [16]. This is a very generic method which

can be applied in many domains, but the risk is that

sampling efforts focus too hard on local extrema, and

therefore take an unbalanced number of samples in

only limited regions. Also a relatively large number of

initial random samples is needed to feed the sampling

algorithm.

The use of gradient based sampling selection is ap-

plied to VNFs in [17]. By using a greedy algorithm, this
method becomes less scalable when multiple workload

and resource parameters must be profiled, since a many

possible combinations remain to be sampled.

Several sampling strategies for VNF chain profiling

have been investigated in [18], but no method is found

which significantly beats a generic uniform sampling

strategy. Decision tree based models are put forward

as a promising solution, however our tests show that

random forest is one of the less performing methods
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in our use-case of profiling a single VNF. The profiling

tests in [18] are also limited to varying only one resource

metric (allocated vCPU), under only one fixed workload.

The profiling method in [19] focuses on the deploy-

ment space of big data applications, with up to seven

configuration dimensions on a fixed server, thus with

a fixed set of resource parameters. In this deployment

space, areas are clustered in which the performance

metric can be approximated using a linear model. The

total model is than a piecewise combination of different

linear models and the space partitioning into different

linear regions is done by a decision tree. More samples

are adaptively chosen in the areas where a linear model

has bad accuracy. However, when trying to model non-
linear functions, a deteriorating performance is reported.

Moreover, new sample points are drawn randomly in a

uniform manner, without exploiting any expert knowl-

edge. Our sampling heuristic tries to mitigate this by

using a curve fit model with piecewise (non-linear) func-

tions and online sample selection using bisection.

The scalability mentioned in Table 1, relates to how

well the sampling heuristic can cope with additional

parameters to test. Exhaustive or greedy methods need

a lot of time to test the complete range of specified

parameters, similar to methods which require a large

number of initial samples. This is mitigated by including

some form of feature selection. Our presented sampling
procedure further augments the mentioned related work,

with the PLS method [20], to select any significant

workload or resource parameters to prioritize sampling

on.

A reference architecture for VNF Management and

Orchestration is called “ETSI MANO” [21], a standard

maintained by the ETSI NFV working group. The ETSI

MANO architecture is followed in our framework, in

the sense that a strict separation between infrastructure

and VNF management functionality is enabled. Also,

management functions per VNF and per executed pro-

filing test are integrated. According to ETSI MANO

specifications, a VNF Manager (VNFM) is responsi-

ble for VNF lifecycle management (e.g. instantiation,

update, query, scaling, termination), with a clear link

to the infrastructure for updating resource allocations.

Other VNF management related actions (such as VNF

login or functional configuration) is done via the ETSI-

defined Element Manager (EM). The VNF Manager

entity in our setup (as will be explained in Section 3)

incorporates characteristics of both the ETSI EM and

VNFM. The main interface protocol used by the VNF

Manager in our setup is either SSH or the Docker API.

The EM in our setup can then be considered as the SSH

or Docker agent instantiated in the infrastructure node

where the VNF under test is running, addressed by the

VNF Manager.

Our platform implementation for automated profil-

ing is based on the development in [10] (which is also

based on ETSI MANO). We re-factored the tool follow-

ing a Service Oriented Architecture (SOA) approach,

where multiple profiling tests can run independently

and in parallel. As such, the tool can shorten the total

profiling time, by parallelizing multiple measurement

campaigns over multiple hardware nodes. In [9], a de-

scriptor format is presented as input for an automated

VNF profiling procedure. We have loosely adopted the

syntax of this YAML-based test definition and included

some adaptations to map it better to our envisioned

sampling heuristic. The needed adaptations were mainly

specialized configuration directives and settings for test

execution and monitoring. In the next section we will

explain our VNF profiling platform more in detail.

3 VNF Profiling Framework

The automation of VNF performance profiling is the

main objective of our VNF profiling platform. In this

section we first explain how such test automation was im-

plemented. To further optimize the profiling procedure

and save time, a sampling heuristic is further investi-

gated in the next sections of this paper. We can put

forward three main characteristics for a VNF profiling

framework:

– A light-weight, modular architecture which is

easily expandable. Since every VNF can have unique

control interfaces or other configuration mechanisms,

customization is necessary. The framework should

therefore allow easy integration of custom VNF con-

figuration functionality. Also parallel execution of

profiling tests is an important feature to optimize

profiling time. Details are given in Subsection 3.1.

– Easy generation and reproducibility of VNF

profiling tests can be achieved by using descriptor

files which contain a programmable testing and moni-

toring workflow. Such descriptor files allow an easily

customizable profiling workflow per VNF. Details

are given in Subsection 3.2.

– The integration of existing cloud-native functional

blocks allows a fast development and flexible de-

ployment on available IaaS. This cloud-native nature

allows the profiling framework to be be quickly set

up. As a result, we can test and measure VNFs on

available IaaS nodes as a realistic staging environ-

ment (as seen in Fig. 1 and described in [3]). Details

are given in Subsection 3.3.
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Fig. 2 Architecture and implementation of the profiling framework.

3.1 Modular Architecture

The purpose of VNF profiling is to generate a dataset

which can be used to create a model for the VNF per-
formance. The framework therefore automates a set of

measurements where varying resources are allocated,

workload is generated and KPIs are measured. Each

test setup consists of a VNF under test, where the test

traffic is routed from a traffic source to a traffic sink.

The traffic source and sink can be considered as VNFs
also, custom built and deployed for our test purpose.
We hereby give a concise overview of this framework.

The architectural overview is given in Fig. 2a. On the

upper level, the Manager Node is where the profiling

workflow is executed in a loop: (i) A workload and/or

resource allocation is selected to test, (ii) instructions

are given to the VNFs and traffic generators and (iii)

monitored metrics are analyzed. On the lower level, the

Test Infrastructure Nodes are located in the IaaS. This

is the actual execution environment of the VNFs and

traffic generators.

The Manager Node is where each profiling test is

running as a separate service instance. By executing a

profiling test as a separate service, multiple tests can

be running simultaneously. This allows parallelization

of multiple measurements. Each profiling test can be

considered as a micro-service, from which the test status

can be queried through an HTTP API. At the end of

the profiling loop, the measurements are stored in .csv

format for further analysis (See Section 5). A more

detailed implementation diagram is depicted in Fig. 2b.

We can distinguish following important class objects,

addressed by the profiling service:

– Every VNF in the test setup (source, sink and VNF

under test) has its own VNF Manager instance, which

has methods available to control the VNF state. The

most important function is to execute commands

which start/stop traffic workloads. The actual com-

mands or scripts are specified in the descriptor files,
the VNF Manager only executes the defined command

using the correct Infrastructure Agent. We have im-

plemented a separate VNF Manager class for Docker

containers and Virtual Machines (VMs), because they

need different functions regarding (re)starting, or con-

figuration.

– Every VNF Manager, should have an Infrastructure

Agent attached, to address a specific API in the re-

mote Infrastructure Test Node. This agent is used to

execute commands inside a container or set container

resources via the Docker API of the remote node or

execute commands through SSH. Also specific VM

hypervisors such as KVM can be addressed via an

Infrastructure Agent.

Whenever a new type of VNF or infrastructure interface

needs to be addressed, a new class type can be added

in this framework. In this way, the profiling framework

can be easily expanded or customized.
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3.2 Profiling Descriptors

Profiling descriptors are YAML based documents, which

describe the execution of a profiling test. They enable a

programmable workflow which can be easily customized.

We distinguish two main descriptor categories:

– Every profiling test is defined by a Test descriptor.

Here we describe which scripts or commands to exe-

cute in each VNF, in order to generate the requested

workload. See the example Listings 1 and 2.

– A Metrics descriptor defines for each VNF in the

Test descriptor which metrics should be monitored

and recorded. Care should be taken that all required

metrics are exported by the pre-deployed probes. Ad-

ditionally, it can be specified when to send alerts back

to the profiling service when measurement stability

or overload of the traffic src/sink is detected. See the

example in Listing 3.

To have a more practical idea of the profiling exe-

cution, we give a succinct overview of the format used

to describe the profiling tests. A first part of the Test

descriptor is given above in Listing 1. This part defines a

configuration agent for each VNF in the profiling setup.

As previously explained, a class instance is made for

each specified VNF manager and each manager uses

an infrastructure agent as interface to the underlying

VNF. The names of the VNF managers defined here,

are referred to in the remainder of the descriptor. The

declarations in the descriptor hold test-specific settings.

For the agents this includes: API endpoints, credentials,

authentication methods, ... For the VNF managers we

need specific settings such as: the infrastructure agent

to communicate with the VNF, container or VM uid,

resource or operational initialization to be configured
via the infrastructure agent, ...

1 agents:
2 docker1:
3 class: DockerApiClient
4 url: ’tcp://docker.api.url:port’
5 # ...
6 ssh1:
7 class: SshClient
8 host: ’infrastructure.node.url’
9

10 managers:
11 src:
12 class: Docker
13 agent: docker1
14 cpuset_cpus: ’8-15’
15 # ...
16 pfsense:
17 class: Vm
18 agent: ssh1

Listing 1 YAML based test descriptor - interface
configuration

A second part of the Test descriptor is then given

in Listing 2. This is the most important part from the

profiling perspective, as it defines the actual values for

each relevant parameter in the test. For each parameter

we define:

– A list or range of values to test (Line 4,10,14,25).

– The method of the manager instance to call, in or-

der to practically configure this value into the VNF

test (Line 5,11,15,26). In our tests, we use a common

technique based on environment variables. The work-

load settings are stored in environment variables in

the VNFs, later when the workload script is called,

these variables are read and the configured workload

is started.

– A list of fixed initialization commands, which are ex-

ecuted every time a new setting is configured (e.g. to

stop/start a workload generating script in the traffic

generator) (Line 18,29).

1 resource_parameters:
2 - name: pfsense_cpu_limit
3 # allocated cpu in %
4 values: [25,50,75,100,200,300,400,500]
5 function: set_cpu
6 manager: pfsense
7

8 workload_parameters:
9 - name: packetsize

10 values: [64,128,256,512,1024,1500] #
Bytes

11 function: set_environment_var
12 manager: src
13 - name: flows
14 values: [1, 2, 10, 100, 1000, 10000]
15 function: set_environment_var
16 manager: src
17

18 initialization:
19 - manager: src
20 cmd: ’pkill -9 -f start_traffic_stream.sh’
21 # ...
22

23 primary_workload_parameter:
24 name: packetrate
25 # Values will be chosen in the defined

interval for this parameter
26 range: [0.1,500] #kpps
27 function: set_environment_var
28 manager: src
29

30 initialization:
31 - manager: src
32 cmd: ’bash start_traffic_stream.sh’
33 # ...

Listing 2 YAML based test descriptor - test configuration
space
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The sampling heuristic takes the defined parameter ran-

ges into account and will iterate through all combina-

tions in an optimized order. For this reason, the total

configuration space is categorized into three sections:

– resource parameters

– workload parameters

– primary workload parameter

The main reason for this categorization is to guide the

sampling heuristic to the metric value to sample next,

as will be explained in the coming sections.

Also commands to start or stop the workload are

specified in the Test descriptor. The commands speci-

fied in Line 20 or 32 in Listing 2 are literally executed

in a (bash) shell inside the specified VNF. Instead of

combining commands in a fixed script, also multiple
commands could be specified here as a list. The VNF

profiler which is parsing the descriptor, would execute

these commands in sequential order as they appear in

the descriptor.
In Listing 3, we illustrate the structure of the Metrics

descriptor. This file is translated to the needed configu-

ration directives for the monitoring framework to gather

the required metrics. The list of all the required metrics

is given (Line 1). For each given metric, a template

should be defined, which maps to the correct metric

query (Line 9). Deployment or test specific parameters

such as id’s should be dynamically filled in the template.

The metrics descriptor also defines the probes where

the monitoring framework can get the metric values

from (Line 21). The Profile service will query all defined

metrics from the monitoring database, once a configured

workload shows stabilized measurements. (Measurement

stability is assessed by the implementation described in

[4].) The queried metric values are exported to a file and

kept for online analysis by our sampling heuristic. In

Subsection 3.3 we will explain the integrated monitoring

framework.

It is beneficial if each setting and each exported met-

ric is explicitly mentioned in either the Test descriptor or

the Metrics descriptor. When exporting the test results

after the profiling phase, there should be a clear link

between the setting/metric name in the exported results

and where/how this value was exactly set or measured.

Our approach is that the exact name of the setting or

metric can be found back in one of the descriptor files.

The descriptor files become the reference for the used

configuration settings and similarly for what each metric

stands for and where/how it is exactly gathered: (i) The

test descriptor explains the activated settings regarding

the workload generation and resource allocation. (ii)

The metrics descriptor explains the metrics gathered

from the probes, representing the VNFs performance

and current resource usage for example.

1 metrics:
2 - sink:cpu
3 - src:cpu
4 - pfsense:cpu
5 - sink:packetrate_receive:eth1
6 - pfsense_packetrate_loss
7 # ...
8

9 definitions:
10 docker:
11 cpu:
12 template: ’sum(rate(

container_cpu_usage_seconds_total{id="/
docker/{{ docker_id }}"}[10s]))*100’

13 unit: ’%’
14

15 packetrate_receive:
16 template: ’sum(rate(

container_network_receive_packets_total{id
="/docker/{{ docker_id }}",interface="{{
interface_id }}" }[10s]))’

17 unit: ’pps’
18

19 # ...
20

21 probes:
22 node_exporter:
23 job_name: node_exp_pfsense1
24 scrape_interval: 1s
25 static_configs:
26 - targets:
27 - ’infrastructure.node.url:9100’
28 cadvisor:
29 job_name: cAdvisor_pfsense1
30 scrape_interval: 1s
31 static_configs:
32 - targets:
33 - ’infrastructure.node.url:8080’
34 # ...

Listing 3 YAML based metrics descriptor

The use of the above explained descriptor files, makes

it easy to customize and repeat profiling tests. The con-

figuration of monitored metrics, workload and resource

parameters is kept very generic to allow a wide applica-

bility in VNF testing.

3.3 Cloud-Native Functional Blocks

If we look again at Fig. 2a, we see that several function-

alities are implemented by readily available components.

The Infrastructure Node should be pre-provisioned. This

means that before the profiling tool can operate, the

VNFs under test should be pre-deployed on one or more

infrastructure nodes. This can be done by a common

orchestration framework (e.g. OpenStack, Kubernetes).

Prometheus is used as monitoring framework and met-

rics database. Additionally, for every started profiling

test, a Grafana dashboard is generated, to visually check
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the status of the defined metrics being monitored. For

each requested metric, the correct Prometheus Query

(PromQL) should be given in the Metrics Descriptor,

this is a Prometheus specific syntax to retrieve the met-

ric from the database. Prometheus is also configured to

send alerts back to profiling service when measurement

stability or overload of the traffic src/sink is detected.

To let Prometheus gather the metrics defined in the

decriptor, the required probes must be running on each

Infrastructure Node:

– cAdvisor is a tool to export performance and re-

source metrics of Docker containers.

– The Prometheus Node Exporter does the same for

bare metal, or host specific metrics.

– We also use a custom built probe to export VM

metrics gathered from KVM and libvirt.

In our setup, the main “ancillary” services are de-

ployed as Docker containers (Prometheus, Grafana, traf-

fic source/sink, probes). The actual VNF under test
can be deployed as Docker container or as VM under

KVM. Care should be taken that resources (e.g. as-

signed vCPUs) are well isolated between VNFs under

test and other components. Depending on the virtualiza-

tion method of the VNF (container or Virtual Machine

(VM)) we use the configuration options of Docker resp.
KVM to isolate the CPU cores between the Device Un-

der Test (DUT) and the traffic sink/source (based on the

Linux kernel feature cgroups). In the Test Descriptor,

separate vCPU cores are being assigned to each VNF. A

vCPU smaller than 1 means that a vCPU share smaller

than 100% has been allocated. E.g. 0.5 vCPU means

that 50% of the vCPU time of one core is allocated to

a specific container or VM.

To make sure that the performance of the VNF under

test is not bounded by an external factor, we monitor

if the sink or source traffic VNF are not overloaded.

When this happens, the monitored performance is not

bounded by the VNF under test and not representa-

tive for its performance profile, and so the performance

measurements are invalid in this case. So by detecting

the overload in the traffic VNFs, we ensure that tested

VNF’s performance measurements are not affected.

In the remainder of this article we will present measure-

ment results gathered by the above explained framework

and descriptor formats.

4 VNFs Under Test

To choose exemplary VNFs for our profiling tests, we

looked at some typical use cases defined in [1]. The adop-

tion of 5G technologies enables new possibilities for the

telco industry to diversify their network services to new

markets. To enhance the security of these services we

look at the deployment of a virtual firewall (pfSense). As

a large portion of the traffic over 5G will be media based,

we also look at the deployment of a virtual streaming

server (Nginx). The choice for these two specific VNFs

is also to exemplify the generic nature of our presented

approach. Different VNFs, which are stressed by differ-

ent workloads and characterized by different KPIs, are

easily testable by our platform and sampling heuristic.

For the tested VNFs in this paper, we consider CPU

and network bandwidth as the most important resource

metrics, as we experimentally validated these are more

likely to become a bottleneck resource than memory.

This is also confirmed in [22]. Our measurements also

show little to none variation in the memory usage of the

VNFs while they are under test. In the next subsection

we will discuss each VNF more in detail.

4.1 Firewall - pfSense

We use pfSense1 as a free and open source firewall solu-

tion example, deployed as a VM. We stress the firewall

by generating multiple unique parallel flows. Also the

packetsize is varied. Using the tool Scapy we assemble

a .pcap file with a stream of packets of varying mac

addresses and unique destination IP/port in the packet

header. Tcpreplay is then used to stream the .pcap file

at a given packetrate from the traffic source. There is

also an iperf stream running, with an iperf server in the

traffic sink. This is used to monitor packet loss. For the

firewall to function properly, we need to make sure the

ARP table of the VNF contains the mac addresses of the

generated packets, so the firewall forwards the packets

properly to the traffic sink. This is done by arp spoofing

the firewall from the traffic sink. To have an idea of

the baseline performance of the firewall, we install no

specific firewall rules and let the traffic pass.

Generated workload metrics:

– packetrate: [0.1-500]kpps. 50 different packetrate

values are selectively chosen, spaced evenly along

the log scale.

– packetsize: [64,128,256,512,1024,1500] bytes

– flows: [1,2,10,100,1000,10000] unique parallel flows
(with unique IP/port combination in the header).

Resource metrics:

– CPU allocation: [0.25, 0.5, 0.75, 1, 2, 3, 4, 5] vC-

PUs

1 https://www.pfsense.org/
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The bandwidth allocation is not a dedicated setting in

this test. It is determined by the workload, since we

specify the generated packetrate and packetsize up front.

Performance metric:

We choose packet loss (%) as the main KPI to reflect

the performance of the firewall.

All combinations of above metrics result in 12000

measurement points. If we need about 30sec per mea-

surement to get a stable reading, the total profiling time

reaches up to 100h to measure each combination once.

4.2 Streaming Server - Nginx

We set up a live streaming service using Nginx2 , a

well known open source, all-in-one load balancer, web

server, content cache and API gateway solution. Nginx

is deployed in a Docker container. We configure Nginx
to accept incoming live movie streams via the Real-

Time Messaging Protocol (RTMP [23]) protocol. The

incoming RTMP live stream is then transcoded to a
specific video bitrate and resolution (Nginx uses ffmpeg

for this purpose). Next, Nginx serves the newly encoded

movie chunks live, through the HTTP Live Streaming

(HLS [24]) protocol. In our test setup, the traffic source

sends 1 - 5 movies in realtime to Nginx over RTMP. On

the client side, the traffic sink opens many concurrent

sessions to Nginx, to download playing live movies over

HLS (We use Locust.io to emulate the HLS clients and

download the stream requests). This use-case exemplifies

the situation where a small number of incoming live

movies is temporarily cached in an edge server and than

streamed with a certain quality to a large number of

clients.

Generated workload metrics:

– streams: [10-5000] parallel client HLS streams. 80

different stream values are selectively chosen, spaced

evenly along the log scale.

– movies: [1,2,3,4,5] number of different source movie

streams, input via RTMP.

– quality: [1,2,3,4,5] indicator for the quality of the

streams (resolution and video bitrate ranging from

1280x720/2500kbps to 426x240/200kbps).

Resource metrics:

The streaming performance is determined by both the

available bandwidth and vCPU. It is unpredictable how

the balance between cpu time for ffmpeg transcoding and

cpu time for serving the movie chunks will be scheduled

(as we consider this a black-box VNF). Therefore we have

no way to deterministically predict the influence of both

2 https://www.nginx.com/products/nginx/modules/rtmp-
media-streaming/

the allocated bandwidth and cpu on the KPI. We need

to profile the performance with several combinations of

allocated vCPU and bandwidth. This also reflects the

availability of different flavours to deploy the VNF.

– flavours: [(0.5, 0.5), (0.5, 1), (1, 1), (1, 2), (2, 1),

(2, 2), (3, 2), (3, 3), (3, 4), (4, 5), (6, 5)] (vCPUs,

Gbps). Eleven different flavours to deploy the VNF,

defined by their given vCPU and bandwidth alloca-

tion and encoded from [0-10].

Performance metric:

We choose lag ratio (%) as the main KPI to reflect the

performance of the streaming server. This indicator is a

measure for the risk of “hickups” or lagging during video

playback. It is the ratio of downloaded video playback

time over the last period. If the video time is less than

the waiting time, the playback buffer will empty and

the risk of lagging will increase:

lag ratio (%) = max

(
1− Tvideo

Twait
, 0

)
We measure the lag ratio in a moving average over 20s
(we assume 20s buffer time). If the KPI gets above

zero, it means that during the last 20s, the playback

buffer was addressed because less than 20s of video

stream was downloaded. Increasing KPI values mean

more buffer time is continuously needed, resulting in

video rebuffering and thus “lagging”. The HLS protocol

will try to keep the lag ratio at zero by varying the

size of the served movie chunks and maximizing the

bandwidth over all clients.

In order to get a stable measurement, a certain ramp-

up tine is need to generate to required number of clients

and to let the HLS based streaming stabilize. In our

setup this takes up to 100sec per measurement point.

To test all above combinations once, takes then over

500h to complete.

We only evaluate the KPIs below 30% packet loss

or lag ratio, as we assume that above this threshold the

VNF is practically unusable. Therefore there is no need

to accurately model the KPI above 30%.

4.3 Test Traffic Generation

For our tests, every type of test traffic is started and

received via a dedicated script stored inside the traffic

source/sink VNF itself. For the Nginx test, all related

commands to start ffmpeg to stream the video files,

are stored in the script start traffic stream.sh
located in the traffic source VNF. A similar script is

stored to start the Locust tool to receive the video

stream in the traffic sink VNF. Similarly, for the pfSense



Optimized Sampling Strategies to Model Virtualized Network Functions 11

tests, iperf and TCPreplay commands are also stored

in a dedicated script. This script is copied and stored

inside traffic source/sink VNF at their build time. In

Listing 2 (line 20 and 32) we show how this script can

be called and stopped from the descriptor.

4.4 Hardware Infrastructure

Our Test Infrastructure Nodes are equal compute nodes

with 2x 8core Intel E5-2650v2 (2.6GHz) CPU with

Ubuntu 18.04. Linux Bridge is used as the hypervisor

switch. We do not change default OS options (e.g. we

leave hyperthreading enabled). The Manager Node is a

lighter machine: 4 core Intel E3-1220 CPU with Ubuntu

18.04. The main bottleneck resource of the Manager

Node is the disk space used by Prometheus, to store

all the metrics gathered from various running profiling

tests.

The long profiling times of the above introduced VNFs

show the need to optimize both: (i) the parallel execution

of measurement runs by the profiling framework (as

explained in Section 3) and (ii) the sampling strategy to

limit the number of needed sampling points. The latter

will be explained next.

5 VNF Data Analysis

As proposed in [4], we have classified the tested VNF

metrics under three groups in the previous section:

– Workload metrics reflect the configuration of the

incoming traffic to be processed by the VNF.

– Resource metrics quantify the allocated resources

which determine the cost and processing capabilities

of the VNF. For our analysis we express this as re-

source usage, which is the averaged used portion (%)

of allocated vCPU and bandwidth.

– Performance metrics monitor the Key Performance

Indicators (KPIs), to assure that the performance of

the VNF remains within the SLA.

From the obtained VNF measurements, we want to

derive a model which predicts the performance KPI in

function of the given workload and resource allocation.

From an abstract and generalized viewpoint, the VNF

performance model f can be described as:

f(wl, res) = perf (1)

where:

wl = input workload (e.g. packetrate, filesize, streams)

res = resource allocation (e.g.number of allocated vC-

PUs, bandwidth or flavour)

perf = KPI metrics (e.g. packet loss, lag ratio)

Figure 3 shows a subset of our measurements: for

each VNF a certain workload configuration is executed

on varying resource allocations. The measurements in

Fig. 3 confirms these trends (which were also described

in [4], but on other VNF examples):

– The resource usage is correlated with the rising work-

load (on the x-axis) until saturation (Fig. 3a and

3b). Either CPU or bandwidth gets saturated first,

which explains why the averaged resource usage can

saturate below 100%.

– Before resource saturation, the KPI levels remain

stable and flat. When resource contention starts, the

KPI levels start to vary more rapidly (Fig. 3c and

3d).

We can also distinguish two other interesting facts from

the plots:

– For pfSense (Fig. 3c) we can see that the performance
does not increase with more than 3 allocated vCPUs.

This points to a deployment limitation where it makes

no sense to allocate more vCPUs, because it is not

exploited by the VNF implementation.

– When it comes to Nginx (Fig. 3d), we see that some

resource flavors have overlapping performance curves.

This indicates that the workload is bounded by a com-

mon resource limit of those flavors, namely bandwidth

in this case.

It is challenging to discover the above mentioned

phenomena automatically, without visual inspection of

the data plots. A KPI prediction can be made by train-

ing the model with the obtained profiled datasets. But

a common adagio from the Machine Learning domain

is that the model will only be as smart as its train-

ing data, meaning that we must provide representative

training data in all foreseeable situations. This implies

that we must also profile in the regions where resource

saturation occurs or where resource flavors overlap, or

where the performance is limited by the internal VNF

implementation.

In the next subsection we will outline methods to

model the performance of the trends shown above. Re-

garding the accuracy, it is important to note that the

breakpoint of the KPI curve is the area of most interest.

This is the maximum workload possible by the VNF,

just before the performance declines more severely.
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Fig. 3 Subset of measured VNF metrics under different resource allocations.

5.1 Modeling Methods

We look for an appropriate modeling method to predict

the KPI values from a given workload and resource con-

figuration, as explained earlier by Eq. 1. A first idea of

the trends to be modelled can be seen in Fig. 3c and

3d. From a pure mathematical perspective, we can con-

sider the KPI values to be a response surface, defined

by a multi-variate function where the workload and

resource allocation metrics are the input parameters.

The total input space is multivariate, since all workload

and resource metrics can influence the resulting KPI

value. We compare several generic methods from the

machine learning domain, which are capable of modeling

generic, non-linear and multi-variate response surfaces.

The used methods have also shown promising appli-

cations in regression modeling, where the amount of

training samples is limited. We have used the implemen-

tations available in the library Scikit-learn [25]. We also

include the Interpolation and Curve Fit method, which

have shown promising results in [4]. The investigated

modeling methods are:

– Support Vector Regression (SVR) This method

has shown promising results in estimating non-linear

relationships using limited, sparse datasets. SVR se-

lects samples to form a flexible tube of minimal radius,

symmetrically around the estimated function, such

that the absolute values of errors less than a certain

threshold (ε) are ignored both above and below the es-

timate. Points outside the tube are penalized and not

taken into account for the regression. The hyperpa-

rameters of this method are C, the penalty parameter,

ε and the standard RBF kernel. More details can be

found in [26]. The use of SVR for modeling VNF per-

formance has also been applied in [18] with limited
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success. We also include it here for verification on our

data sets.

– Random Forest (RF): The basic idea behind this

method is to combine multiple decision trees in de-

termining the final output rather than relying on an

individually built decision tree. Maximum tree depth

is set to 10, and the number trees in the forest is 100.

The use of decision trees for modeling VNF perfor-

mance has been investigated in [18], [8] and [19] with

promising results. We include the RF method here

for verification on our data sets.

– Gaussian Process (GP): This method implements

a Bayesian approach to (non-)linear regression. A

GP defines a prior over functions, which can be con-

verted into a posterior over functions once it has seen

some data. The covariance between training samples

is a given kernel function. The kernel function we use:

Constant∗RBF +WhiteNoise. This is a generic ker-

nel function used in many GP examples. One main

advantage of using GPs, is that the kernel hyperpa-

rameters (RBF lengthscale, noise level, constant) can

be learnt automatically via evidence maximisation

from the training points themselves, no exhaustive

search is needed as with other methods. The key idea

is that if the training samples are deemed by the

kernel to be similar, then we expect the output of

the function around those points to be similar, too.

More information on this method is available in [27].

The use of GP for modeling software performance

has been proposed in [14]. We also use GP here for

verification on our datasets.

– k-Nearest Neighbors (kNN): is a commonly used

technique due to its simplicity and often accurate
results. In kNN regression, the output value is the av-

erage of the values of k nearest neighbors in the input

space (weighted by distance). We use the Euclidean

distance metric and standardize the input values. For

our tests we use k = 2.

– Interpolation method: Regression is done by inter-

polating linearly between surrounding samples. The

interpolant is constructed by triangulating the in-

put data using Delaunay triangulation, and on each

triangle performing linear barycentric interpolation.

This method also works in multiple dimensions, so

the total workload and resource input space is taken

into account to interpolate an intermediate KPI value.

This method has been used for VNF modeling in [4]

and we also include the method here for verification

on our new datasets.

– Curve Fit method: This method has been success-

fully used for VNF modeling in [4] and we reuse the

method here for verification on our new datasets.

Based on the analysis in [4], we fit the KPI trends to

the analytical functions of this form:

{
f(x)non−saturated = a+ exp [b(x− c)]
f(x)saturated = 100

(
1− d

x−e

)
,where x > d+ e

(2)

where the output is clipped in the range [0, 100]:{
0 , where f(x) < 0

100 , where f(x) > 100

The full justification for the functions in Curve Fit

method is explained in [4], we summarize here shortly

the fitting procedure. Figure 4 shows how the trends

in Eq. 2 are fitted to data subsets of both investigated

VNFs. The saturated region starts when the workload

shows a higher covariation with the KPI than with the

resource usage metric. The parameters a, b, c, d, e in Eq.

2 are fitted to the profiled data points in the respective

(non) saturated regions. Note that two possible inter-

sections can exist between fnon−saturated and fsaturated.

When the fitted curve is known, all possible intersections

are estimated. For each intersection point, the accuracy

(RMSE) of the resulting piecewise model is calculated.

Finally, the intersection point which yields the best ac-

curacy is chosen and stored into the Curve Fit model.

The clipped output represents that the KPI values (rep-

resenting packet loss and lag ratio) are limited between

[0, 100] %. We further use a weighted curve fitting for

the saturated part, to prioritize more accuracy at lower

KPI values, just after resource saturation. Since this is

the region where most accuracy is wanted.

6 VNF Sampling Strategies

In this section, we present our results after investigating

different sampling methods. As reference and baseline

sampling method, we generate workload samples uni-

formly (using the values specified in Section 4). The

dots in Fig. 4 represent all the samples taken for one

specific subset of all generated workloads, described in

the figure title. Each of our tested sampling strategies

would yield a different set of sampling points, but follow-

ing the same trend curves. Instead of uniformly spaced

samples, our heuristic tries to focus on more interesting

parts of the trend curves, like the breakpoint between

the (non)saturated regions.

We also check the effect of the sampling heuristic

on the accuracy of the modeling methods proposed in

previous section. We have executed twice all workload

and resource configurations defined in Section 4. We
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Fig. 4 The Curve fit model exemplified in two example VNF subsets. For each plot, the y-axis on the left is for the saturating
resource usage, the one on the right depicts the increasing KPI value. The boundary between (non) saturated regions is where
the workload covariance with the KPI becomes larger than with the resource usage.

thus obtain two datasets per VNF, of which one is

used as training set and the other as test set. The full
factorial test set, containing all possible combinations,

counts 14400 samples for pfSense and 22000 samples

for Nginx. From the training set, we select data points

using the validated sampling heuristics and use these

selected samples to train a prediction model for the KPI

values. The increasing number of samples taken, is given

on the x axis in the plots in throughout this section.

We then check the Root Mean Squared Error (RMSE)

of the trained model on the test dataset. The reported

RMSE in the next sections is then an indication for the
accuracy of the model, trained from a limited sample

set. We only evaluate the RMSE below 30% packet loss

or lag ratio, as we assume that above this threshold the

VNF is practically unusable. Therefore there is no need

to asses the model accuracy above a KPI threshold of

30%.

6.1 Uniform Sampling

As baseline measurement and benchmark for our sam-

pling heuristic, we first test the accuracy of a generic

uniform sampling strategy. For each VNF, we pick re-

source and workload metric values uniformly in the

range described above in Section 4. The result is shown

in Fig. 5. On the x-axis, the number of measurements

indicates an increasing amount of uniformly chosen val-

ues per metric. First we measure one value, then two

values for each metric and so forth...

As can be seen in Fig. 5, different modeling methods

yield varying accuracy. Support Vector Regression (SVR)
proves the least accurate. The tuning of hyperparameters

(C, ε) in the SVR model is a tedious task which we do

using an exhaustive search and also seems very sensitive

to the number of training samples. we experience long

training times (tens of minutes with more then 1000

samples). We do not succeed to reach the same accuracy

as the other methods. The best performing methods,

which we select for further use, are interpolation and

curve fit. This is also in line with previous research done

in [4].

Uniform sampling is however not an online sampling

method, as the number of samples must be chosen in
advance. In the next sections, we will try to find heuris-

tics to select samples in an online way, and try to reach

the same accuracy with less training samples.

6.2 Unsuccessful Strategies

It is worth noting that uniform sampling, exemplified

above, is not the least performing method we encoun-

tered during our tests. When following the approach

outlined in [14], a Gaussian Process (GP) is used to se-

lect online which samples to measure next. In fact, GP

is a modeling method, but it also produces an estimate

of uncertainty in the prediction, a confidence interval for

the predicted values as indicated in Fig. 6a. The points

where the predicted values have the largest confidence

interval, is considered as the most interesting region

to sample next. The confidence interval calculated by
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Fig. 5 The accuracy of different modeling methods applied to a uniformly sampled dataset.
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(b) pfSense model accuracy using Gaus-
sian Process to select samples.
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(c) Nginx model accuracy using Gaus-
sian Process to select samples.

Fig. 6 The Gaussian Process sampling method does not improve the accuracy.

the GP is an indication in which region the uncertainty

of the predicted value is larger. For our datasets, this

selection method is not optimal, since it favors regions

where a flat response is measured, and not the transition
zone to the steeper part of the trend.

Fig. 6b and 6c show the effect of a GP chosen sample

set on different modeling methods, compared to the uni-

formly sampled benchmark. We see indeed that GP does

not optimally selects samples in our datasets, as the ac-

curacy is worse compared to the benchmark. We can also

visualize why some strategies are under-performing. For

example, a sampled KPI response surface is illustrated

in Fig. 7.

– Sample selection using GP will likely select points in

the flat (blue) area of Fig. 7, as explained in previous

paragraph.

– On the other hand, gradient-based sampling strate-

gies will likely choose sample points in the steep

(green/red) regions of Fig. 7.

For our datasets, the most interesting region to focus

on, is where the trend break happens, i.e. where the

flat region transforms into the steep region. In the next

sections we try to find heuristics which focus on this
area.

6.3 Feature Selection

In our black-box approach, we try to cover the opera-

tional boundaries at the start of the profiling procedure.

We measure each combination of the minimal and max-

imal values of the VNF workload and resource metrics

mentioned in Section 4. This comes down to a full fac-

torial sampling space with two levels per factor. This

gives us a minimal sample set where an initial analysis

can indicate which parameters are important or not. We

then use this information to determine which metric

configurations to profile next.
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Fig. 7 A subset of the pfSense dataset to illustrate the re-
sponse surface of the KPI (packet loss), under different vCPU
allocations.

In this first phase of metrics exploration, it is prima-

rily the intention to select the workload and resource

metrics (X) which have the most influence on the per-

formance metrics (Y ). Several mathematical methods

are generally used to capture the relation between two

sets of metrics (Y = A.X +B):

– Multiple Linear Regression (MLR): achieves max-

imum correlation between X and Y, using the well

known Ordinary Least Squares (OLS) method.

– Principle Component Regression (PCR): cap-

tures the maximum variance in only X, using the

well known Principle Components Analysis (PCA)

method. Then it uses OLS to predict Y from the main

components in X, calculated by PCA.

– Partial Least Squares (PLS): tries to do both by
maximizing the covariance between X and Y . The

power of this method lies in the fact that influential

factors in X can be determined using relatively few

samples compared to the other methods. PLS remains
robust when the influence on multiple response met-

rics needs to be assessed (there are multiple columns

in Y ), or when there is multicollinearity between input

variables (collinear columns in X) [20].

For our purpose, we need a method which can esti-

mate the relation between X and Y , from a small initial

dataset. Also it is not our main goal in this initial phase

to derive a (linear) model. We only need have an idea of

the main factors in X that seem to have the most effect

on Y . We therefore select PLS (also sometimes called

Projection to Latent Structures) [20] as most generic

method for this use case. The results are shown in Fig.

8, where the height of the bars indicates how much each

workload or resource metric influences the KPI varia-

tion. The bar heights can be thought of as coefficients

of a regression model. But from this small dataset, the

only reasonable conclusion for now is that a higher bar

indicates a more influential factor for the KPI.
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Fig. 8 Feature selection based on the initial sample set of
the profiled VNFs.

– For pfSense in Fig. 8a, we clearly see that workload

metrics packetsize and flows have little to no influence

the KPI (packet loss).

– For Nginx in Fig. 8b, we observe that all parameters

have a reasonable contribution to the variation of the

KPI (lag ratio). This means that we should not be

selective in the input metric space here.

We must note that the analysis in the previous subsec-

tion takes only the variation between the edge values

into account. The sample size is too limited to asses if

there are any local extrema in between the edge values.

In the next sections we will further investigate where to

pick next profiling points.

6.4 Primary Workload Metric Selection (wlp)

We further limit the sampling space, by focusing on

selected metrics. For each VNF we can prioritize one

specific workload metric, which is more likely to vary

in real-world traffic. This is the x-axis metric used on

the plots in Fig. 3: packet rate (pfSense) and streams

(Nginx). With the VNF deployed in production, we as-

sume that in the most realistic scenarios both resource

allocation and workload configuration are relatively sta-

ble, while the respective x-axis metrics in Fig. 3 are

most likely to vary. We call these the primary work-

load metric wlp. We focus our profiling efforts in such a

way, that the VNF model can predict more fine grained

at which level of wlp the performance is outside SLA

bounds (using Eq. 1). The other workload and resource

allocation metrics are sampled more coarse grained. We

favor the respective wlp metrics during our profiling mea-

surements by picking more samples in their specified

range, in order to estimate more accurately the perfor-

mance breakpoint. For pfSense the wlp = packetrate,
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for Nginx: wlp = streams. Intuitively, this corresponds

to how we expect a VNF to be generally used: with

resource usage mainly driven by increasing packet or

request rate.

The coarse grained values, specified for workload and

resource allocation metrics apart from wlp, allow the

inclusion of “expert knowledge” into the profiling pro-

cedure. Next to the edge values, a service developer or

tester should include values which are considered inter-

esting to monitor or benchmark. The resource allocation

metrics are also likely to be limited by availability. The

sampling heuristic will then iterate through the defined

workload and resource allocation values in an optimized

way.

Algorithm 1: Online sampling of workload

metric wlp
Data: wlp boundaries, ε, max
Result: Swlp = sampled wlp values

1 Swlp,old ← the two wlp boundary values;

2 Mold ← train model with Swlp,old;

3 while len(Swlp) < max do
4 s← bisect a new wlp value (Algorithm 2);
5 Swlp,new = Swlp,old.append(s);

6 RMSEold ← RMSE(Mold, Swlp,new);

7 Mnew ← train model with Swlp,new;

8 RMSEnew ← RMSE(Mnew, Swlp,new);

9 ∆RMSE = |RMSEold −RMSEnew|;
10 if ∆RMSE < ε then
11 stop while loop;
12 end
13 Swlp,old = Swlp,new;

14 Mold = Mnew;

15 end
16 return Swlp,new;

Algorithm 1 describes how we select online which values

of wlp to sample next. Also a stop criterion is included,

to assess when to stop sampling:

– Line 6: Mold is trained without the latest added sam-

ple. The RMSEold is calculated on how Mold predicts

all samples, including the new sample.

– Line 8: Mnew is trained with the latest added sample.

The RMSEnew is calculated on how Mnew predicts

all samples, including the new sample.

– Line 10: ∆RMSE is a measure of how much the

latest sample influences the model accuracy. If the

accuracy delta is small enough (threshold ε is used),

we assume that the model will not improve further

by adding extra samples, and we can stop sampling

this particular workload configuration. Throughout

our tests we have used ε = 0.5.

Note that the modelling method M in Algorithm 1 can

be easily replaced. Therefore the algorithm is generic

enough to deal with deviating VNF performance trends,

(which require modelling methods other than the ones

presented in Section 5.1).

In Algorithm 2, we bisect the most interesting workload

level to sample next. The goal is to select samples to

estimate the point where the KPI trend breaks from flat

into a steeper curve, as shown in Fig. 4. Hence, we try

to find points around the breakpoint, where the KPI

starts to rise.

Algorithm 2: Bisect next value of workload

metric wlp
Data: already sampled wlp values, KPImax

Result: s = newly sampled wlp value
1 X ← already sampled x values (workload, ascending);
2 Y ← already samples y values (KPI) ;
3 S ← empty set ;
4 foreach sample in (X,Y ) do
5 ∆x = |X[i]−X[i+ 1]|;
6 ∆y = |Y [i]− Y [i+ 1]|;
7 S.append(i,∆x.∆y)

8 end
9 sort S descending by ∆x.∆y ;

10 take i in S with largest ∆x.∆y and y[i] < KPImax ;

11 xnew ← X[i]+X[i+1]

2
;

12 ynew ← measure KPI in xnew ;
13 s← (xnew, ynew) ;
14 return s;

– Line 4-8: The already sampled values are grouped

per interval. In each interval we calculate ∆x.∆y as

a measure how wide and how steep this interval is.

– Line 10: The most interesting interval has both: a

large KPI change (∆y) and a wide gap between mea-
sured workloads (∆x).

– Line 11: The next sample is bisected in the selected

interval.

In Fig. 9 we investigate which modeling method works

best to determine ∆RMSE (line 2 and 7 in Algorithm

1). For this test we decrease ε from 2 to 0.01. Then for

each value of ε:

– We filter each total VNF dataset for each unique

combination of profiled workload and resource metrics

(except wlp). For each of these sample subsets, we use

Algorithm 1 to gather samples for wlp.

– In each subset, we compare three methods: curve fit,

interpolation and GP, to calculate the ∆RMSE as

stop criterion for the sampling. Each of these three

methods thus yields a different number of samples.

Note that this is only a one-dimensional model, used
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(d) Nginx interpolation model

Fig. 9 When sampling the workload metric wlp online, a Gaussian Process (GP) works best to assess when enough samples
are taken. The GP produces the best model for the KPI trend, under varying wlp values, and with the least amount of samples.

here only to calculate ∆RMSE on training subsets

(cf. wlp on the x-axis and KPI on the y-axis as in Fig.

6a), as wlp varies while other workload metrics and

resource allocation remain fixed.

– When the sampling is completed (threshold ε is reach-

ed), we combine the sampled subsets to train both a

curve fit (Fig. 9a and 9c) and an interpolation model

(Fig. 9b and 9d) on the total input space and check

their accuracy.

The GP method emerges here, rather surprising, as the

most accurate method in all four tests. Apparently, the

GP needs the least amount of samples to capture accu-

rately the KPI trend. Intuitively, this seems to indicate

that curve fit and interpolation methods tend to overfit

here and require more samples until ∆RMSE stabilizes.

The GP method seems to generalize better in this lo-

cal one-dimensional model and converges faster. Note

that we do not use GP to select the samples here (this

would be a bad practice as explained in Section 6.2).

Instead we use our own bisection method (Algorithm
2) to select samples and only use GP to calculate the

∆RMSE. Another remark, as shown in earlier measure-

ments, is that the GP method also works less well when

the input space is increased with more workload and

resource metrics. In this multi-dimensional space, the

accuracy of the GP method decreases (we will detail

this later in Section 6.6). In the next section we will

apply our previous learnings to implement the online

sampling heuristic.

6.5 Sampling Heuristic Overview

We mentioned earlier that the KPI value can be consid-

ered as a response surface of a multi-variate input space

defined by the workload and resource metrics. Several

generic techniques are available to sample response sur-

faces, referred to as Design of Experiments (DoE). An

important learning from this research domain is that

edge values are the best starting points to characterize

a black-box response surface. Based on this strategy, we

have also constructed our sampling heuristic so far:

1. We defined the important workload, resource metrics

and their (edge) values.

2. As an initial measurement, each combination of the

different edge values is measured (a 2-level, full facto-

rial measurement). A feature selection analysis on this

initial sample set reveals which metrics contribute
most to the KPI variation and are thus more inter-

esting to sample.

3. One specific workload metric, wlp, is bisected more

fine grained, while the other metrics are iterated

through fixed pre-defined values.

We want to select in an online way, which next

configuration to measure. This means we need to decide

from the previous samples, which next workload and

resource configuration will reveal thee most information

to model the KPI trends. We use following procedure to

achieve this: (i) the total sample space is divided into

configurations (all possible combinations of workload
and resource settings), and (ii) in each configuration, a

number of values of wlp is sampled through bisection.

Practically, for our measured VNFs, this means:

– pfSense: Each combination of these metrics settings

is a configuration: [CPU allocation, flows, packetsize].

In each configuration, we bisect new values for wlp =
packetrate, between the given boundary values.

– Nginx: Each combination of these metrics is a config-

uration: [flavor, quality, movies]. In each configuration,

we bisect new values for wlp = streams, between the

given boundary values.

Per VNF we have thus defined a configuration space.

We use Algorithm 3 to select which configuration in

this space is most interesting to profile next. In this

algorithm, the feature Fn with values f ∈ F , refers to

a configuration metric of the VNFs as defined above.

We select the next configuration metric value based on

previously measured values. The next value is located

between the two previously measured values which had
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Algorithm 3: Online configuration selection

Data: F = list of possible values of feature Fn

Result: fnew = new value of Fn to sample
1 Fs ← already sampled values of Fn ;
2 S ← empty set ;
3 foreach value f in Fs do
4 M ← find all KPI measurements where f == Fn ;
5 mf ← mean(M);
6 S.append(f,mf ) ;

7 end
8 sort S by f ;
9 for each interval in S calculate:

∆mf,i = |mf [i]−mf [i+ 1]|;
10 find interval in S where ∆mf,i is the largest;
11 fnew ← middle value in F between f [i] and f [i+ 1] ;
12 while fnew ∈ Fs or fnew == empty do
13 take fnew in interval with next largest ∆mf,i;
14 end
15 return fnew;

the most influence on the mean KPI value (characterized

by ∆mf,i). Or in other words, we bisect the new value

between the points where the average KPI value showed

the highest change. The value returned is then used as

the next configuration setting where new values of wlp
are sampled using Algorithm 1.

To calculate the RMSE, we have validated our sam-

pling heuristic using an extra test dataset. However,

when using the online sampling mechanism on a new

VNF, we likely have no test samples available to asses

the accuracy of the model being profiled. To alleviate

this, we investigate if we can use the ∆RMSE of the

obtained samples so far, as a stop criterion for the pro-

filing procedure, similar to Algorithm 1. In Fig. 10, we

calculate the ∆RMSE when a new workload or resource
metric value is added to the profiled measurements. This

is an indication if the last obtained samples contributed

much to total accuracy of the model so far. We see

indeed on the plots that ∆RMSE stabilizes around the

same number of samples where the RMSE stabilizes in

Fig. 12. This indicates that ∆RMSE could indeed be

used as a stop criterion, to assess when enough sam-

ples are profiled and more samples will not improve the

accuracy much more.

Figure 11 summarizes the workflow of our presented

sampling heuristic. After feature selection, an initial

subset of the configuration space is sampled, as depicted

by the black dots in Fig. 11b. The grey dots are added

by Algorithm 3. At any point in the sampling procedure,

more samples can be added for any of the metrics using

the loop in the last two blocks of Fig. 11a. This can be

done to increase the accuracy of the prediction model,

if there is still budget available for additional profiling

time.
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Fig. 10 Variation in the ∆RMSE, to be used as stop crite-
rion for the sampling.
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Fig. 11 (a) The sampling workflow with (b) simplified repre-
sentation of the sampled configuration space.

We show the result of the sampling heuristic in Fig.
12. Two selected modeling methods (interpolation and

curve fit) are used to indicate the accuracy of the trained

model on the test dataset. The heuristic is used to se-

lect training samples from the training set. the test

dataset is afterwards used to calculate the model ac-

curacy (RMSE). It can be clearly seen that the used

sampling heuristic has a positive effect on the needed
sample size, compared to the uniform sampling strategy

we put forward as benchmark. This beneficial for the

total profiling time needed to model the KPI trends of

these VNFs. This result also further extends the findings

in [4], showing that the curve fit method is also well

performing at smaller datasets, with optimally chosen

training samples.

In Table 2 and 3 the subsequent rows indicate which

metrics have been measured and what the resulting

RMSE is (using the best method seen in Fig. 12). Near

the bottom of the tables, more workload and resource

configurations have been measured, resulting in a lower

RMSE and thus better model accuracy.

While sampling the pfSense dataset (Table 2), we

can see that most improvement comes after sampling

only the first feature (cpu allocation). Sampling the next

workload features (flows, packetsize) brings subsequently

less improvement. This is aligned with the feature se-

lection done in the beginning of the profiling procedure.
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Fig. 12 Optimized sampling strategies compared to uniform sampling. Less samples are needed to achieve a stable and high
model accuracy.

cpu alloc. (%) flows packetsize (B) packetrate (kpps)(wlp) # samples RMSE(packet loss)

Edges only [0.25, 5] [1, 10000] [64, 1500] [0.1, 500] 16 (feature selection)

Feature1 [0.25,...,5] 10 256
bisect max 10 values
(via algorithm 2)

56 3.77
Feature2 [0.25,...,5] [1,..., 10k] 256 352 2.92
Feature3 [0.25,..., 5] [1,..., 10k] [64,...,1500] 2054 2.61

Table 2 Configuration picking order for pfSense. Features are sampled in order of significance in Fig. 8. Each feature is
completely sampled before the next one.

flavor quality movies streams (x1000) (wlp) # samples RMSE (lag ratio)

Edges only [0, 11] [1, 5] [1, 5] [0.01, 5] 16 (feature selection)

Feature1/2/3 [0, 11] [1, 5] [1, 5]
bisect max 10 values
(via algorithm 2)

40 25.0
Feature1/2/3 [0, 5, 11] [1, 3, 5] [1, 3, 5] 141 12.8
Feature1/2/3 [0, 2, 5, 11] [1, 3, 4, 5] [1, 3, 4, 5] 320 9.8
Continue to bisect a new value per feature, alternately, until all feature values are sampled...
Then also allow more wlp samples.
Feature1/2/3 [0, ...,11] [1, ..., 5] [1, ..., 5] max 10 values 1443 2.2
Feature1/2/3 [0, ..., 11] [1, ..., 5] [1, ..., 5] max 50 values 3025 1.8

Table 3 Configuration picking order for Nginx. Features are sampled in order of significance in Fig. 8. New feature values are
bisected round-robin over the resource and workload metrics.

As indicated in Fig. 8, cpu allocation is indeed the most

important metric in this dataset.

For the Nginx dataset (Table 3), there were no fea-
tures which jumped out during the feature selection

phase. Each metric (flavor, quality and movies) is con-

sidered to have significant effect on the KPI. We there-

fore pick the metrics values round-robin across all input

metrics.

It can be noted that also other, more practical, rea-

sons can influence the order in which metrics are selected.

For example, it might be more beneficial to limit many

resource allocation changes in the sampling procedure.

Often, a VNF restart is required to make use of the

newly allocated resources such as CPU cores. This re-

boot (and possible state reconfiguration) might induce

a lot of delay in the test procedure. To mitigate this, it

can be opted to change the resource allocation as very

last feature after all other workload metric values have

been sampled.

6.6 Modeling Method Impact

In Fig. 13 the same sampled dataset by our heuristic

is used to train different modeling methods. It can be

clearly seen that the sample set also has an effect on

the used model method. During our first tests using

uniform sampling, we already found large variations in
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accuracy between several modeling methods (as seen

in Fig. 5). Using uniform sampling, the interpolation

method seemed to provide the best accuracy. Earlier,

in Section 6.4, we selected GP as the best method to

model a limited one-dimensional sample subset. This

does not hold any more when using GP on the total,

multi-dimensional input space.
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Fig. 13 Comparison of the prediction accuracy of different
methods trained with the same sampled dataset.

We selected interpolation and curve fit as most

promising methods to be used with our sampling heuris-

tic. In order to use the curve fit method, some expert

knowledge or experience is required to define a priori

the trends, which need to be fitted to the KPI measure-

ments (as explained in Section 5.1). If such an analytic

function cannot be specified, interpolation seems the

next best choice.

In Fig. 12 and 13, the curve fit method shows im-

proved accuracy over the interpolation method. The

curve fit method has two major advantages:

1. The analytical functions which are fitted have a guar-

anteed monotonicity. This makes it easier to invert

the model and predict a recommended resource allo-

cation from a given KPI and workload target, as no

local extrema are present in the modeled KPI. This

is explained more elaborately in [4].

2. The curve fit method succeeds to model more ef-

ficiently the KPI trend break, happening when re-

sources get saturated at increasing wlp (see also Fig.

4), using less training samples. It provides better ac-

curacy at low KPI values, where resource saturation

is starting but not yet completely dominant.

7 Summary and Discussion

In this section, we summarize the contributions of this

paper and point out several possible research directions.

We have outlined several optimizations to develop and

execute a VNF profiling workflow:

– A micro-service oriented architecture to implement

a VNF profiling procedure. The benefits of this ar-

chitecture are that multiple profiling tests can run in

parallel, allowing scaled up and faster generation of

measurement data. Additionally, a quick, light weight

test set up and metric definition is pursued. Also

increased robustness can be expected, since the pro-

filing tests run isolated from each other and a failure

in one test will not affect other running tests.

– An optimized sampling heuristic to select online which

workload and resource allocation to measure next
in the profiling procedure. This results in a smaller

sample set and thus less profiling time needed to

model accurate KPI predictions. Compared to generic

uniform sampling, our tests show that up to 5x less

samples are needed for the same accuracy.

– We have analyzed the effect of our proposed sampling

heuristic on several modeling methods. Careful use

is advised for some typical methods used in machine

learning such as Gaussian Processes, Random Forest

or Support Vector Machines. Other methods can be

trained more accurately with the obtained sample

sets, as illustrated by our proposed interpolation and

curve fit method.

7.1 Further Research Directions

The main contribution of our paper is the generic work-

flow to profile VNFs. This can be further validated by

profiling the performance of other types of VNFs also.

Similar performance trends on router and firewall VNFs

have been found in [4]. But also more non-linear or non-

monotonous performance trends can occur [28]. The

proposed trend curves in Fig. 4 can then be replaced

by other analytic functions or more generic machine

learning models. More specifically, customization for

other types of VNFs is easily possible by plugging in an

appropriate performance trend model M on line 2 and

7 in Algorithm 1. We have focused on the profiling of

single VNFs in this paper, but by considering a chained

VNF setup as a system on its own, the same profiling

principles can be applied. KPIs should then be defined

to quantify the performance of the total VNF chain,

under a specific set of allocated resources and executed

workload.

In our tests, we have profiled a baseline VNF per-

formance, in an environment which is assumed to be

representative for production. One possible scenario

where this VNF profile can be replicated, is on other

identical servers in a datacenter. This means that un-

derlying mechanisms influencing the performance are

either included in the profiled model as an invisible fac-

tor, or are not profiled at all because they were not at
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play during the profiling phase. Investigations regarding

collateral effects are not investigated in detail here. It

is however possible that a stressing workload on one

VNF may impact another one (the so called noisy neigh-

bor effect). For example, the lack of isolation between

container allocated resources is well studied topic [29].

Also several benchmarking tests show that both long

and short term performance variations exist in shared

IaaS environments [30]. To tackle the effects of lacking

isolation, VNF profiling should be further extended in

combination with several other research domains:

– Kernel bypassing techniques offer a greater con-

trol over the used CPU resources while forwarding

and processing network packets on a generic Linux

operating system. Example libraries include DPDK

or FD.io. By using these technologies, all packet

forwarding tasks are deterministically scheduled to

specified vCPU cores. This avoids that the kernel

can randomly assign certain packet forwarding tasks

to vCPUs already allocated to other VNFs, as ex-

plained in [29].

– To adapt pre-profiled VNF models to realtime situa-

tions, online re-training should be possible during

the operation of the VNF. As illustrated with our

experiments, pre-profiled data can serve to train a

baseline performance model for the VNF. New per-

formance samples, gathered during operation, can
then be used to online refine or re-tune the baseline

VNF model. The use of online curve fitting during

VNF operation is for example shown in [31, 13]. The

use of machine learning methods to learn online

the performance trends of VNFs is investigated in

[32, 33].

The sampling heuristic described in our paper can be

adopted to generate reference or baseline training data

for multiple VNF related models and use cases. For ex-

ample, to gather benchmark datasets for VNF anomaly

detection or capacity planning.

7.2 Conclusion

Our presented profiling framework offers good integra-

tion possibilities into cloud-native platforms, this allows

to profile VNFs in representative IaaS environments,

under realistic workloads. We have selected a set of

sampling and modeling methods which we believe to be

generic enough, to be applied to a wide range of VNF

functionalities. By fitting the measured VNF trends to

analytic functions, we add expert knowledge into the

VNF performance model. As a result, we see clear im-

provement of the curve fit method compared to generic

parameterized methods typically used in machine learn-

ing approaches. This also confirms earlier research re-

sults presented in [4].

Our proposed sampling heuristic needs a set of in-

puts to start from, namely a specified range for workload

and resource allocation metrics. One primary workload

metric wlp is bisected in a fine grained way, the other

ones will iterate through a list of specified values, which

the sampling heuristic will propose online in an opti-

mized way. By using feature selection (using the PLS

method) and bisection, the heuristic will select from

previous measurements which workload and resource

configuration to profile next. This is implemented by our

presented Algorithms: 1, 2 and 3. A stop criterium is

included to automatically decide when enough samples

are gathered to achieve good accuracy. The presented
heuristic is well suited to assist in VNF profiling tasks

which can be completed faster due to a reduced testing

time.
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