
HAL Id: hal-02354401
https://hal.science/hal-02354401v1

Preprint submitted on 7 Nov 2019 (v1), last revised 21 Jun 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimized Sampling Strategies to Model the
Performance of Virtualized Network Functions

Steven van Rossem, Wouter Tavernier, Didier Colle, Mario Pickavet, Piet
Demeester

To cite this version:
Steven van Rossem, Wouter Tavernier, Didier Colle, Mario Pickavet, Piet Demeester. Optimized Sam-
pling Strategies to Model the Performance of Virtualized Network Functions. 2019. �hal-02354401v1�

https://hal.science/hal-02354401v1
https://hal.archives-ouvertes.fr

Pr
e-
Pr
in
t

Noname manuscript No.
(will be inserted by the editor)

Optimized Sampling Strategies to Model the Performance of
Virtualized Network Functions

Steven Van Rossem · Wouter Tavernier · Didier Colle · Mario Pickavet ·
Piet Demeester

Received: date / Accepted: date

Abstract Modern network services make increasing use

of virtualized compute and network resources. This is

enabled by the growing availability of softwarized net-

work functions, which take on major roles in the to-

tal traffic flow (such as caching, routing or as firewall).

To ensure reliable operation of its services, the ser-

vice provider needs a good understanding of the perfor-

mance of the deployed softwarized network functions.

Ideally, the service performance should be predictable,

given a certain input workload and a set of allocated

(virtualized) resources (such as vCPUs and bandwidth).

This helps to estimate more accurately how much re-

sources are needed to operate the service within its

performance specifications. To predict its performance,

the function should be profiled in the whole range of

possible input workloads and resource configurations.
However, this input can span a large space of multiple

parameters and many combinations to test, resulting

in an expensive and overextended measurement period.

To mitigate this, we present a profiling framework and

a sampling heuristic to help select both workload and

resource configurations to test. Additionally, we com-

pare several machine-learning based methods for the

best prediction accuracy, in combination with the sam-

pling heuristic. As a result, we obtain a reduced dataset

which can still model the performance of the network

This work has been performed in the framework of the NG-
PaaS and 5GTANGO project, funded by the European Com-
mission under the Horizon 2020 and 5G-PPP Phase2 pro-
grammes, resp. under Grant Agreement No. 761 557 and 761
493 (http://ngpaas.eu) (https://www.5gtango.eu). This work
is partly funded by UGent BOF/GOA project ’Autonomic
Networked Multimedia Systems’.

All authors are at
Ghent University - imec, IDLab
E-mail: {firstname.surname}@ugent.be

functions with adequate accuracy, while requiring less

profiling time. Compared to uniform sampling, our tests

show that the heuristic achieves the same modeling ac-

curacy with up to five times less samples.

Keywords Sampling Heuristic · Network Function

Virtualization · Performance Profiling · Machine

Learning · Regression

1 Introduction

In the telecom industry, there is an increasing adoption

of cloud-native services and network functions based

on Software Defined Networking (SDN) and Network

Function Virtualization (NFV) techniques. By virtual-

izing compute and network resources, a very flexible
environment can be created to deploy Virtual Network

Functions (VNFs) with an optimal amount of allocated

resources, adapted to the realtime incoming workload.

The recent rise of 5G enabled services also advocates

the use of cloud-native functions, which are deployed

over a virtualized infrastructure [1] [10]. This illustrates

the growing need to map the amount of allocated re-

sources and incoming workload to the KPIs of the de-

ployed network service, specified in the SLA. To char-

acterize this relation, we follow the same approach as

outlined in [23]: We propose to profile the VNF, prior to

deployment, and measure its performance under vary-

ing workload and resource configurations. The obtained

data is then further used to create a model of the VNF’s

performance. We hereby consider the VNF as a black-

box, with no formal way to deterministically calculate

the performance metrics. VNF Profiling is then basi-

cally a form of load testing, where representative work-

loads are emulated and performance is recorded. The

research goal of this article is to investigate whether

Pr
e-
Pr
in
t

2 Steven Van Rossem et al.

the total space of possible workloads and resource allo-

cations can be limited, without loosing too much pre-

diction accuracy. We compare several machine-learning

based methods for the best performance modeling accu-

racy, in combination with several sampling heuristics.

But first, we present the architecture and implemen-

tation of our profiling tool, which we used to gather

the profiling data. The profiling tool also contributes

to shortening the total profiling time, by parallelizing

multiple measurement campaigns over equal hardware

nodes.

2 VNF Profiling Framework

To generate the profiled dataset, we deploy the test

setup in a framework developed for this purpose. We

hereby give a concise overview of this framework. The

architecture and implementation builds further upon

a previous tool developed in [21]. We re-factored the

tool following a Service Oriented Architecture (SOA)

approach, where multiple profiling tests can run inde-

pendently and in parallel, thereby controlling multiple

infrastructure nodes. We also adopted several existing

technologies. The architecture is shown in Fig. 1a. Each

test setup consists of a VNF under test, where the test

traffic is routed from a traffic source to a traffic sink.

The traffic source and sink can be considered as VNFs

also, custom built and deployed for our test purpose.

The Infrastructure Node should be pre-provisioned. This

means that before the profiling tool can operate, the

VNFs under test should be pre-deployed on one or more

infrastructure nodes. This can be done by a common

orchestration framework (e.g. OpenStack, Kubernetes).

Also the used probes must be running on each Infras-

tructure Node: cAdvisor, Prometheus Node Exporter

and a probe to export Virtual Machine metrics gath-

ered by KVM and libvirt. Care should be taken that

resources (e.g. assigned vCPUs) are well isolated be-

tween VNFs under test and other components.

Prometheus is used as monitoring framework and

metrics database. For every started profiling test, a

Grafana dashboard is generated, to visually check the

status of the defined metrics being monitored.

The main ’ancillary’ services are deployed as Docker

containers (Prometheus, Grafana, traffic source/sink,

probes). The actual VNF under test can be deployed

as Docker container or as VM under KVM.

The Manager Node is where each profiling test is

running as a separate instance. Each running profiling

test can be considered as a micro-service, from which

the test status can be queried through an HTTP API.

At the end of the profiling loop, the measurements are

stored in .csv format for further analysis (See Section

4). A more detailed implementation diagram is depicted

in Fig. 1b. We can distinguish following important func-

tional blocks in the profiling service:

– Every profiling test is defined by a Test descriptor.

Here we describe which scripts or commands to exe-

cute in each VNF, in order to generate the requested

workload. See the example Listings 1 and 2 in next

subsection.

– A Metrics descriptor defines for each VNF in the

Test descriptor which metrics should be monitored

and recorded. For each requested metric, the correct

Prometheus Query (PromQL) should be given, this

is a Prometheus specific syntax to retrieve the met-

ric from the database. Care should be taken that all

required metrics are exported by the pre-deployed

probes. Prometheus is also configured to send alerts

back to profiling service when measurement stability

or overload of the traffic src/sink is detected, as used

in [23]. See the example Listing 3 in next subsection.

– Every VNF in the test setup (source, sink and VNF

under test) has its own VNF Manager instance, which

has methods available to control the VNF state. The

most important function is to execute commands which

start/stop traffic workloads. The actual commands or

scripts are specified in the descriptor files, the VNF

Manager only executes the defined command using

the correct Infrastructure Agent.

– Every VNF Manager, can have attached Infrastruc-

ture Agents to address a specific API in the remote

Test Node. This agent is used to execute commands

inside a container or set container resources via the

Docker API of the remote node or execute commands

through SSH.

Our Test Infrastructure Nodes are several equal com-

pute nodes with 2x 8core Intel E5-2650v2 (2.6GHz)

CPU with Ubuntu 18.04. Linux Bridge is used as the

hypervisor switch. We do not change the default OS op-

tions (e.g. we leave hyperthreading enabled). Depend-

ing on the virtualization of the VNF (container or Vir-

tual Machine (VM)) we use the configuration options

of Docker resp. KVM to isolate the CPU cores be-

tween the DUT and the traffic sink/source. The Man-

ager Node is a lighter machine: 4 core Intel E3-1220

CPU with Ubuntu 18.04. The main bottleneck resource

of the Manager Node is the disk space used by Prometheus,

to store all the metrics gathered from various running

profiling tests.

2.1 Profiling Descriptors

To have a more practical idea of the profiling execu-

tion, we give a succinct overview of the format used to

Pr
e-
Pr
in
t

Optimized Sampling Strategies to Model Virtualized Network Functions 3

Test Node 1
Test Node 1

export
metrics

control VNFs, source, sink
(initialization, workload config)

probes:
• cAdvisor
• Prometheus node exporter
• Libvirt exporter

experiment descriptor:
-monitored metrics
-VNF/workload/resource
configuration

Traffic
src

Traffic
sink

VNF(s)
under
test

hypervisor

export status via http api
export metrics file

configure metric queries
send alerts

configure
dashboard

profiling
services VNF ManagersVNF Managers

VNF Managers

Test Infrastructure Node(s)

Infrastructure
Infrastructure

Infrastructure Agents

Manager
Node

(a) Architecture and used tools.

Profile service

Initialize monitoring + test setup

Profiler loop:

-start next workload

-wait until stable

-export averaged metrics

VNF Managers (src,sink,VNF)

methods:

-reset

-set environment variable

-set resource allocation

-execute command

Infrastructure Agents

type: Docker

methods:

-execute command

-set resource allocation

type: SSH

methods:

-execute command

Metrics descriptor

-Grafana panels

-Prometheus queries

-probe configuration

-alert thresholds

Test descriptor

-VNF configuration

-workload settings

-commands, scripts

(b) Structural implementation of a profiling service.

Fig. 1 Architecture and implementation of the profiling framework.

describe the profiling tests. The syntax of the test def-

inition is loosely based on the implementation in [15]

and includes some adaptations to map it better to our

envisioned sampling heuristic.

1 agents:
2 docker1:
3 class: DockerClient
4 url: ’tcp://docker.api.url:port’
5 # ...
6 ssh1:
7 class: SshClient
8 host: ’infrastructure.node.url’
9

10 managers:
11 src:
12 class: DockerVnf
13 agent: docker1
14 cpuset_cpus: ’8-15’
15 # ...
16 pfsense:
17 class: Vm
18 agent: ssh1

Listing 1 YAML based test descriptor - interface
configuration

A first part of the Test descriptor is given above

in Listing 1. This part defines a configuration agent

for each VNF in the profiling setup. As previously ex-

plained, a class instance is made for each specified VNF

manager and each manager uses an agent as interface

to the underlying VNF. The names of the VNF man-

agers defined here, are referred to in the remainder of

the descriptor. The declarations in the descriptor hold

test-specific settings. For the agents this includes: api

endpoints, credentials, authentication methods, ... For

the VNF managers we need specific settings such as: the

agent to communicate with the VNF, container or VM

uid, resource or operational initialization to configure

via the agent, ...

A second part of the Test descriptor is then given

in Listing 2. This is the most important part from the

profiling perspective, as it defines the actual values for

each relevant parameter in the test. For each parameter

we define:

– A list or range of values to test (Line 4,10,14,25).

– The method of the manager instance to call, in or-
der to practically configure this value into the VNF

test (Line 5,11,15,26). In our tests, we use a common

technique based on environment variables. The work-

load settings are stored in environment variables in

the VNFs, later when the workload script is called,

these variables are read and the configured workload

is started.

– A list of fixed initialization commands, which are ex-

ecuted every time a new setting is configured (e.g. to

stop/start a workload generating script in the traffic

generator) (Line 18,29).

The sampling heuristic takes the defined parameter ranges

into account and will iterate through all combinations

in an optimized order. For this reason, the total config-

uration space is categorized into three sections:

– resource parameters

– workload parameters

– primary workload parameter

Pr
e-
Pr
in
t

4 Steven Van Rossem et al.

The main reason for this categorization is to guide the

sampling heuristic through which metric value to sam-

ple next, as will be explained in the coming sections.

1 resource_parameters:
2 - name: pfsense_cpu_limit
3 # allocated cpu in %
4 values: [25,50,75,100,200,300,400,500]
5 function: set_cpu
6 manager: pfsense
7

8 workload_parameters:
9 - name: packetsize

10 values: [64,128,256,512,1024,1500] #
Bytes

11 function: set_environment_var
12 manager: src
13 - name: flows
14 values: [1, 2, 10, 100, 1000, 10000]
15 function: set_environment_var
16 manager: src
17

18 initialization:
19 - manager: src
20 cmd: ’pkill -9 -f start_src.sh’
21 # ...
22

23 primary_workload_parameter:
24 name: packetrate
25 # Values will be chosen in the defined

interval for this parameter
26 range: [0.1,500] #kpps
27 function: set_environment_var
28 manager: src
29

30 initialization:
31 - manager: src
32 cmd: ’bash start_src.sh’
33 # ...

Listing 2 YAML based test descriptor - test configuration
space

In Listing 3, we illustrate the structure of the Met-

rics descriptor. This file is translated to the needed

configuration directives for the Prometheus monitoring

framework to gather the required metrics. The list of all

the required metrics is given (Line 1). For each given

metric, a template should be defined, which maps to

the correct Prometheus Query (Line 9). Deployment or

test specific parameters such as id’s should be dynami-

cally filled in the template. The metrics descriptor also

defines the probes where Prometheus can get the met-

ric values from (Line 21). The Profile service will query

all defined metrics from the Prometheus database once

a configured workload is stable, the used implementa-

tion is described in [23]. The queried metric values are

exported to a file and kept for online analysis by our

sampling heuristic.

It is beneficial if each measured and exported met-

ric is explicitly mentioned in the Metrics descriptor and

Test descriptor. When exporting the test results after

the profiling, there should be a clear link between the

metric name in the exported results and where/how

this metric is exactly measured. Our approach is that

the exact name of the measured metrics can be found

back in the two descriptor files. The descriptor files be-

come the reference for what each metric stands for and

where/how it is exactly gathered: (i) The test descriptor

explains the metrics which define active settings such

as the workload generation and resource allocation. (ii)

The metrics descriptor explains the metrics gathered

passively by all probes.

1 metrics:
2 - sink:cpu
3 - src:cpu
4 - pfsense:cpu
5 - sink:packetrate_receive:eth1
6 - pfsense_packetrate_loss
7 # ...
8

9 definitions:
10 docker:
11 cpu:
12 template: ’sum(rate(

container_cpu_usage_seconds_total{id="/
docker/{{ docker_id }}"}[10s]))*100’

13 unit: ’%’
14

15 packetrate_receive:
16 template: ’sum(rate(

container_network_receive_packets_total{id
="/docker/{{ docker_id }}",interface="{{
interface_id }}" }[10s]))’

17 unit: ’pps’
18

19 # ...
20

21 probes:
22 node_exporter:
23 job_name: node_exp_pfsense1
24 scrape_interval: 1s
25 static_configs:
26 - targets:
27 - ’infrastructure.node.url:9100’
28 cadvisor:
29 job_name: cAdvisor_pfsense1
30 scrape_interval: 1s
31 static_configs:
32 - targets:
33 - ’infrastructure.node.url:8080’
34 # ...

Listing 3 YAML based metrics descriptor

The use of the above explained descriptor files, makes

it easy to modify and repeat profiling tests. The con-

figuration of monitored metrics, workload and resource

parameters is kept very generic to allow a wide appli-

cability in VNF testing. In the remainder of this article

we will present measurement results gathered by using

the above explained framework and descriptor formats.

Pr
e-
Pr
in
t

Optimized Sampling Strategies to Model Virtualized Network Functions 5

3 VNFs Under Test

To choose exemplary VNFs for our profiling tests, we

looked at some typical use cases defined in [1]. The

adoption of 5G technologies enables new possibilities

for the telco industry to diversify their network ser-

vices to new markets. To enhance the security of these

services we look at the deployment of a virtual firewall

(pfSense). As a large portion of the traffic over 5G will

be media based, we also look at the deployment of a

virtual streaming server (Nginx).

For all the tested VNFs we consider CPU and band-

width as the most important resource metrics, as we

assume these are more likely to become a bottleneck

resource than memory. This is also confirmed in [9].

Our measurements also show little to none variation in

the memory usage of the VNFs while they are under

test. In the next subsection we will discuss each VNF

more in detail.

3.1 Firewall - pfSense

We use pfSense1 as a free and open source firewall solu-

tion example, deployed as a VM. We stress the firewall

by generating multiple unique parallel flows. Also the

packetsize is varied. Using the tool Scapy we assemble

a .pcap file with a stream of packets of varying mac

addresses and unique destination IP/port in the packet

header. Tcpreplay is then used to stream the .pcap file

at a given packetrate from the traffic source. There is

also an iperf stream running, with an iperf server in

the traffic sink. This is used to monitor packet loss. For

the firewall to function properly, we need to make sure

the ARP table of the VNF contains the mac addresses

of the generated packets, so the firewall forwards the

packets properly to the traffic sink. This is done by arp

spoofing the firewall from the traffic sink. To have an

idea of the baseline performance of the firewall, we in-

stall no specific firewall rules and let the traffic pass.

Generated workload metrics:

– packetrate: [0.1-500]kpps. 50 different packetrate

values are selectively chosen, spaced evenly along

the log scale.

– packetsize: [64,128,256,512,1024,1500] bytes

– flows: [1,2,10,100,1000,10000] unique parallel flows

(with unique IP/port combination in the header).

Resource metrics:

– CPU allocation: [0.25, 0.5, 0.75, 1, 2, 3, 4, 5] vC-

PUs

1 https://www.pfsense.org/

The bandwidth allocation is not a dedicated setting

in this test. It is determined by the workload, since

we specify the generated packetrate and packetsize up

front.

Performance metric:

We choose packet loss (%) as the main KPI to reflect

the performance of the firewall.

All combinations of above metrics result in 12000

measurement points. If we need about 30sec per mea-

surement to get a stable reading, the total profiling time

reaches up to 100h to measure each combination once.

3.2 Streaming Server - Nginx

We set up a live streaming service using Nginx2 , a well

known open source, all-in-one load balancer, web server,

content cache and API gateway solution. Nginx is de-

ployed in a Docker container. We configure Nginx to

accept incoming live movie streams via the Real-Time

Messaging Protocol (RTMP [13]) protocol. The incom-

ing RTMP live stream is then transcoded to a specific

video bitrate and resolution (Nginx uses ffmpeg for this

purpose). Next, Nginx serves the newly encoded movie

chunks live, through the HTTP Live Streaming (HLS

[12]) protocol. In our test setup, the traffic source sends

1 - 5 movies in realtime to Nginx over RTMP. On the

client side, the traffic sink opens many concurrent ses-

sions to Nginx, to download playing live movies over

HLS (We use Locust.io to emulate the HLS clients and

download the stream requests). This use-case exempli-

fies the situation where a small number of incoming

live movies is temporarily cached in an edge server and

than streamed with a certain quality to a large number

of clients.

Generated workload metrics:

– streams: [10-5000] parallel client HLS streams. 80

different stream values are selectively chosen, spaced

evenly along the log scale.

– movies: [1,2,3,4,5] number of different source movie

streams, input via RTMP.

– quality: [1,2,3,4,5] indicator for the quality of the

streams (resolution and video bitrate ranging from

1280x720/2500kbps to 426x240/200kbps).

Resource metrics:

The streaming performance is determined by both the

available bandwidth and vCPU. It is unpredictable how

the balance between cpu time for ffmpeg transcoding

and cpu time for serving the movie chunks will be sched-

uled (as we consider this a black-box VNF). Therefore

2 https://www.nginx.com/products/nginx/modules/rtmp-
media-streaming/

Pr
e-
Pr
in
t

6 Steven Van Rossem et al.

we have no way to deterministically predict the influ-

ence of both the allocated bandwidth and cpu on the

KPI. We need to profile the performance with several

combinations of allocated vCPU and bandwidth. This

also reflects the availability of different flavours to de-

ploy the VNF.

– flavours: [(0.5, 0.5), (0.5, 1), (1, 1), (1, 2), (2, 1),

(2, 2),

(3, 2), (3, 3), (3, 4), (4, 5), (6, 5)] (vCPUs, Gbps).

Eleven different flavours to deploy the VNF, defined

by their given vCPU and bandwidth allocation and

encoded from [0-10].

Performance metric:

We choose lag ratio (%) as the main KPI to reflect the

performance of the streaming server. This indicator is a

measure for the risk of ’hickups’ or lagging during video

playback. It is the ratio of downloaded video playback

time over the last period. If the video time is less than

the waiting time, the playback buffer will empty and

the risk of lagging will increase:

lag ratio (%) = max

(
1− Tvideo

Twait
, 0

)
We measure the lag ratio in a moving average over 20s

(we assume 20s buffer time). If the KPI gets above zero,

it means that during the last 20s, the playback buffer

was addressed because less than 20s of video stream was

downloaded. Increasing KPI values mean more buffer

time is continuously needed, resulting in video rebuffer-

ing and thus ’lagging’. The HLS protocol will try to

keep the lag ratio at zero by varying the size of the

served movie chunks and maximizing the bandwidth

over all clients.

In order to get a stable measurement, a certain ramp-

up tine is need to generate to required number of clients

and to let the HLS based streaming stabilize. In our

setup this takes up to 100sec per measurement point.

To test all above combinations once, takes then over

500h to complete.

We only evaluate the KPIs below 30% packet loss

or lag ratio, as we assume that above this threshold the

VNF is practically unusable. Therefore there is no need

to accurately model the KPI above 30%.

The long profiling times of the above introduced

VNFs show the need to optimize both: (i) the parallel

execution of measurement runs by the profiling frame-

work (as explained in Section 2) and (ii) the sampling

strategy to limit the number of needed sampling points.

The latter will be explained next.

4 VNF Data Analysis

As proposed in [23], we have classified the tested VNF

metrics under three groups in the previous section:

– Workload metrics reflect the configuration of the

incoming traffic to be processed by the VNF.

– Resource metrics quantify the allocated resources

which determine the cost and processing capabilities

of the VNF. For our analysis we express this as re-

source usage, which is the averaged used portion (%)

of allocated vCPU and bandwidth.

– Performance metrics monitor the Key Performance

Indicators (KPIs), to assure that the performance of

the VNF remains within the SLA.

From the obtained VNF measurements, we want to

derive a model which predicts the performance KPI in

function of the given workload and resource allocation.

From an abstract and generalized viewpoint, the VNF

performance model f can be described as:

f(wl, res) = perf (1)

where:

wl = input workload (e.g. packetrate, filesize, streams)

res = resource allocation (e.g.number of allocated vC-

PUs, bandwidth or flavour)

perf = KPI metrics (e.g. packet loss, lag ratio)

Figure 2 shows a subset of our measurements: for

each VNF a certain workload configuration is executed

on varying resource allocations. The measurements in

Fig. 2 confirm the trends that were also described in

[23] on other VNF examples:

– The resource usage is correlated with the rising work-

load (on the x-axis) until saturation (Fig. 2a and 2b).

Either CPU or bandwidth gets saturated first, which

explains why the averaged resource usage can satu-

rate below 100%.

– Before resource saturation, the KPI levels remain sta-

ble and flat. When resource contention starts, the

KPI levels start to vary more rapidly (Fig. 2c and

2d).

We can also distinguish two other interesting facts from

the plots:

– For pfSense (Fig. 2c) we can see that the performance

does not increase with more than 3 allocated vC-

PUs. This points to a deployment limitation where

it makes no sense to allocate more vCPUs, because

it is not exploited by the VNF implementation.

Pr
e-
Pr
in
t

Optimized Sampling Strategies to Model Virtualized Network Functions 7

0 100 200 300 400 500
packetrate (kpps)

0

20

40

60

80

100

to
ta

l r
es

ou
rc

e
us

ag
e

(%
)

pfSense packetsize=512B, flows=1000

allocated vCPU
0.25vCPUs
0.5vCPUs
0.75vCPUs
1.0vCPUs
2.0vCPUs
3.0vCPUs
4.0vCPUs
5.0vCPUs

(a) pfSense resource usage

0 1 2 3 4 5
streams (x1000)

0

20

40

60

80

100

to
ta

l r
es

ou
rc

e
us

ag
e

(%
)

Nginx movies=1, quality=1

resource flavor
0.5vCPUs 0.5Gbps
0.5vCPUs 1.0Gbps
1.0vCPUs 1.0Gbps
1.0vCPUs 2.0Gbps
2.0vCPUs 1.0Gbps
2.0vCPUs 2.0Gbps
3.0vCPUs 2.0Gbps
3.0vCPUs 3.0Gbps
3.0vCPUs 4.0Gbps
4.0vCPUs 5.0Gbps
6.0vCPUs 5.0Gbps

(b) Nginx resource usage

0 100 200 300 400 500
packetrate (kpps)

0

20

40

60

80

pa
ck

et
 lo

ss
 (%

)

pfSense packetsize=512B, flows=1000

allocated vCPUs
0.25vCPUs
0.5vCPUs
0.75vCPUs
1.0vCPUs
2.0vCPUs
3.0vCPUs
4.0vCPUs
5.0vCPUs

(c) pfSense KPI

0 1 2 3 4 5
streams (x1000)

0

20

40

60

80

la
g

ra
tio

 (%
)

Nginx movies=1, quality=1

resource flavor
0.5vCPUs 0.5Gbps
0.5vCPUs 1.0Gbps
1.0vCPUs 1.0Gbps
1.0vCPUs 2.0Gbps
2.0vCPUs 1.0Gbps
2.0vCPUs 2.0Gbps
3.0vCPUs 2.0Gbps
3.0vCPUs 3.0Gbps
3.0vCPUs 4.0Gbps
4.0vCPUs 5.0Gbps
6.0vCPUs 5.0Gbps

(d) Nginx KPI

Fig. 2 Subset of measured VNF metrics under different resource allocations.

– When it comes to Nginx (Fig. 2d), we see that some

resource flavors have overlapping performance curves.

This indicates that the workload is bounded by a

common resource limit of those flavors, namely band-

width in this case.

It is challenging to discover the above mentioned

phenomena automatically, without visual inspection of

the data plots. A KPI prediction can be made by train-

ing the model with the obtained profiled datasets. But

a common adagio from the Machine Learning domain

is that the model will only be as smart as its train-

ing data, meaning that we must provide representative

training data in all foreseeable situations. This implies

that we must also profile in the regions where resource

saturation occurs or where resource flavors overlap , or

where the performance is limited by the internal VNF

implementation.

In the next subsection we will outline methods to

model the performance of the trends shown above. Re-

garding the accuracy, it is important to note that the

breakpoint of the KPI curve is the area of most interest.

This is the maximum workload possible by the VNF,

just before the performance declines more severely.

4.1 Modeling Methods

We look for an appropriate modeling method to pre-

dict the KPI values from a given workload and resource

configuration, as explained earlier by Eq. 1. A first idea

of the trends to be modelled can be seen in Fig. 2c

and 2d. From a pure mathematical perspective, we can

consider the KPI values to be a response surface, de-

fined by a multi-variate function where the workload

and resource allocation metrics are the input param-

Pr
e-
Pr
in
t

8 Steven Van Rossem et al.

eters. The total input space is multivariate, since all

workload and resource metrics can influence the result-

ing KPI value. We compare several generic methods

from the machine learning domain, which are capable of

modeling generic, non-linear and multi-variate response

surfaces. The used methods have also shown promising

applications in regression modeling, where the amount

of training samples is limited. We have used the imple-

mentations available in the library Scikit-learn [14]. We

also include the Interpolation and Curve Fit method,

which have shown promising results in [23]. The inves-

tigated modeling methods are:

– Support Vector Regression (SVR) This method

has shown promising results in estimating non-linear

relationships using limited, sparse datasets. SVR se-

lects samples to form a flexible tube of minimal ra-

dius, symmetrically around the estimated function,

such that the absolute values of errors less than a cer-

tain threshold (ε) are ignored both above and below

the estimate. Points outside the tube are penalized

and not taken into account for the regression. The

hyperparameters of this method are C, the penalty

parameter, ε and the standard RBF kernel. More de-

tails can be found in [19]. The use of SVR for mod-

eling VNF performance has also been applied in [16]

with limited success. We also include it here for ver-

ification on our data sets.

– Random Forest (RF): The basic idea behind this

method is to combine multiple decision trees in de-

termining the final output rather than relying on an

individually built decision tree. Maximum tree depth

is set to 10, and the number trees in the forest is 100.

The use of decision trees for modeling VNF perfor-

mance has been investigated in [16], [7] and [6] with

promising results. We include the RF method here

for verification on our data sets.

– Gaussian Process (GP): This method implements

a Bayesian approach to (non-)linear regression. A GP

defines a prior over functions, which can be converted

into a posterior over functions once it has seen some

data. The covariance between training samples is a

given kernel function. The kernel function we use:

Constant∗RBF+WhiteNoise. This is a generic ker-

nel function used in many GP examples. One main

advantage of using GPs, is that the kernel hyper-

parameters (RBF lengthscale, noise level, constant)

can be learnt automatically via evidence maximisa-

tion from the training points themselves, no exhaus-

tive search is needed as with other methods. The key

idea is that if the training samples are deemed by

the kernel to be similar, then we expect the output

of the function around those points to be similar, too.

More information on this method is available in [24].

The use of GP for modeling software performance

has been proposed in [5]. We also use GP here for

verification on our datasets.

– k-Nearest Neighbors (kNN): is a commonly used

technique due to its simplicity and often accurate re-

sults. In kNN regression, the output value is the av-

erage of the values of k nearest neighbors in the input

space (weighted by distance). We use the Euclidean

distance metric and standardize the input values. For

our tests we use k = 2.

– Interpolation method: Regression is done by in-

terpolating linearly between surrounding samples. The

interpolant is constructed by triangulating the in-

put data using Delaunay triangulation, and on each

triangle performing linear barycentric interpolation.

This method also works in multiple dimensions, so

the total workload and resource input space is taken

into account to interpolate an intermediate KPI value.

This method has been used for VNF modeling in [23].

We also include the method here for verification on

our new datasets.

– Curve Fit method: This method has been success-

fully used for VNF modeling in [23] and we reuse

the method here for verification on our new datasets.

Based on the analysis in [23], we fit the KPI trends

to the analytical functions of this form:

{
f(x)non−saturated = a+ exp [b(x− c)]
f(x)saturated = 100

(
1− d

x−e

)
,where x > d+ e

(2)

where the output is clipped in the range [0, 100]:{
0 , f(x) < 0

100 , f(x) > 100

The full justification for the functions in Curve Fit

method is explained in [23], we summarize here shortly

the fitting procedure. Figure 3 shows how the trends

in Eq. 2 are fitted to data subsets of both investigated

VNFs. The saturated region starts when the workload

shows a higher covariation with the KPI than with the

resource usage metric. The parameters a, b, c, d, e in Eq.

2 are fitted to the profiled data points in the respective

(non) saturated regions. Note that two possible inter-

sections can exist between fnon−saturated and fsaturated.

When the fitted curve is known, all possible intersec-

tions are estimated. For each intersection point, the ac-

curacy (RMSE) of the resulting piecewise model is cal-

culated. Finally, the intersection point which yields the

best accuracy is chosen and stored into the Curve Fit

model. The clipped output represents that the KPI val-

ues (representing packet loss and lag ratio) are limited

Pr
e-
Pr
in
t

Optimized Sampling Strategies to Model Virtualized Network Functions 9

0 20 40 60 80 100 120 140 160
packet rate (kpps)

0

20

40

60

80

100

120

re
s

us
ag

e
(%

)

non-saturated saturated

0

20

40

60

80

100

120

pa
ck

et
 lo

ss
 (%

)

pfSense 1vCPUs, packetsize: 64B, 2 flows

res usage
packet loss in non-saturated region
packet loss in saturated region

(a) pfSense example subset

0 1 2 3 4 5
streams (x1000)

0

20

40

60

80

re
s

us
ag

e
(%

)

non-saturated saturated

0

20

40

60

80

la
g

ra
tio

 (%
)

Nginx flavor2:{100vCPU,1Gbps}, movies: 1, quality: 3

res usage
packet loss in non-saturated region
packet loss in saturated region

(b) Nginx example subset

Fig. 3 The Curve fit model exemplified in two example VNF subsets. For each plot, the y-axis on the left is for the saturating
resource usage, the one on the right depicts the increasing KPI value. The boundary between (non) saturated regions is where
the workload covariance with the KPI becomes larger than with the resource usage.

between [0, 100] %. We further use a weighted curve

fitting for the saturated part, to prioritize more accu-

racy at lower KPI values, just after resource saturation.

Since this is the region where most accuracy is wanted.

5 VNF Sampling Strategies

In this section, we present our results after investigating

different sampling methods. As illustration, the maxi-

mum available samples for one example workload are

shown in Fig. 3. Each of the tested sampling strategies

would yield a different set of sampling points, following

the same trend curves. As baseline reference we pick

the samples uniformly, then our heuristic tries to focus

on more interesting parts of the trend curves, like the

breakpoint between the (non)saturated regions.

We also check the effect of the sampling heuristic on

the accuracy of the modeling methods proposed in pre-

vious section. We have executed twice all workflows de-

fined in previous Section 3. We thus obtain two datasets

per VNF, of which one is used as training set and the

other as test set. From the training set, we select data

points using our sampling heuristics and use the se-

lected samples to train a prediction model for the KPI

values. We then check the Root Mean Squared Error

(RMSE) of the trained model on the test dataset. The

reported RMSE in the next sections is then an indi-

cation for the accuracy of the model, trained from a

limited sample set. We only evaluate the RMSE below

30% packet loss or lag ratio, as we assume that above

this threshold the VNF is practically unusable. There-

fore there is no need to asses the model accuracy above

a KPI threshold of 30%.

5.1 Uniform Sampling

As baseline measurement and benchmark for our sam-

pling heuristic, we first test the accuracy of a generic

uniform sampling strategy. For each VNF, we pick re-

source and workload metric values uniformly in the

range described above in Section 3. The result is shown

in Fig. 4. On the x-axis, the number of measurements

indicates an increasing amount of uniformly chosen val-

ues per metric. First we measure one value, then two

values for each metric and so forth...

As can be seen in Fig. 4, different modeling meth-

ods yield varying accuracy. Support Vector Regression

(SVR) proves the least accurate. The tuning of hyper-

parameters (C, ε) in the SVR model is a tedious task

which we do using an exhaustive search and also seems

very sensitive to the number of training samples. we

experience long training times (tens of minutes with

more then 1000 samples). We do not succeed to reach

the same accuracy as the other methods. The best per-

forming methods, which we select for further use, are

interpolation and curve fit. This is also in line with pre-

vious research done in [23].

Uniform sampling is however not an online sampling

method, as the number of samples must be chosen in

advance. In the next sections, we will try to find heuris-

tics to select samples in an online way, and try to reach

the same accuracy with less training samples.

Pr
e-
Pr
in
t

10 Steven Van Rossem et al.

0 1000 2000 3000 4000 5000
number of measurements

0

2

4

6

8

10

12

14

RM
SE

 (p
ac

ke
t l

os
s,

%
)

Pfsense uniform sampling
Random forest
Support Vector Regr
kNN
Gaussian process
Curve fit
Interpolation

(a) pfSense

1000 2000 3000 4000 5000
number of measurements

0

2

4

6

8

10

12

14

RM
SE

 (l
ag

 ra
tio

, %
)

Nginx uniform sampling
Random forest
Support Vector Regr
kNN
Gaussian process
Curve fit
Interpolation

(b) Nginx

Fig. 4 The accuracy of different modeling methods applied to a uniformly sampled dataset.

5.2 Unsuccessful Strategies

It is worth noting that uniform sampling, exemplified

above, is not the least performing method we encoun-

tered during our tests. When following the approach

outlined in [5], a Gaussian Process (GP) is used to select

online which samples to measure next. In fact, GP is a

modeling method, but it also produces an estimate of

uncertainty in the prediction, a confidence interval for

the predicted values as indicated in Fig. 5a. The points

where the predicted values have the largest confidence

interval, is considered as the most interesting region to

sample next. The confidence interval calculated by the

GP is an indication in which region the uncertainty of

the predicted value is larger. For our datasets, this se-

lection method is not optimal, since it favors regions

where a flat response is measured, and not the transi-

tion zone to the steeper part of the trend.

Fig. 5b and 5c show the effect of a GP chosen sam-

ple set on different modeling methods, compared to the

uniformly sampled benchmark. We see indeed that GP

does not optimally selects samples in our datasets, as

the accuracy is worse compared to the benchmark.

Another commonly used adaptive sampling method

is based on surrogate modeling using a gradient based

approach [3]. The drawback of this methodology is that

sampling efforts risk to focus too hard on local extrema,

and therefore take an unbalanced number of samples

in wrong regions. We also can also visualize why some

strategies are under-performing. The KPI response sur-

face in a subset of the samples is illustrated in Fig. 6.

– Sample selection using GP will likely select points in

the flat (blue) area of Fig. 6, as explained in previous

paragraph.

– On the other hand, gradient-based sampling strate-

gies will likely choose sample points in the steep (green/red)

regions of Fig. 6.

For our datasets, the most interesting region to focus

on, is where the trend break happens, i.e. where the

flat region transforms into the steep region. In the next

sections we try to find heuristics which focus on this

area.

5.3 Feature Selection

In our black-box approach, we try to cover the opera-

tional boundaries at the start of the profiling procedure.

We measure each combination of the minimal and max-

imal values of the VNF workload and resource metrics

mentioned in Section 3. This comes down to a full fac-

torial sampling space with two levels per factor. This

gives us a minimal sample set where an initial analy-

sis can indicate which parameters are important or not.

We then use this information to determine which metric

configurations to profile next.

In this first phase of metrics exploration, it is pri-

marily the intention to select the workload and resource

metrics (X) which have the most influence on the per-

formance metrics (Y). Several mathematical methods

are generally used to capture the relation between two

sets of metrics (Y = A.X +B):

– Multiple Linear Regression (MLR): achieves max-

imum correlation between X and Y, using the well

known Ordinary Least Squares (OLS) method.

Pr
e-
Pr
in
t

Optimized Sampling Strategies to Model Virtualized Network Functions 11

0 50 100 150 200 250
packetrate (kpps)

0

5

10

15

20

25

30

35

pa
ck

et
 lo

ss
 (%

)

pfSense subset: 2 vCPU, packetsize: 512B, 100 flows
95% confidence interval
Gaussian Process prediction
baseline measurement
bisected samples

(a) Gaussian Process confidence ex-
ample.

1000 2000 3000 4000 5000
number of samples

2

4

6

8

10

RM
SE

 (p
ac

ke
t l

os
s,

%
)

pfSense resampling strategies
sampling + model method

uniform + interpolation
GP + curve fit
GP + GP
GP + interpolation

(b) pfSense model accuracy using
Gaussian Process to select samples.

0 1000 2000 3000 4000 5000 6000
number of samples

0

2

4

6

8

10

12

14

16

18

RM
SE

 (l
ag

 ra
tio

, %
)

Nginx resampling strategies

sampling + model method
uniform + curve fit
GP + curve fit
GP + GP
GP + interpolation

(c) Nginx model accuracy using Gaus-
sian Process to select samples.

Fig. 5 The Gaussian Process sampling method does not improve the accuracy.

packetrate (kpps) 0
100

200
300

400
500

cpu limit (%
)

100
200

300
400

500

pa
ck

et
 lo

ss
 (%

)

0

20

40

60

80

pfSense response surface, subset: 512B packetsize, 100 flows

Fig. 6 A subset of the pfSense dataset to illustrate the re-
sponse surface of the KPI (packet loss), under different vCPU
allocations.

– Principle Component Regression (PCR): cap-

tures the maximum variance in only X, using the

well known Principle Components Analysis (PCA)

method. Then it uses OLS to predict Y from the

main components in X, calculated by PCA.

– Partial Least Squares (PLS): tries to do both by

maximizing the covariance between X and Y . The

power of this method lies in the fact that influen-

tial factors in X can be determined using relatively

few samples compared to the other methods. PLS

remains robust when the influence on multiple re-

sponse metrics needs to be assessed (there are multi-

ple columns in Y), or when there is multicollinearity

between input variables (collinear columns in X) [4].

For our purpose, we need a method which can es-

timate the relation between X and Y , from a small

initial dataset. Also it is not our main goal in this ini-

tial phase to derive a (linear) model. We only need have

an idea of the main factors in X that seem to have the

most effect on Y . We therefore select PLS (also some-

times called Projection to Latent Structures) [4] as most

generic method for this use case. The results are shown

in Fig. 7, where the height of the bars indicates how

much each workload or resource metric influences the

KPI variation. The bar heights can be thought of as

coefficients of a regression model. But from this small

dataset, the only reasonable conclusion for now is that

a higher bar indicates a more influential factor for the

KPI.

pcktrate pcktsize flows cpu_limit

re
la

tiv
e

fe
at

ur
e

im
po

rta
nc

e

pfSense feature selection

(a) pfSense

streams movies quality flavor

re
la

tiv
e

fe
at

ur
e

im
po

rta
nc

e
Nginx feature selection

(b) Nginx

Fig. 7 Feature selection based on the initial sample set of
the profiled VNFs.

– For pfSense in Fig. 7a, we clearly see that workload

metrics packetsize and flows have little to no influ-

ence the KPI (packet loss).

– For Nginx in Fig. 7b, we observe that all parameters

have a reasonable contribution to the variation of the

KPI (lag ratio). This means that we should not be

selective in the input metric space here.

We must note that the analysis in the previous subsec-

tion takes only the variation between the edge values

into account. The sample size is too limited to asses if

there are any local extrema in between the edge values.

In the next sections we will further investigate where

to pick next profiling points.

Pr
e-
Pr
in
t

12 Steven Van Rossem et al.

5.4 Primary Workload Metric Selection (wlp)

We further limit the sampling space, by focusing on se-

lected metrics. For each VNF we can prioritize one spe-

cific workload metric, which is more likely to vary in

real-world traffic. This is the x-axis metric used on the

plots in Fig. 2: packet rate (pfSense) and streams (Ng-

inx). With the VNF deployed in production, we assume

that in the most realistic scenarios both resource allo-

cation and workload configuration are relatively stable,

while the respective x-axis metrics in Fig. 2 are most

likely to vary. We call these the primary workload met-

ric wlp. We focus our profiling efforts in such a way, that

the VNF model can predict more fine grained at which

level of wlp the performance is outside SLA bounds

(using Eq. 1). The other workload and resource alloca-

tion metrics are sampled more coarse grained. We favor

the respective wlp metrics during our profiling measure-

ments by picking more samples in their specified range,

in order to estimate more accurately the performance

breakpoint. For pfSense the wlp = packetrate, for Ng-

inx: wlp = streams. Intuitively, this corresponds to how

we expect a VNF to be generally used: with resource us-

age mainly driven by increasing packet or request rate.

The coarse grained values, specified for workload

and resource allocation metrics apart from wlp, allow

the inclusion of ’expert knowledge’ into the profiling

procedure. Next to the edge values, a service developer

or tester should include values which are considered in-

teresting to monitor or benchmark. The resource alloca-

tion metrics are also likely to be limited by availability.

The sampling heuristic will then iterate through the

defined workload and resource allocation values in an

optimized way.

Algorithm 1 describes how we select online which values

of wlp to sample next. Also a stop criterion is included,

to assess when to stop sampling:

– Line 6: Mold is trained without the latest added sam-

ple. The RMSEold is calculated on how Mold pre-

dicts all samples, including the new sample.

– Line 8: Mnew is trained with the latest added sample.

The RMSEnew is calculated on how Mnew predicts

all samples, including the new sample.

– Line 10: ∆RMSE is a measure of how much the

latest sample influences the model accuracy. If the

accuracy delta is small enough (threshold ε is used),

we assume that the model will not improve further

by adding extra samples, and we can stop sampling

this particular workload configuration. Throughout

our tests we have used ε = 0.5.

In Algorithm 2, we bisect the most interesting workload

level to sample next. The goal is to select samples to

Algorithm 1: Online sampling of workload met-

ric wlp
Data: wlp boundaries, ε, max
Result: Swlp = sampled wlp values

1 Swlp,old ← the two wlp boundary values;

2 Mold ← train model with Swlp,old;

3 while len(Swlp) < max do
4 s← bisect a new wlp value (Algorithm 2);
5 Swlp,new = Swlp,old.append(s);

6 RMSEold ← RMSE(Mold, Swlp,new);

7 Mnew ← train model with Swlp,new;

8 RMSEnew ← RMSE(Mnew, Swlp,new);

9 ∆RMSE = |RMSEold −RMSEnew|;
10 if ∆RMSE < ε then
11 stop while loop;
12 end
13 Swlp,old = Swlp,new;

14 Mold = Mnew;

15 end
16 return Swlp,new;

estimate the point where the KPI trend breaks from flat

into a steeper curve, as shown in Fig. 3. Hence, we try

to find points around the breakpoint, where the KPI

starts to rise.

Algorithm 2: Bisect next value of workload met-

ric wlp
Data: already sampled wlp values, KPImax

Result: s = newly sampled wlp value
1 X ← already sampled x values (workload, ascending);
2 Y ← already samples y values (KPI) ;
3 S ← empty set ;
4 foreach sample in (X,Y) do
5 ∆x = |X[i]−X[i+ 1]|;
6 ∆y = |Y [i]− Y [i+ 1]|;
7 S.append(i,∆x.∆y)

8 end
9 sort S descending by ∆x.∆y ;

10 take i in S with largest ∆x.∆y and y[i] < KPImax ;

11 xnew ← X[i]+X[i+1]

2
;

12 ynew ← measure KPI in xnew ;
13 s← (xnew, ynew) ;
14 return s;

– Line 4-8: The already sampled values are grouped

per interval. In each interval we calculate ∆x.∆y as

a measure how wide and how steep this interval is.

– Line 10: The most interesting interval has both: a

large KPI change (∆y) and a wide gap between mea-

sured workloads (∆x).

– Line 11: The next sample is bisected in the selected

interval.

Pr
e-
Pr
in
t

Optimized Sampling Strategies to Model Virtualized Network Functions 13

1600 1800 2000 2200 2400 2600 2800
number of measurements

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

R
M

S
E

 (l
ag

 ra
tio

, %
)

pfSense curve fit model accuracy

online sampling via:
Curve fit
Interpolation
Gaussian process

(a) pfSense curve fit model

1600 1800 2000 2200 2400 2600 2800
number of measurements

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

R
M

S
E

 (l
ag

 ra
tio

, %
)

pfSense interpolation model accuracy

online sampling via:
Curve fit
Interpolation
Gaussian process

(b) pfSense interpolation model

1200 1300 1400 1500 1600 1700 1800 1900
number of measurements

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
M

S
E

 (l
ag

 ra
tio

, %
)

Nginx curve fit model accuracy

online sampling via:
Curve fit
Interpolation
Gaussian process

(c) Nginx curve fit model

1200 1300 1400 1500 1600 1700 1800 1900
number of measurements

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
M

S
E

 (l
ag

 ra
tio

, %
)

Nginx interpolation model accuracy

online sampling via:
Curve fit
Interpolation
Gaussian process

(d) Nginx interpolation model

Fig. 8 When sampling the workload metric wlp online, a Gaussian Process (GP) works best to assess when enough samples
are taken. The GP produces the best model for the KPI trend, under varying wlp values, and with the least amount of samples.

In Fig. 8 we investigate which modeling method works

best to determine ∆RMSE (line 2 and 7 in Algorithm

1). For this test we decrease ε from 2 to 0.01. Then for

each value of ε:

– We filter each total VNF dataset for each unique

combination of profiled workload and resource met-

rics (except wlp). For each of these sample subsets,

we use Algorithm 1 to gather samples for wlp.

– In each subset, we compare three methods: curve fit,

interpolation and GP, to calculate the ∆RMSE as

stop criterion for the sampling. Each of these three

methods thus yields a different number of samples.

Note that this is a only a one-dimensional model,

used here only to calculate ∆RMSE on training sub-

sets (cf. wlp on the x-axis and KPI on the y-axis as in

Fig. 5a), as wlp varies while other workload metrics

and resource allocation remain fixed.

– When the sampling is completed (threshold ε is reached),

we combine the sampled subsets to train both a curve

fit (Fig. 8a and 8c) and an interpolation model (Fig.

8b and 8d) on the total input space and check their

accuracy.

The GP method emerges here, rather surprising, as the

most accurate method in all four tests. Apparently, the

GP needs the least amount of samples to capture accu-

rately the KPI trend. Intuitively, this seems to indicate

that curve fit and interpolation methods tend to overfit

here and require more samples until ∆RMSE stabi-

lizes. The GP method seems to generalize better in this

local one-dimensional model and converges faster. Note

that we do not use GP to select the samples here (this

would be a bad practice as explained in Section 5.2).

Instead we use our own bisection method (Algorithm

2) to select samples and only use GP to calculate the

∆RMSE. Another remark, as shown in earlier mea-

surements, is that the GP method also works less well

when the input space is increased with more workload

and resource metrics. In this multi-dimensional space,

the accuracy of the GP method decreases (we will de-

tail this later in Section 5.6). In the next section we

will apply our previous learnings to implement the on-

line sampling heuristic.

5.5 Sampling Heuristic Overview

We mentioned earlier that the KPI value can be consid-

ered as a response surface of a multi-variate input space

defined by the workload and resource metrics. Several

generic techniques are available to sample response sur-

faces, referred to as Design of Experiments (DoE). An

important learning from this research domain is that

edge values are the best starting points to characterize

a black-box response surface. Based on this strategy, we

have also constructed our sampling heuristic so far:

1. We defined the important workload, resource metrics

and their (edge) values.

2. As an initial measurement, each combination of the

different edge values is measured (a 2-level, full fac-

torial measurement). A feature selection analysis on

this initial sample set reveals which metrics con-

tribute most to the KPI variation and are thus more

interesting to sample.

3. One specific workload metric, wlp, is bisected more

fine grained, while the other metrics are iterated

through fixed pre-defined values.

We want to select in an online way, which next con-

figuration to measure. This means we need to decide

from the previous samples, which next workload and re-

source configuration will reveal thee most information

to model the KPI trends. We use following procedure to

achieve this: (i) the total sample space is divided into

configurations (all possible combinations of workload

and resource settings), and (ii) in each configuration, a

number of values of wlp is sampled through bisection.

Practically, for our measured VNFs, this means:

– pfSense: Each combination of these metrics settings

is a configuration: [CPU allocation, flows, packetsize].

In each configuration, we bisect new values for wlp =

packetrate, between the given boundary values.

Pr
e-
Pr
in
t

14 Steven Van Rossem et al.

– Nginx: Each combination of these metrics is a con-

figuration: [flavor, quality, movies]. In each config-

uration, we bisect new values for wlp = streams,

between the given boundary values.

Algorithm 3: Online configuration selection

Data: F = list of possible values of feature Fn

Result: fnew = new value of Fn to sample
1 Fs ← already sampled values of Fn ;
2 S ← empty set ;
3 foreach value f in Fs do
4 M ← find all KPI measurements where f == Fn ;
5 mf ← mean(M);
6 S.append(f,mf) ;

7 end
8 sort S by f ;
9 for each interval in S calculate:
∆mf,i = |mf [i]−mf [i+ 1]|;

10 find interval in S where ∆mf,i is the largest;
11 fnew ← middle value in F between f [i] and f [i+ 1] ;
12 while fnew ∈ Fs or fnew == empty do
13 take fnew in interval with next largest ∆mf,i;
14 end
15 return fnew;

Per VNF we have thus defined a configuration space.

We use Algorithm 3 to select which configuration in

this space is most interesting to profile next. In this al-

gorithm, the feature Fn with values f ∈ F , refers to

a configuration metric of the VNFs as defined above.

We select the next configuration metric value based on

previously measured values. The next value is located

between the two previously measured values which had

the most influence on the mean KPI value (character-
ized by ∆mf,i). Or in other words, we bisect the new

value between the points where the average KPI value

showed the highest change. The value returned is then

used as the next configuration setting where new values

of wlp are sampled using Algorithm 1.

To calculate the RMSE, we have validated our sam-

pling heuristic using an extra test dataset. However,

when using the online sampling mechanism on a new

VNF, we likely have no test samples available to asses

the accuracy of the model being profiled. To alleviate

this, we investigate if we can use the∆RMSE of the ob-

tained samples so far, as a stop criterion for the profiling

procedure, similar to Algorithm 1. In Fig. 9, we calcu-

late the ∆RMSE when a new workload or resource

metric value is added to the profiled measurements.

This is an indication if the last obtained samples con-

tributed much to total accuracy of the model so far. We

see indeed on the plots that ∆RMSE stabilizes around

the same number of samples where the RMSE stabilizes

in Fig. 11. This indicates that ∆RMSE could indeed

be used as a stop criterion, to assess when enough sam-

ples are profiled and more samples will not improve the

accuracy much more.

0 500 1000 1500 2000
number of samples

0

2

4

6

8

10

de
lta

 R
M

SE

pfSense - delta RMSE

(a) pfSense ∆RMSE

500 1000 1500 2000 2500 3000
number of samples

0

1

2

3

4

5

6

de
lta

 R
M

SE

Nginx - delta RMSE

(b) Nginx pfSense ∆RMSE

Fig. 9 Variation in the ∆RMSE, to be used as stop criterion
for the sampling.

Figure 10 summarizes the workflow of our presented

sampling heuristic. After feature selection, an initial

subset of the configuration space is sampled, as depicted

by the black dots in Fig. 10b. The grey dots are added

by Algorithm 3. At any point in the sampling proce-

dure, more samples can be added for any of the metrics

using the loop in the last two blocks of Fig. 10a. This

can be done to increase the accuracy of the prediction

model, if there is still budget available for additional

profiling time.

sample edge values of all input metrics

feature selection

sample more wlp values in the selected

features (Algorithm 1 & 2), until a start

grid is reached

sample more wlp values in

the new configuration (Algorithm 1 & 2)

select next configuration (Algorithm 3)

repeat until

RMSE is stable

Feature 1

Feature 2

initially selected configurations

new sampled configurations

(a) (b)

Fig. 10 (a) The sampling workflow with (b) simplified rep-
resentation of the sampled configuration space.

We show the result of the sampling heuristic in Fig.

11. Two selected modeling methods (interpolation and

curve fit) are used to indicate the accuracy of the trained

model on the test dataset. The heuristic is used to se-

lect training samples from the training set. the test

dataset is afterwards used to calculate the model ac-

curacy (RMSE). It can be clearly seen that the used

sampling heuristic has a positive effect on the needed

sample size, compared to the uniform sampling strategy

we put forward as benchmark. This beneficial for the

total profiling time needed to model the KPI trends of

Pr
e-
Pr
in
t

Optimized Sampling Strategies to Model Virtualized Network Functions 15

0 250 500 750 1000 1250 1500 1750
number of samples

1

2

3

4

5

6

RM
SE

 (p
ac

ke
t l

os
s,

%
)

feature1
feature2

feature3

pfSense sampling strategies

sampling + model method:
uniform + interpolation
optimized + interpolation
optimized + curve fit

(a) pfSense model accuracy

0 500 1000 1500 2000 2500 3000
number of samples

0

2

4

6

8

10

12

RM
SE

 (l
ag

 ra
tio

, %
)

Nginx sampling strategies
sampling + model method:

uniform - curve fit
optimized + interpolation
optimized + curve fit

(b) Nginx model accuracy

Fig. 11 Optimized sampling strategies compared to uniform sampling. Less samples are needed to achieve a stable and high
model accuracy.

cpu alloc. (%) flows packetsize (B) packetrate (kpps)(wlp) # samples RMSE(packet loss)

Edges only [0.25, 5] [1, 10000] [64, 1500] [0.1, 500] 16 (feature selection)

Feature1 [0.25,...,5] 10 256
bisect max 10 values
(via algorithm 2)

56 3.77
Feature2 [0.25,...,5] [1,..., 10k] 256 352 2.92
Feature3 [0.25,..., 5] [1,..., 10k] [64,...,1500] 2054 2.61

Table 1 Configuration picking order for pfSense. Features are sampled in order of significance in Fig. 7. Each feature is
completely sampled before the next one.

flavor quality movies streams (x1000) (wlp) # samples RMSE (lag ratio)

Edges only [0, 11] [1, 5] [1, 5] [0.01, 5] 16 (feature selection)

Feature1/2/3 [0, 11] [1, 5] [1, 5]
bisect max 10 values
(via algorithm 2)

40 25.0
Feature1/2/3 [0, 5, 11] [1, 3, 5] [1, 3, 5] 141 12.8
Feature1/2/3 [0, 2, 5, 11] [1, 3, 4, 5] [1, 3, 4, 5] 320 9.8
Continue to bisect a new value per feature, alternately, until all feature values are sampled...
Then also allow more wlp samples.
Feature1/2/3 [0, ...,11] [1, ..., 5] [1, ..., 5] max 10 values 1443 2.2
Feature1/2/3 [0, ..., 11] [1, ..., 5] [1, ..., 5] max 50 values 3025 1.8

Table 2 Configuration picking order for Nginx. Features are sampled in order of significance in Fig. 7. New feature values are
bisected round-robin over the resource and workload metrics.

these VNFs. This results also further extends the find-

ings in [23], showing that the curve fit method is also

well performing at smaller datasets, with optimally cho-

sen training samples.

In Table 1 and 2 the subsequent rows indicate which

metrics have been measured and what the resulting

RMSE is (using the best method seen in Fig. 11). Near

the bottom of the tables, more workload and resource

configurations have been measured, resulting in a lower

RMSE and thus better model accuracy.

While sampling the pfSense dataset (Table 1), we

can see that most improvement comes after sampling

only the first feature (cpu allocation). Sampling the

next workload features (flows, packetsize) brings sub-

sequently less improvement. This is aligned with the

feature selection done in the beginning of the profil-

ing procedure. As indicated in Fig. 7, cpu allocation is

indeed the most important metric in this dataset.

For the Nginx dataset (Table 2), there were no fea-

tures which jumped out during the feature selection

phase. Each metric (flavor, quality and movies) is con-

sidered to have significant effect on the KPI. We there-

fore pick the metrics values round-robin across all input

metrics.

It can be noted that also other, more practical, rea-

sons can influence the order in which metrics are se-

lected. For example, it might be more beneficial to limit

many resource allocation changes in the sampling pro-

Pr
e-
Pr
in
t

16 Steven Van Rossem et al.

cedure. Often, a VNF restart is required to make use

of the newly allocated resources such as CPU cores.

This reboot (and possible state reconfiguration) might

induce a lot of delay in the test procedure. To mitigate

this, it can be opted to change the resource allocation as

very last feature after all other workload metric values

have been sampled.

5.6 Modeling Method Impact

In Fig. 12 the same sampled dataset by our heuristic

is used to train different modeling methods. It can be

clearly seen that the sample set also has an effect on

the used model method. During our first tests using

uniform sampling, we already found large variations in

accuracy between several modeling methods (as seen

in Fig. 4). Using uniform sampling, the interpolation

method seemed to provide the best accuracy. Earlier,

in Section 5.4, we selected GP as the best method to

model a limited one-dimensional sample subset. This

does not hold any more when using GP on the total,

multi-dimensional input space.

0 250 500 750 1000 1250 1500 1750 2000
number of samples

2

3

4

5

6

7

R
M

S
E

 (p
ac

ke
t l

os
s,

 %
)

pfSense - model comparison

model method:
kNN
Gaussian process
Interpolation
Curve fit

(a) pfSense models

500 1000 1500 2000 2500 3000
number of samples

0

2

4

6

8

10

12

14

R
M

S
E

 (l
ag

 ra
tio

, %
)

Nginx - model comparison

model method:
kNN
Gaussian process
Interpolation
Curve fit

(b) Nginx models

Fig. 12 Comparison of the prediction accuracy of different
methods trained with the same sampled dataset.

We selected interpolation and curve fit as most promis-

ing methods to be used with our sampling heuristic. In

order to use the curve fit method, some expert knowl-

edge or experience is required to define a priori the

trends, which need to be fitted to the KPI measure-

ments (as explained in Section 4.1). If such an analytic

function cannot be specified, interpolation seems the

next best choice.

In Fig. 11 and 12, the curve fit method shows im-

proved accuracy over the interpolation method. As ex-

plained in [23], the curve fit method has two major

advantages:

1. The analytical functions which are fitted have a guar-

anteed monotonicity. This makes it easier to invert

the model and predict a recommended resource allo-

cation from a given KPI and workload target, as no

local extrema are present in the modeled KPI. This

is explained more elaborately in [23].

2. The curve fit method succeeds to model more ef-

ficiently the KPI trend break, happening when re-

sources get saturated at increasing wlp (see also Fig.

3), using less training samples. It provides better ac-

curacy at low KPI values, where resource saturation

is starting but not yet completely dominant.

6 Related Work

A generic architecture for profiling frameworks has been

described earlier in [17, 11, 16, 2, 7]. This previous work

has been extended here with more insights for using a

Service Oriented Architecture and analysis of both sam-

pling and modeling methods. Also we exemplify VNF

profiling in a more elaborate space of both workload

and resource metrics.

The modular architecture of our profiling framework

(see Section 2) allows an easy deployment on cloud-

based infrastructures, which further enhances the ap-

plicability of this framework in cloud-native platform

environments [22]. This cloud-native nature allows the

profiling framework to be used in light-weight test en-

vironments, as well as in production-grade staging en-

vironments, with realistic workloads. The use-cases for

profiling, in the context of a cloud-native orchestration

platform, have been outlined in [10]. It is explained how

a profiling workflow can be supported by an NVF based

orchestration platform, by leveraging existing Monitor-

ing and DevOps related processes.

Several sampling strategies for VNF chain profiling

have been investigated in [16], but no method is found

which significantly beats a generic uniform sampling

strategy. Decision tree based models are put forward as

a promising solution, however our tests show that ran-

dom forest is one of the less performing methods in our

use-case of profiling a single VNF. The profiling tests in

[16] are also limited to varying only one resource metric

(allocated vCPU), under only one fixed workload.

The VNF profiling platform in [7] exhaustively ex-

ecutes a list of input benchmark tests, without trying

to optimize the test time. Decision trees are used as

a classification technique to divide tested VNFs into

pre-defined categories for resource demand. The au-

thors prefer decision trees over other algorithms be-

cause they are very interpretable and a system admin-

istrator can clearly understand what the final model

is doing. This methodology however, does not try to

predict the KPI values, but tries to map existing re-

source flavors to required performance categories. A

similar concept is implemented in [18], where the VNF

performance is mapped into discrete hardware flavors.

Pr
e-
Pr
in
t

Optimized Sampling Strategies to Model Virtualized Network Functions 17

While the VNF is monitored during operation, devia-

tions compared to to earlier profiled data can be de-

tected. This can trigger the migration of the VNF to a

different node to avoid resource saturation. The KPIs

are however only based on resource utilization, with no

consideration for SLA based performance metrics. In

the context of anomaly detection, a VNF profile is used

in [11] as baseline performance model. Any performance

deviation compared to the VNF profile is the trigger for

further troubleshooting analysis. It is clear that these

use cases could benefit from our sampling heuristic to

generate the required VNF profiles for later reference.

The profiling method in [6] focuses on the deploy-

ment space of big data applications, with up to seven

configuration dimensions. In this deployment space, ar-

eas are clustered in which the performance metric can

be approximated using a linear model. The total model

is then a piecewise combination of different linear mod-

els and the space partitioning into different linear re-

gions is done by a decision tree. More samples are adap-

tively chosen in the areas where a linear model has bad

accuracy. When trying to model non-linear functions,

a deteriorating performance is reported. Moreover, new

sample points are drawn randomly in a uniform man-

ner, without exploiting any expert knowledge. Our sam-

pling heuristic tries to mitigate this by using a curve fit

model with piecewise (non-linear) functions and online

sample selection using bisection.

The authors in [5] recommend the use of Gaussian

Processes (GP) as a flexible method to both model per-

formance and choose the next configurations to sample.

Our tests show however that the trends witnessed in

VNF profiling are not easily captured by GPs. Also

when we let the GP model determine the next samples,

the method remains sub-optimal compared to generic

uniform sampling (see Section 5.2). Also in [20] it is ex-

perimentally tested that uniform sampling and Gaus-

sian Processes are not the best methods to sample the

large parameter space of computing programs. The used

method is however aimed at finding a global optimum,

which is not applicable to our use case, which tries to

model the complete response surface.

In [8], it is also experimentally observed that a VNF

performance trend break occurs when resources are get-

ting saturated (as in our Fig. 3). This is exploited by

estimating at which point the increasing workload is

no longer correlated with the saturating resource us-

age. This way, a prediction model can be made, map-

ping workload and resource usage to profiled VNF per-

formance. During profiling, this approach increases the

workload in fixed steps until saturation occurs. We ar-

gue that our approach, based on bisection, provides a

faster way to model the maximum performance, need-

ing less samples.

Our research complements and extends this related

work by investigating sampling strategies for both the

workload and resource allocation space, specifically to

model VNF performance. The sampling heuristic de-

scribed in our paper can be adopted to generate pro-

filed training data for more VNF related models and

use cases. For example, to gather benchmark datasets

for anomaly detection or capacity planning. Optimized

sampling could also complement [23], where a trend is

profiled to extrapolate the performance of the VNFs on

increasing and untested resource allocations.

7 Summary and Conclusion

We have outlined several optimizations to develop and

execute a VNF profiling workflow:

– A micro-service oriented architecture to implement

a VNF profiling procedure. The benefits of this ar-

chitecture are that multiple profiling tests can run in

parallel, allowing scaled up and faster generation of

measurement data. Additionally, a quick, light weight

test set up and metric definition is pursued. Also in-

creased robustness can be expected, since the profil-

ing tests run isolated from each other and a failure

in one test will not affect other running tests.

– An optimized sampling heuristic to select online which

workload and resource allocation to measure next in

the profiling procedure. This results in a smaller sam-

ple set and thus less profiling time needed to model

accurate KPI predictions. Compared to generic uni-

form sampling, our tests show that up to 5x less sam-

ples are needed for the same accuracy.

– We have analyzed the effect of our proposed sam-

pling heuristic on several modeling methods. Careful

use is advised for some typical methods used in ma-

chine learning such as Gaussian Processes, Random

Forest, Support Vector Machines. Other methods can

be trained more accurately with the obtained sample

sets, as illustrated by our proposed interpolation and

curve fit method.

Our presented profiling framework also offers good

integration possibilities into cloud-native platforms, this

allows to profile VNFs in representative environments,

under realistic workloads. We have selected a set of sam-

pling and modeling methods which we believe to be

generic enough, to be applied to a wide range of VNF

functionalities. By fitting the measured VNF trends to

analytic functions, we add expert knowledge into the

VNF performance model. As a result, we see clear im-

provement of the curve fit method compared to generic

Pr
e-
Pr
in
t

18 Steven Van Rossem et al.

parameterized methods typically used in machine learn-

ing approaches. This also confirms earlier research re-

sults presented in [23].

Our proposed sampling heuristic needs a set of in-

puts to start from, namely a specified range for work-

load and resource allocation metrics. One primary work-

load metric wlp is bisected in a fine grained way, the

other ones will iterate through a list of specified values

which the sampling heuristic will pick online in an op-

timized way. By using feature selection and bisection,

the heuristic will select from previous measurements

which workload and resource configuration to profile

next. This is implemented by our presented Algorithms:

1, 2 and 3. A stop criterium is included to automatically

decide when enough samples are gathered to achieve

good accuracy. The presented heuristic is well suited to

assist in VNF profiling tasks which can be completed

faster due to a reduced testing time. We hope this pa-

per can inspire ongoing research in the optimization of

VNF profiling.

Acknowledgements This work has been performed in the
framework of the NGPaaS (http://ngpaas.eu) and 5GTANGO
(https://www.5gtango.eu) project, funded by the European
Commission under the Horizon 2020 and 5G-PPP Phase2
programmes, resp. under Grant Agreement No. 761 557 and
761 493. This work is partly funded by UGent BOF/GOA
project ’Autonomic Networked Multimedia Systems’.

Conflict of interest

On behalf of all authors, the corresponding author states

that there is no conflict of interest.

References

1. 5G-PPP Software Network Working Group

(2019) Cloud-native and verticals’ ser-

vices. Tech. rep., 5G-PPP Software Network

Working Group, URL https://5g-ppp.
eu/wp-content/uploads/2019/09/
5GPPP-Software-Network-WG-White-Paper-2019_
FINAL.pdf, accessed: 2019-10-01

2. Blenk A, Basta A, Henkel L, Zerwas J, Kellerer

W, Schmid S (2018) perfbench: A tool for pre-

dictability analysis in multi-tenant software-defined

networks. In: Proceedings of the ACM SIGCOMM

2018 Conference on Posters and Demos, ACM, pp

66–68

3. Crombecq K, Gorissen D, Deschrijver D, Dhaene

T (2011) A novel hybrid sequential design strat-

egy for global surrogate modeling of computer ex-

periments. SIAM Journal on Scientific Computing

33(4):1948–1974

4. Dunn K (2019) Process improvement using data.

URL https://learnche.org/pid, accessed

2019-10-01

5. Duplyakin D, Brown J, Ricci R (2016) Active learn-

ing in performance analysis. In: 2016 IEEE Inter-

national Conference on Cluster Computing (CLUS-

TER), pp 182–191

6. Giannakopoulos I, Tsoumakos D, Koziris N (2017)

A decision tree based approach towards adaptive

modeling of big data applications. In: 2017 IEEE

International Conference on Big Data (Big Data),

IEEE, pp 163–172

7. Gokan Khan M, Bastani S, Taheri J, Kassler A,

Deng S (2018) Nfv-inspector: A systematic ap-

proach to profile and analyze virtual network func-

tions. In: 2018 IEEE 7th International Conference

on Cloud Networking (CloudNet), pp 1–7, DOI

10.1109/CloudNet.2018.8549333

8. Iglesias JO, et al. (2017) Orca: an orchestration au-

tomata for configuring vnfs. In: Proceedings of the

18th ACM/IFIP/USENIX Middleware Conference,

ACM, pp 81–94

9. Kulkarni SG, et al. (2017) Nfvnice: Dynamic back-

pressure and scheduling for nfv service chains. In:

Conference of the ACM Special Interest Group on

Data Communication, ACM, pp 71–84

10. Mimidis-Kentis A, Soler J, Veitch P, et al. (2019)

The next generation platform as a service: Com-

position and deployment of platforms and services.

Future Internet 11(5):119

11. Nam J, Seo J, Shin S (2018) Probius: Automated

approach for vnf and service chain analysis in

software-defined nfv. In: Proceedings of the Sym-

posium on SDN Research, ACM, p 14

12. Pantos R, May W (2017) Http live streaming, rfc

8216. Tech. rep., URL https://tools.ietf.
org/html/rfc8216, accessed 2019-10-01

13. Parmar H, Thornburgh M (2012) Real-time mes-

saging protocol (rtmp) specification. Adobe specifi-

cations, December

14. Pedregosa F, Varoquaux G, et al. (2011) Scikit-

learn: Machine learning in Python. Journal of Ma-

chine Learning Research 12:2825–2830

15. Peuster M, Karl H (2017) Profile your chains, not

functions: Automated network service profiling in

devops environments. In: Network Function Vir-

tualization and Software Defined Networks (NFV-

SDN), IEEE

16. Peuster M, Karl H (2018) Understand your

chains and keep your deadlines: Introducing time-

constrained profiling for nfv. In: 2018 14th Interna-

Pr
e-
Pr
in
t

Optimized Sampling Strategies to Model Virtualized Network Functions 19

tional Conference on Network and Service Manage-

ment (CNSM), pp 240–246

17. Rosa RV, Bertoldo C, et al. (2017) Take your vnf

to the gym: A testing framework for automated

nfv performance benchmarking. IEEE Communi-

cations Magazine 55(9):110–117

18. Sciancalepore V, Yousaf FZ, et al. (2018) z-torch:

An automated nfv orchestration and monitoring

solution. IEEE Transactions on Network and Ser-

vice Management 15(4):1292–1306, DOI 10.1109/

TNSM.2018.2867827

19. Smola AJ, Schölkopf B (2004) A tutorial on sup-

port vector regression. Statistics and computing

14(3):199–222

20. Thiagarajan JJ, Jain N, et al. (2018) Bootstrap-

ping parameter space exploration for fast tuning.

In: Proceedings of the 2018 International Confer-

ence on Supercomputing, ACM, pp 385–395

21. Van Rossem S, Tavernier W, Peuster M, Colle D,

Pickavet M, Demeester P (2016) Monitoring and

debugging using an sdk for nfv-powered telecom ap-

plications. In: IEEE NFV-SDN2016, the IEEE Con-

ference on Network Function Virtualization and

Software Defined Networks, pp 1–5

22. Van Rossem S, Sayadi B, et al. (2018) A vision for

the next generation platform-as-a-service. In: 2018

IEEE 5G World Forum (5GWF), IEEE, pp 14–19

23. Van Rossem S, Tavernier W, Colle D, Pickavet M,

Demeester P (2019) Profile-based resource alloca-

tion for virtualized network functions. IEEE Trans-

actions on Network and Service Management pp

1–1, DOI 10.1109/TNSM.2019.2943779

24. Williams CK, Rasmussen CE (2006) Gaussian

processes for machine learning, vol 2. MIT

press Cambridge, MA, URL http://www.
gaussianprocess.org/gpml/chapters/,

accessed 2019-10-01

