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Abstract. In this paper we summarize concepts from earlier work and 
demonstrate how infinite sequential games can be used to model strate-gic 
conversations. Such a model allows one to reason about the structure and 
complexity of various kinds of winning goals that conversationalists might have. 
We show how to use tools from topology, set-theory and logic to express such 
goals. We then show how to tie down the notion of a winning condition to specific 
discourse moves using techniques from Mean Payoff games and discounting. We 
argue, however, that this still requires another addition from epistemic game 
theory to define appro-priate solution and rationality underlying a conversation.
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1 Introduction

Conversations have a natural analysis as games. They involve typically at least
two agents, each with their own interests and goals. These goals may be compat-
ible, or they may conflict; but in either case, one agents’ successfully achieving
her conversational goals will typically depend upon her taking her interlocu-
tor’s goals and interests into account. In cooperative conversations where agents’
goals are completely aligned, conversational partners may still need to coordi-
nate actions, even linguistic actions. A strategic or non-cooperative conversation
involves (at least) two people (agents) who have opposing interests concerning
the outcome of the conversation. A debate between two political candidates is
an instance. Each candidate has a certain number of points to convey to the
audience, and each wants to promote her own position and damage her oppo-
nent’s or opponents’. To achieve these goals, each participant typically needs to
plan for anticipated responses from the other.

This paper surveys some results from what we feel is an exciting new applica-
tion of games to language. The core of formal results are summarized from [4,6];
the part on weighted and discounted games draws from [3] but also introduces
new material; the last section points to work in progress.

Various game-theoretic models for cooperative conversation have been pro-
posed, most notably the model of signalling games [22]. Another closely related
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model is that persuasion games [15]. In a signalling game one player with a
knowledge of the actual state sends a signal and the other player who has no
knowledge of the state chooses an action, usually upon an interpretation of the
received signal. The standard setup supposes that both players have common
knowledge of each other’s preference profiles as well as their own over a set of
commonly known set of possible states, actions and signals. However for mod-
eling non-cooperative strategic contexts of sequential dynamic games, signalling
games suffer from many drawbacks. We summarise below the difficulties we see
(see [6] for a more comprehensive discussion):

– A game that models a non-cooperative setting, that is a setting where the
preferences of the players are opposed, must be zero-sum. However, it has
been shown [11] that in a zero-sum criterion, in equilibrium, the sending and
receiving of any message has no effect on the receiver’s decision. Signaling
games typically assign a game a finite horizon; backward inductions arguments
threaten to conclude that communication should not occur in such situations.

– In order to use games as part of a general theory of meaning, one has to
make clear how to construct the game-context, which includes providing an
interpretation of the game’s ingredients (types, messages, actions). Franke’s
extension of signalling, games, interpretation games, addresses this issue [13].
Such games encode a ‘canonical context’ for an utterance, in which relevant
conversational implicatures may be drawn. The game structure is determined
by the set of ‘sender types’. Interpretation games model the interpretation
of the messages and actions of a signaling game in a co-operative context for
‘Gricean agents’ quite well. But in the non-cooperative setting, things get very
intricate and problems remain.

– Signalling games are one-shot and fail to capture the dynamic nature of a
strategic conversation. One can attempt to encode a finite sequence of moves
of a particular player as a single message m sent by that player but then one
runs into the problem of assigning correct utilities for m because such utilities
depend again on the possible set of continuations of m.

– Finally, there is an inherent asymmetry associated with the setting of a sig-
nalling game - one player is informed of the state of the world but the other
is not; one player sends a message but the other does not. Conversations (like
debates), on the other hand, are symmetric - all participants should (and
usually do) get equal opportunities to get their messages across.

Strategic conversations are thus special and have characteristics unique to
them which, to our knowledge, have not been captured in other frameworks.
Here is a short list of these characteristics:

– Conversations are sequential and dynamic and inherently involve a ‘turn-
structure’ which is important in determining the merit of a conversation to
the participants. In other words, it is important to keep track of “who said
what”.

– A ‘move’ by a player in a linguistic game typically carries more semantic con-
tent than usually assumed in game theory. What a player says may have a



set of ‘implicatures’, may be ‘ambiguous’, may be ‘coherent/incoherent’ or
‘consistent/inconsistent’ with regards to what she had said earlier in the con-
versation. She may also ‘acknowledge’ other people’s contributions or ‘retract’
her previous assertions. These features too have important consequences on
the existence and complexity of winning strategies.

– Conversations typically have a ‘Jury’ who evaluates the conversation and
determines if one or more of the players have reached their goals. In other
words a Jury determines the winners in a conversation, if there is a winner.
Players will spin the description of the game to their advantage and so may
not present an accurate view of what happened. The Jury can be a concrete
or even a hypothetical entity who acts as a ‘passive player’ in the game. For
example, in a courtroom situation there is a physical Jury who gives the ver-
dict, whereas in a political debate the Jury is the audience or the citizenry
in general. This means that the winning conditions of the players are affected
by the Jury in that, they depend on what they believe that the Jury expects
them to achieve.

– Conversations do not have a ‘set end’. When two or more people engage in a
conversation they do not know at the outset how many turns it will last or
how many chances each player will get to speak (if at all). In a more scripted
conversation like a political debate or a courtroom debate, there may be a
moderator whose job is to ensure that each player receives his or her fair
chance to put their points across; but even such a moderator may not know at
the outset how the conversation will unfold and how many turns each player
will receive. Players thus cannot strategize for a set horizon while starting a
conversation. This rules out backward induction reasoning for both the players
and analysts of conversation.

– Finally, epistemic elements are a natural component of such games. The play-
ers and the Jury have ‘types’, and players have ‘beliefs’ about the types of
the other players and the Jury. They strategize based on their beliefs and also
update their beliefs after each turn.

The first four considerations led [6] to model conversations as infinite games
over a countable ‘vocabulary’ V . They call such games Message Exchange games
(ME games). The intuitive idea behind an ME game is that a conversation
proceeds in turns where in each turn one of the players ‘speaks’ or plays a string
of letters from her own “vocabulary”. The two vocabularies are distinguished
in order to keep track of who said what, which is crucial to the analysis of a
conversation. We will assume that both players use the same expressions in a set
V to communicate, but that when 0 uses a symbol v ∈ V , she is actually playing
(v, 0), which allows us to see that it was 0 that played v at a certain point in
the sequence; and when 1 plays v, he’s actually playing (v, 1).

However, a conversationalist does not play just any sequence of arbitrary
strings but sentences or sets of sentences that ‘make sense’. To ensure this, the
vocabulary V should have a built-in, exogenous semantics. [6] identify V with
the language of a semantic theory for discourse, SDRT [1]. SDRT’s language
characterizes the semantics and pragmatics of moves in dialogue. This means



that we can exploit the notion of entailment associated with the language of
SDRSs to track commitments of each player in an ME game. In particular, the
language of SDRT features variables for dialogue moves that are characterized
by contents that the move commits its speaker to. Crucially, some of this con-
tent involves predicates that denote rhetorical relations between moves—like the
relation of question answer pair (qap), in which one move answers a prior move
characterized by a question. The vocabulary V of an ME game thus contains a
countable set of discourse constituent labels DU = {π, π1, π2, . . .}, and a finite
set of discourse relation symbols R = {R,R1, . . . Rn}, and formulas φ, φ1, ... from
some fixed language for describing elementary discourse move contents. V con-
sists of formulas of the form π : φ, where φ is a description of the content of
the discourse unit labelled by π in a logical language like the language of higher
order logic used, e.g., in Montague Grammar, and R(π, π1), which says that π1

stands in relation R to π. One such relation R is qap. Thus, each discourse rela-
tion represented in V comes with constraints as to when it can be coherently
used in a context and when it cannot.

2 Message Exchange Games

We now formally define Message Exchange games, state some of their properties
and show how they model strategic conversations, as explored in [6]. For simplic-
ity, we restrict our description to conversations with two participants, whom we
denote by Player 0 and Player 1. It is straightforward to generalize ME games
to the case where there are more than two players. Thus, in what follows, we let
i range over the set of players {0, 1}. Furthermore, Player −i will always denote
Player (1 − i), the opponent of Player i.

We first define the notion of a ‘Jury’. As noted in Sect. 1, a Jury is an entity
or a group of entities that evaluates a conversation and decides the winner. A
Jury thus ‘groups’ instances of conversations as being winning for Player 0 or
Player 1 or both.

For any set A let A∗ be the set of all finite sequences over A and let Aω

be the set of all countably infinite sequences over A. Let A∞ = A∗ ∪ Aω and
A+ = A∗\{ǫ}. Now, let V be a vocabulary as defined at the end of Sect. 1 and
let Vi = V × {i}.

Definition 1. A Jury J over (V0 ∪ V1)
ω is a tuple J = (win1,win2) where

wini ⊆ (V0 ∪ V1)
ω is the winning condition or winning set for Player i.

Given the definition of a Jury over (V0 ∪ V1)
ω we define a Message Excahge

game game as:

Definition 2. A Message Exchange game (ME game) G over (V0 ∪ V1)
ω is a

tuple G = ((V0 ∪ V1)
ω,J ) where J is a Jury over (V0 ∪ V1)

ω.

Formally an ME game G is played as follows. Player 0 starts the game by
playing a non-empty sequence in V +

0 . The turn then moves to Player 1 who plays



a non-empty sequence from V +
1 . The turn then goes back to Player 0 and so on.

The game generates a play ρn after n (≥ 0) turns, where by convention, ρ0 = ǫ
(the empty move). A play can potentially go on forever generating an infinite
play ρω, or more simply ρ. Player i wins the play ρ iff ρ ∈ wini. G is zero-sum if
wini = (V0 ∪V1)

ω\win−i and is non zero-sum otherwise. Note that both player or
neither player might win a non zero-sum ME game G. The Jury of a zero-sum
ME game can be denoted simply as win where by convention win = win0 and
win1 = (V0 ∪ V1)

ω\win.
The basic structure of an ME game means that plays are segmented into

rounds—a move by Player 0 followed by a move by Player 1. A finite play of an
ME game is (also) called a history, and is denoted by ρ. Let Z be the set of all
such histories, Z ⊆ (V0 ∪ V1)

∗, where ǫ ∈ Z is the empty history and where a
history of the form (V0∪V1)

+V +
0 is a 0-history and one of the form (V0∪V1)

+V +
1

is a 1-history. We denote the set of i-histories by Zi. Thus Z = Z0 ∪ Z1. For
ρ ∈ Z, turns(ρ) denotes the total number of turns (by either player) in ρ. A
strategy σi of Player i is thus a function from the set of −i-histories to V +

i . That
is, σi : Z−i → V +

i . A play ρ = x0x1 . . . of an ME game G is said to conform
to a strategy σi of Player i if for every prefix ρj of ρ, j = i( mod 2) implies
ρj+1 = ρjσi(ρj). A strategy σi is called winning for Player i if ρ ∈ wini for every
play ρ that conforms to σi.

Given how we have characterized the vocabulary (V0 ∪ V1), we have a fixed
meaning assignment function from EDUs to formulas describing their con-
tents. Then, a sequence of conversational moves can be represented as a graph
(DU, E, ℓ), where DU is the set of vertices each representing a discourse unit,
E ⊆ DU × DU a set of edges representing links between discourse units that are
labeled by ℓ : E → R with discourse relations.1

Example 1. To illustrate this structure of conversations, consider the following
example taken from [2] from a courtroom proceedings where a prosecutor is
querying the defendant. We shall return to this example later on for a strategic
analysis.

a. Prosecutor: Do you have any bank accounts in Swiss banks, Mr. Bronston?

b. Bronston: No, sir.

c. Prosecutor: Have you ever?

d. Bronston: The company had an account there for about six months, in Zurich.

e. Prosecutor: Thank you Mr. Bronston.

Example 2. We can view the conversation in Eg. 1 as a play of an ME game as
follows.

1 We note that this is a simplification of SDRT which also countenances complex
discourse units (cdus) and another set of edges in the graph representation, linking
cdus to their simpler constituents. These edges represent parthood, not rhetorical
relations. We will not, however, appeal to cdus here.



(P, πbank: DoyouhaveanybankaccountsinSwissbanks,Mr.Bronston?)

(B, π¬bank: No)

(P, πbank−elab: Haveyouever?)

(B, πcompany: Thecompanyhadanaccountthereforaboutsixmonths, inZurich)

(P, πack: ThankyouMr.Bronston)

· · · · · · · · ·

qap

q-followup

qap

ack

The picture shows a weakly connected graph with a set of discourse con-
stituent labels

DU = {πbank, π¬bank, πbank−elab, πcompany, πack, . . .}

and a set of relations

R = {qap, q − followup, ack, . . .}

The arrows depict the individual relation instances between the DUs. A weakly
connected graph represents a fully coherent conversation, in which each player’s
contribution is coherently linked with a preceding one. The graph also reveals
that each player responds to a contribution of the other; this is a property that
[6] call responsiveness (vide infra).

ME game messages come with a conventionally associated meaning in virtue
of the constraints enforced by the Jury; an agent who asserts a content of a
message commits to that content, and it is in virtue of such commitments that
other agents respond in kind. While SDRT has a rich language for describing
dialogue moves, earlier work did not make explicit how dialogue moves explicitly
affect the commitments of the agents who make the moves or those who observe
the moves. [24,25] link the semantics of the SDRT language with commitments
explicitly (in two different ways). They augment the SDRT language with for-
mulas that describe the commitments of dialogue participants, using a simple
propositional modal syntax. Thus for any formula φ in the language of dynamic
semantics that describes the content of a label π ∈ DU, they add:

¬φ | φ1 ∨ φ2 | Ciφ, i ∈ {0, 1} | C∗φ

with the derived operators ∧, =⇒ ,⊤,⊥ are defined as usual, providing a propo-
sitional logic of commitments over the formulas that describe labels. Of particular
interest are the commitment operators Ci and C∗. If φ is a formula for describ-
ing a content, Ciφ is a formula that says that Player i commits to φ and C∗φ
denotes ‘common commitment’ of φ. Commitment is modelled as a Kripke modal



operator via an alternativeness relation in a pointed model with a distinguished
(actual) world w0. This allows them to provide a semantics for discourse moves
that links the making of a discourse move by an agent to her commitments: i’s
assertion of a discourse move φ, for instance, we will assume, entails a common
commitment that i commits to φ, written C∗Ciφ. They show how each discourse
move φ defines an action, a change or update on the model’s commitment struc-
ture; in the style of public announcement logic viz. [8,9]. For instance, if agent i
asserts φ, then the commitment structure for the conversational participants is
updated such so as to reflect the fact that C∗Ciφ. Finally, they define an entail-
ment relation |= that ensures that φ |= C∗Ciφ. This semantics is useful because
it allows us to move from sequences of discourse moves to sequences of updates
on any model for the discourse language. See [24,25] for a detailed development
and discussion.

ME games resemble infinite games like Banach Mazur or Gale-Stewart games
that have been used in topology, set theory [18] and computer science [16]. We
can leverage some of the results from these areas to talk about the general
‘shape’ of conversations or to analyse the complexity of the winning conditions
of the players in ME games. For instance, [23] shows that ME games, like Banach
Mazur games or Gale-Stewart games, are determined. Other features have been
extensively explored in [6]. We give a flavor of some of the applications here.

To do that we first need to define an appropriate topology on (V0 ∪ V1)
ω

which will allow us to characterize the descriptive complexity of the winning
sets win0 and win1. We proceed as follows. We define the topology on (V0 ∪V1)

ω

by defining the open sets to be sets of the form A(V0∪V1)
ω where A ⊆ (V0∪V1)

∗.
Such an open set will be often denoted as O(A). When A is a singleton set {x}
(say), we abuse notation and write O({x}) as O(x). The Borel sets are defined as
the sigma-algebra generated by the open sets of this topology. The Borel sets can
be arranged in a natural hierarchy called the Borel hierarchy which is defined as
follows. Let Σ0

1 be the set of all open sets. Π0
1 = Σ0

1 , the complement of the set
of Σ0

1 sets, is the set of all closed sets. Then for any α > 1 where α is a successor
ordinal, define Σ0

α to be the countable union of all Π0
α−1 sets and define Π0

α to
be the complement of Σ0

α. ∆0
α = Σ0

α ∩ Π0
α.

Definition 3 [18]. A set A is called complete for a class Σ0
α (resp. Π0

α) if
A ∈ Σ0

α\Π0
α (resp. Π0

α\Σ0
α) and A /∈ (Σ0

β ∪ Π0
β) for any β < α.

The Borel hierarchy represents the descriptive or structural complexity of the
Borel sets. A set higher up in the hierarchy is structurally more complex than
one that is lower down. Complete sets for a particular class of the hierarchy
represent the structurally most complex sets of that class. We can use the Borel
hierarchy and the notion of completeness to capture the complexity of winning
conditions in conversations. For example, two typical sets in the fist level of the
Borel hierarchy are defined as follows. Let A ⊆ (V0 ∪ V1)

+, then

reach(A) = {ρ ∈ (V0 ∪ V1)
ω|ρ = xyρ′, y ∈ A}

and
safe(A) = (V0 ∪ V1)

ω\reach(A)



A little thought shows that reach(A) ∈ Σ0
1 and safe(A) ∈ Π0

1 . Let reachability be
the class of sets of the form reach(A) and safety be the class of sets of the form
safe(A).

Example 3. Returning to our example of Bronston and the Prosecutor, let us
consider what goals the Jury expects each of them to achieve. The Jury will
award its verdict in favor of the Prosecutor: (i) if he can eventually get Bronston
to admit that (a) he had an account in Swiss banks, or (b) he never had an
account in Swiss banks, or (ii) if Bronston avoids answering the Prosecutor
forever. In the case of (i)a, Bronston is incriminated, (i)b, he is charged with
perjury and (ii), he is charged with contempt of court. Bronston’s goal is the
complement of the above, that is to avoid either of the situations (i)a, (i)b
and (ii). We thus see that the Jury winning condition for the Prosecutor is a
boolean combination of a reachability condition and the complement of a safety
condition, which is in the first level of the Borel hierarchy.

Conversations typically must also satisfy certain natural constraints which
the Jury might impose throughout the course of a play. Here are some constraints
defined in [6]. We will then study the complexity of the sets satisfying them.

Let ρ = x0x1x2 . . . be a play of an ME game G where x0 = ǫ and xj ∈
V +

((j−1) mod 2) is the sequence played by Player ((j − 1) mod 2) in turn j. For

every i define the function dui : V +
i → ℘(DU) such that dui(xj) gives the set

of contributions (in terms of DUs) of Player i in the jth turn. By convention,
dui(xj) = ∅ for xj ∈ V +

−i.

Definition 4. Let G = ((V0 ∪ V1)
ω,J ) be an ME game over (V0 ∪ V1)

ω. Let
ρ = x0x1x2 . . . be a play of G. Then

Consistency: ρ is consistent for Player i if the set {dui(xj)}j>0 is consistent. Let
CONSi denote the set of consistent plays for Player i in G.

Coherence: Player i is coherent on turn j > 0 of play ρ if for all π ∈ dui(xj)
there exists π′ ∈ (dui(xk) ∪ du−i(xk−1)) where k ≤ j such that there exits
R ∈ R such that (π′Rπ ∨πRπ′) holds. Let COHi denote the set of all coherent
plays for Player i in G.

Responsiveness: Player i is responsive on turn j > 0 of play ρ if there exists
π ∈ duj(xj) such that there exits π′ ∈ du−i(xj−1) such that π′Rπ for some
R ∈ R. Let RESi denote the set of responsive plays for Player i in G. xj (or
abusing notation, π) will be sometimes called a response move.

Rhetorical-cooperativity: Player i is rhetorically-cooperative in ρ if she is both
coherent and responsive in every turn of hers in ρ. ρ is rhetorically-cooperative
if both the players are rhetorically-cooperative in ρ. Let RCi denote the set of
rhetorically-cooperative plays for Player i in G and let RC be the set of all
rhetorically-cooperative plays.

To define two more constraints, NEC and CNEC, we need definitions of an
‘attack’ and a ‘response’.

Definition 5. Let G = ((V0 ∪ V1)
ω,J ) be an ME game over (V0 ∪ V1)

ω. Let
ρ = x0x1x2 . . . be a play of G. Then



Attack: attack(π′, π) on Player −i holds at turn j of Player i just in case π ∈
dui(xj), π′ ∈ du−i(xk) for some k ≤ j, there is an R ∈ R such that π′Rπ and:
(i) π′ entails that −i is committed to φ for some φ, (ii) φ entails that ¬φ holds.
In such a case, we shall often abuse notation and denote it as attack(k, j).
Furthermore, xj or alternatively π shall be called an attack move. An attack
move is relevant if it is also a response move. attack(k, j) on −i is irrefutable
if there is no move xℓ ∈ V−i in any turn ℓ > j such that attack(j, ℓ) holds
and x0x1 . . . xℓ is consistent for −i.

Response: response(π′, π) on Player −i holds at turn j of Player i if there exits
π′′ ∈ dui(xℓ), π′ ∈ du−i(xk) and π ∈ dui(xj) for some ℓ ≤ k ≤ j, such that
attack(π′′, π′) holds at turn k of Player −i, there exists R ∈ R such that π′Rπ
and π implies that (i) one of i’s commitments φ attacked in π′ is true or (ii)
one of −i’s commitments in π′ that entails that i was committed to ¬φ is
false. We shall often denote this as response(k, j).

Definition 6. Let G = ((V0 ∪ V1)
ω,J ) be an ME game over (V0 ∪ V1)

ω. Let
ρ = x0x1x2 . . . be a play of G. Then

NEC: NEC holds for Player i in ρ on turn j if for all ℓ, k, ℓ ≤ k < j, such that
attack(ℓ, k), there exists m, k < m ≤ j, such that response(k,m). NEC holds
for Player i for the entire play ρ if it holds for her in ρ for infinitely many
turns. Let NECi denote the set of plays of G where NEC holds for player i.

CNEC: CNEC holds for Player i on turn j of ρ if there are fewer attacks on i
with no response in ρj than for −i. CNEC holds for Player i over a ρ if in
the limit there are more prefixes of ρ where CNEC holds for i than there are
prefixes ρ where CNEC holds for −i. Let CNECi be the set of all plays of G
where CNEC holds for i.

For a zero-sum ME game G, the structural complexities of most of the above
constraints can be derived from the constraint of rhetorical decomposition sen-
sitivity (RDS), which is a crucial feature of many conversational goals and is
defined as follows.

Definition 7. Given a zero sum ME game G = ((V0 ∪V1)
ω,win), win is rhetor-

ically decomposition sensitive (RDS) if for all ρ ∈ win and for all finite prefixes
ρj of ρ, ρj ∈ Z1 implies there exists x ∈ V +

0 such that O(ρjx) ∩ win = ∅.

[6] show that if Player 0 has a winning strategy for an RDS winning condition
win then win is a Π0

2 complete set. Formally,

Proposition 1 [6]. Let G = ((V0 ∪V1)
ω,win) be a zero-sum ME game such that

win is RDS. If Player 0 has a winning strategy in G then win is Π0
2 complete for

the Borel hierarchy.

In the zero-sum setting, CONS0, RES0, COH0, NEC0 are all RDS and it is
easy to observe that Player 0 has winning strategies in all these constraints
(considered individually). Hence, as an immediate corollary to Proposition 1 we
have



Corollary 1. CONS0, RES0, COH0, NEC0 are Π0
2 complete for the Borel hier-

archy for a zero sum ME game.

CNEC, on the other hand, is a structurally more complex constraint. This
is not surprising because CNEC can be intuitively viewed as a limiting case of
NEC. Indeed, this was formally shown in [6].

Proposition 2 [6]. CNECi is Π0
3 complete for the Borel hierarchy for a zero

sum ME game.

The above results have interesting consequences in terms of first-order defin-
ability. Note that certain infinite sequences over our vocabulary (V0 ∪V1) can be
coded up using first-order logic over discrete linear orders (N, <), where N is the
set of non-negative natural numbers. Indeed, for every i and for every a ∈ Vi, let
ai
0 be a predicate such that given a sequence x = x0x1 . . . , xj ∈ (V0 ∪V1) for all

j ≥ 0, x |= ai
0(j) iff xj = a. Closing under finite boolean operations and ∀,∃, we

obtain the logic FO(<). Now for any formula ϕ ∈ FO(<) and for any play ρ of
an ME game G, ρ |= ϕ can be defined in the standard way. Thus every formula
ϕ ∈ FO(<) gives a set of plays ρ(ϕ) of G defined as:

ρ(ϕ) = {ρ ∈ (V0 ∪ V1)
ω| ρ |= ϕ}

A set A ⊆ (V0∪V1)
ω is said to be FO(<) definable if there exists a FO(<) formula

ϕ such that A = ρ(ϕ). The following result is well-known.

Theorem 1 [20]. A ⊆ (V0 ∪ V1)
ω is FO(<) definable if and only if A ∈ (Σ0

2 ∪
Π0

2 ).

Thus FO(<) cannot define sets that are higher than the second level of the Borel
hierarchy in their structural complexity. Thus as a corollary of Proposition 2 and
Corollary 1, we have

Corollary 2. CONS0, RES0, COH0, NEC0 are all FO(<) definable but CNECi

is not.

This agrees with our intuition because as we observed, CNECi is a limit
constraint and FO(<), being local [14], lacks the power to capture it. To define
CNECi one has to go beyond FO(<) and look at more expressive logics. One
such option is to augment FO(<) with a counting predicate cnt which ranges
over (N ∪ {∞}) [19]. Call this logic FO(<, cnt). One can write formulas of the
type ∃∞xϕ(x) in FO(<, cnt) which says that “there are infinitely many x’s such
that ϕ(x) holds.” Note that it is straightforward to write a formula in FO(<, cnt)
that describes CNECi. Another option is to consider the logic Lω1ω(FO,<)
which is obtained by closing FO(<) under infinitary boolean connectives

∨
j

and
∧

j . We can define a strict syntactic subclass of Lω1ω(FO,<), denoted
L ∗

ω1ω(FO,<), where every formula is of the form OpOq . . . Otϕpq...t, where, for
k ∈ {p, q, . . . , t − 1}, Ok =

∨
k iff Ok+1 =

∧
k+1 and each ϕpq...t is an (FO,<)

formula, p, q, . . . , t ∈ N. That is, in every formula of L ∗
ω1ω(FO,<), the infinitary

connnectives are not nested and occur only in the beginning. We can then show
that L ∗

ω1ω(FO,<) can express sets in any countable level of the Borel hierarchy.



3 Weighted Message Exchange Games

So far we have reviewed how the framework of Message Exchange games models
strategic conversations as infinite sequential games and how we can use it to
analyze the complexity of certain intuitive, winning goals in such conversations
in terms of both their topological and logical complexities. Nevertheless, there
are two issues with ME games that still need to be addressed.

– Let’s suppose that a conversation at the outset can be potentially infinite.
But still in real life, the Jury ends the game after a finite number of turns.
By doing so, how can it be sure that it has correctly determined the outcome
of the conversation? In other words, how does the Jury, at any point in a
conversation gauge how the players are faring and how can it reliably (or even
rationally) choose a winner in a finite time?

– How does the Jury determine the winning conditions win0 and win1? Surely,
it does not come up with a arbitrary subset of (V0 ∪ V1)

ω with an arbitrary
Borel complexity.

To address the above questions, [3] introduced the model of weighted ME
games or WME games. A WME game is an ME game where the Jury specifies the
winning sets wini as subsets of (V0∪V1)

ω by evaluating each move of every player.
It does this by assigning a ‘weight’ or a ‘score’ to the moves. The cummulative
weight of a conversation ρ is then the discounted sum of these individual weights.

More formally, let Z be the set of all integers and Z+ be the set of non-
negative integers. For any n ∈ Z+ let [n] = [0, n − 1] ∩ Z+ = {0, 1, . . . , n − 1}.
A weight function is a function w : (Z0 × V +

1 ∪ Z1 × V +
0 ) → {0, 1, 2} × {0, 1, 2}.

Intuitively, given a history ρ ∈ Z, w assigns a tuple of integers (a0, a1) = w(ρ, x)
to the next legal move x of the play ρ. A weight of 0 is intended to denote a
‘bad’ move, 1 a ‘neutral’ or ‘average’ move, and 2 is intended to denote a ‘good’
or ‘strong’ move. An example of a ‘strong’ move is an attack CDU whereas an
example of a ‘bad’ move can be an incoherent CDU, as defined in Sect. 2. Note
that the weight function, w depends on the current history of the game in that,
given two different histories ρ1, ρ2 ∈ Z, it might be the case that w(ρ1, x) �=
w(ρ2, x) for the same continuing move x. For notational simplicity, in what
follows, given a play ρ = x0x1 . . ., we shall denote by wj

i (ρ), the weight assigned
by w to Player i in the jth turn of ρ (j ≥ 1). That is, if w(ρj−1, xj) = (a0, a1),

then wj
0(ρ) = a0 and wj

1(ρ) = a1.
A discounting factor is a real λ ∈ (0, 1). For every play ρ of an ME game G,

the Jury, using some discounting factor λ, computes the discounted-weight of ρ
for each player i, which is denoted by wi(ρ) and is defined as:

Definition 8. Let ρ be a play of G and let λ be a discounting factor. Then the
discounted-weight of ρ for Player i is given by

wi(ρ) =
∑

j≥1

λj−1wj
i (ρ)



We can now consider the Jury simply as a tuple (w, λ) where w is a weight
function and λ is a discounting factor.2 And formally define WME games as:

Definition 9. A Weighted Message Exchange game (WME game) is a tuple
G = ((V0 ∪ V1)

ω, (w, λ)).

We can now use w and λ to implicitly determine the winning sets wini of the
players and turn G into either a zero-sum or a non zero-sum game.

Definition 10. Let G = ((V0 ∪ V1)
ω, (w, λ)) be WME game. Then

i. Zero-sum: win = {ρ ∈ (V0 ∪ V1)
ω|w0(ρ) ≥ w1(ρ)}.

ii. Non-zero sum: Fix constants νi ∈ R called ‘thresholds’. Then,

wini = {ρ ∈ (V0 ∪ V1)
ω|wi(ρ) ≥ νi}.

For this exposition, we concentrate on the zero-sum setting. Winning strate-
gies are then defined as in Sect. 2. We can also define the notions of best-response
and ǫ-best-response strategies for a given ǫ > 0. This leads to the definition of
a Nash-equilibrium and an ǫ-Nash-equilibrium. It can also be shown that ǫ-Nash-
equilibia always exist in WME games (see [3] for more details). It was also shown
in [3] that given an ǫ > 0 there exists nǫ ∈ Z+ such that after nǫ turns neither
player can gain more than just a ‘small amount’ than what they have already
gained so far. More formally,

Proposition 3 [3]. Let G = ((V0 ∪ V1)
ω, (w, λ)) be a WME game. Then given

ǫ > 0 we have for Player i and any play ρ of G

nǫ∑

j=1

λj−1wj
i (ρ) − ǫ ≤ wi(ρ) ≤

nǫ∑

j=1

λj−1wj
i (ρ) + ǫ

where nǫ ≤
ln[ ǫ

2
(1−λ)]

ln λ
.

Thus if the Jury stops the conversation ρ after nǫ turns it is guaranteed that
no player could have gained more than ǫ from what they have already gained so
far. Thus, it may already be able to come to a conclusion after nǫ turns of the
game - if Player i has already gained much more than 2ǫ than Player −i, then i
may be declared the winner.

We have thus answered both the questions posed at the beginning of the
section.

Let’s now consider an application of WME games to the segment of a real-life
debate.

2 Note that [3] considers the discounting as a function of the history rather than
a constant factor which, arguably, better reflects real-life situations. We stick to a
constant discounting factor here for the simplicity of presentation. The main concepts
remain the same.



Example 4. Consider the following excerpt from the 1988 Dan Quayle-Lloyd
Bentsen Vice-Presidential debate that has exercised us now for several years.
Quayle (Q), a very junior and politically inexperienced Vice-Presidential candi-
date, was repeatedly questioned about his experience and his qualifications to be
President. Till a point in the dbate both of them were going neck to neck. But
then to rebut doubts about his qualifications, Quayle compared his experience
with that of the young John (Jack) Kennedy. To that, Bentsen (BN) made a
discourse move that Quayle apparently did not anticipate. We give the relevant
part of the debate below where for the simplicity of the ensuing analysis we have
labeled each CDU:

a. Quayle: ... the question you’re asking is, “What kind of qualifications does Dan Quayle have

to be president,”

b. Quayle: ... I have far more experience than many others that sought the office of vice president

of this country. I have as much experience in the Congress as Jack Kennedy did when he sought

the presidency.

c. Bensten: Senator, I served with Jack Kennedy. I knew Jack Kennedy. Jack Kennedy was a

friend of mine. Senator, you’re no Jack Kennedy.

d. Quayle: That was unfair, sir. Unfair.

e. Bensten: You brought up Kennedy, I didn’t.

Let us analyze the above exchange from the perspective of a WME game.
Without loss of generality suppose Quayle is Player 0 and Bensten is Player
1. Let us denote by ρ all the conversation that took place before the above
exchange. Since both of them were neck-neck till then we can assume that both
had gained a weight of c (say) that far. Next, Quayle makes moves (a) and
(b) which might be considered an average move at that point (the audience
applauds but is skeptical). So we can assign w(ρ, 〈a〉〈b〉) = (1, 1) - Bensten
neither gains nor loses from this move of Quayle. Bensten then makes the bril-
liant move (b) which does serious damage to Quayle. The audience bursts with
applause. Hence, we set w(ρ〈a〉〈b〉, 〈c〉) = (0, 2). Quayle is unable to retaliate to
(b) and makes another rather timid move (c) which has even a negative impact
to his cause on the audience. The audience is still basking in Bensten’s previous
move and we set w(ρ〈a〉〈b〉〈c〉, 〈d〉) = (1, 1). Bensten goes ahead and cements his
position further by making another attack move (d) on Quayle. We hence set
w(ρ〈a〉〈b〉〈c〉〈d〉, 〈e〉) = (0, 2).

Now suppose the Jury (in this case the audience) is using a discount factor
λ. The discounted-weights to Quale and Bensten are respectively:

wQ(ρ〈a〉〈b〉〈c〉〈d〉〈e〉) = 1 + λ2

and
wBN (ρ〈a〉〈b〉〈c〉〈d〉〈e〉) = 1 + 2λ + λ2 + 2λ3

We thus see that wBN (ρ〈a〉〈b〉〈c〉〈d〉〈e〉) > wQ(ρ〈a〉〈b〉〈c〉〈d〉〈e〉) for any value
of λ ∈ (0, 1). Not just that, even if after the above initial slump, Quayle plays
in such a way that every move he makes is a brilliant move and every move



Bensten makes is a disaster, Quayle still cannot recover and gain more than
Bensten eventually for values of λ as high as 0.8! Discounting thus reiterates the
fact that it is always beneficial to makes ones best moves earlier on in a debate.
This also ‘colours’ the weighting function of the Jury in ones favour.

In passing, we would like to remark that Quayle never recovered from one
disastrous move in that debate and lost handily as is rightly predicted by our
model.

4 Imperfect Information and Epistemic Considerations

WME games address certain open questions in the theory of ME games, as we
have shown in the previous section. But they give rise to other questions as well.

– How does the Jury determine a weighting scheme?
– If the Jury is identified simply with a weighting function and a discount factor,

and players know these parameters, they can determine when the Jury will end
the game. So don’t WME games fall prey to troublesome backwards induction
arguments that ME games were designed to avoid?

Concerning the first question, we’ve shown that the predictions of WME
games hold for a wide range of weighting schemes, but indeed it is clear that
different Juries will have different weighting schemes. Consider how a partisan
audience say of a political candidate c reacts to his discourse moves and how a
audience hostile to c’s views reacts. The U.S. Presidential primary debates and
general debates show that these reactions can vary widely. In particular, Juries
may be biased and only “hear what they want to hear,” even to the extent that
they ignore inconsistencies or incoherences on the part of their preferred player.
Concrete Juries adopt the weighting schemes they do, in virtue of their beliefs
and desires. Thus, weighting schemes may vary quite widely, and a conversational
participant should be as well informed as she can be about the Jury she wants
to sway.

The second question needs a negative response. [3] simply assumes that the
Jury’s characteristics are unknown to the conversational participants. But this
is not really realistic, especially in virtue of our response to the first question
above. So in this section, we study the exact information structure implicit in
the strategic reasoning in conversations by extending framework of ME games
with epistemic notions. We use the well-established theory of type-structures,
first introduced in [17] and widely studied since. We assume that each player
i ∈ ({0, 1} ∪ {J }) has a (possibly infinite) set of types Ti. With each type ti of
Player i is associated a (first-order) belief function βi(ti) which assigns to ti a
probability distribution over the types of the other players. That is, βi : Ti →
∆(

∏
j �=i Tj). βi(ti) represents the ‘beliefs’ of type ti of Player i about the types

of the other players and the Jury. The higher-order beliefs can be defined in
a standard way by iterating the functions βi. We assume that each type ti of
each Player i starts the game with an initial belief βi(ti) ∈ ∆(

∏
j �=i Tj), called

the ‘prior belief’. The players take turns in making their moves and after every



move, all the players dynamically update their beliefs through Bayesian updates.
The notions of ‘optimal strategies’, ‘best-response’, ‘rationality’, ‘common belief
in rationality’ etc. can then be defined in the standard way (see [12]).

Having imposed the above epistemic structure on ME games, we can now rea-
son about the ‘rationality’ of the players’ strategies. In order to justify or predict
the outcome of games, many different solution concepts viz., Nash equilibrium,
iterated removal of dominated strategies, correlated equilibrium, rationalizabil-
ity etc. have been proposed [7,10,21]. Most of them have also been characterized
in terms of the exact belief structure and strategic behavior of the players (see
[12] for an overview). We can borrow results from this rich literature to predict
or justify outcomes in strategic conversations. The details of the above is on-
going work and we leave it to an ensuing paper. However, let us apply the above
concepts and analyze our original example of Bronston and the Prosecutor.

To illustrate the power of types, let us return to Eg. 1. One conversational goal
of the Prosecutor in Eg. 1 is to get Bronston to commit to an answer eventually
(and admit to an incriminating fact) or to continue to refuse to answer (in which
case he will be charged with contempt of court). Under such a situation, the
response 1d of Bronston is clearly a clever strategic move. Bronston’s response
(1d) was a strategic move aimed to ‘misdirect’ the Jury J . He believed that J
was of a type that would be convinced by his ambiguous response and neither
incriminate him nor charge him with perjury nor of contempt of court. His move
was indeed rational, given his belief about the Jury type. It turns out that while
the jury of a lower court J1 was not convinced of Bronston’s arguments and
charged him with perjury, a higher court J2 overturned the verdict and released
him. Thus his belief agreed with J2 but not J1.

We now return briefly to the information players have about the Jury in
WME games. Intuitively, each Player i is uncertain about: (i) the type of the
other player (1 − i), (ii) the strategy that (1 − i) is employing and (iii) the type
of the Jury which is the discounting factor λ and the weight function w. We
thus assume that at every history ρ of an ME/WME game G each type ti ∈ Ti

of Player i has beliefs on:

1. the set of types T(1−i) of Player (1 − i),
2. the set of strategies S(1−i) of Player (1 − i),
3. the weight function w.
4. the discounting factor λ.

Although going into the details of each one of these points would take too
long for this exposition, we can show that each of these factors can be modelled
precisely preserving our intuitions. This supplies us with a needed answer to
our second question. Indeed, the Jury ends the game after a finite number of
turns n (say), and from its viewpoint, the game is finite. But note that the
players are uncertain about the exact value of n and hold beliefs about it. Hence,
from their viewpoint, although the game ends after finitely many turns, they do
not know the exact number of turns. Thus, intuitively a rational player is one
who strategizes for a wide range of possibilities for the value of n [this will be
elaborated presently]. For her, the game is ‘potentially infinite’. And hence, we



as analysts, model the situation as an infinite game as well. In [5], we argued
that an infinitary approach was needed to handle both technical issues having to
do with Backwards Induction arguments as well as to capture the intuition that
a conversationalist, to be sure of succeeding in convincing a Jury of a particular
position, should be prepared to argue for her position for “as long as it takes”
and to answer every possible objection by an opponent. Since the list of possible
objections is most likely infinite, the analyst must provide an infinitary game-
theoretic framework. These points still hold once we add an epistemic layer to
WME games.

5 Conclusion

In this paper we have summarized concepts from earlier work and have demon-
strated how infinite sequential games paired with the notion of a Jury, ME
games, can be used to model strategic conversations. Such a model allows one to
reason about the structure and complexity of various kinds of winning goals that
conversationalists might have. We have shown how to use tools from topology,
set-theory and logic to express such goals. We then discussed a problem with
pure ME games: how can an actual Jury reliably determine a winner or winners
in a conversation after only finitely many rounds. We addressed this issue by
moving to Weighted ME (WME) games. We showed how to apply elements of
WME games to a snippet of a historic moment in American political debates.
However, WME games, we also showed, don’t furnish a completely satisfactory
analysis, because though the Jury can reliably determine a winner or winners of a
conversation after a finite moment, this information crucially cannot be common
knowledge of the participants without re-introducing the damaging backwards
induction arguments that ME games were originally designed to solve. We then
demonstrated how we can use ideas from epistemic game theory would in prin-
ciple solve this problem.

Thus, what we have put forward in this paper is a framework for an epistemic,
game-theoretic approach to conversation. As far as we know, this approach is
utterly different from any other model proposed for the study of linguistic conver-
sation, though it may have other applications as well. There are many directions
into which we would like to delve deeper in the future. One such direction, as
we already mentioned, is to work out the epistemic theory of ME games in full
detail. That is our current work in progress. Another direction has to do with a
more detailed investigation of the Jury, or possible Juries. So far we have consid-
ered the Jury as a ‘passive’ entity; it simply evaluates the play and determines
the winner. In real life situations, however, the Jury actively participate in the
conversation itself, albeit typically in a limited way. It can applaud or boo moves
of the players. Thus, the Jury can be seen as making these moves in the game.
Based on what the players observe about the Jury, they may update or change
their beliefs and vice-versa. Incorporating this into our ME games requires a
modification of the current framework where the Jury is another player making
moves from its own set of vocabulary. We plan to explore this in future work.



Finally, in addition to the Jury, debates usually also have a moderator whose
job is to conduct the debate and assign turns to the players. The moderator may
also actively ‘pass comments’ about the moves of the players. A fair moderator
gives all the players equal opportunity to speak and put their points across.
However, if the moderator is unfair, he may ‘starve’ a particular player by not
letting her enough chance to speak, respond to attacks and so on. Exploring
the effects a biased moderator can have on conversations is another interesting,
future topic of research.

References

1. Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press, 
Cambridge (2003)

2. Asher, N., Lascarides, A.: Strategic conversation. Semantics, Pragmatics 6(2)
(2013). http://dx.doi.org/10.3765/sp.6.2

3. Asher, N., Paul, S., Evaluating conversational success: weighted message exchange 
games. In: Hunter, J., Stone, M. (eds.) 20th Workshop on the Semantics and Prag-
matics of Dialogue (SEMDIAL), New Jersey, USA, July 2016 (2016, to appear)

4. Hintikka, J.: Language-games. In: Saarinen, E. (ed.) Game-Theoretical Semantics. 
Synthese Language Library, vol. 6790, pp. 1–26. Springer, Netherlands (2011). 
doi:10.1007/978-1-4020-4108-2 1

5. Asher, N., Paul, S., Venant, A.: Message exchange games in strategic conversation.
J. Philos. Log. (2016). doi:10.1007/s10992-016-9402-1

6. Asher, N., Paul, S., Venant, A.: Message exchange games in strategic conversations.
J. Philos. Log. (2016, in press)

7. Aumann, R.: Subjectivity and correlation in randomized strategies. J. Math. 
Econom. 1, 67–96 (1974)

8. Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139(2), 165–224 
(2004)

9. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common 
knowledge and private suspicions. Technical report SEN-R9922, Centrum voor 
Wiskunde en Informatica (1999)

10. Bernheim, B.D.: Rationalizable strategic behaviour. Econometrica 52(4), 1007–
1028 (1984)

11. Crawford, V., Sobel, J.: Strategic information transmission. Econometrica 50(6), 
1431–1451 (1982)

12. Dekel, E., Siniscalchi, M.: Epistemic game theory. In: Aumann, R.J., Hart, S. (eds.) 
Handbook of Game Theory with Economic Applications, vol. 4, chap. 12, pp. 619–
702. Elsevier Publications (2015)

13. Franke, M.: Semantic meaning and pragmatic inference in non-cooperative conver-
sation. In: Icard, T., Muskens, R. (eds.) Interfaces: Explorations in Logic. Language 
and Computation, Lecture Notes in Artificial Intelligence, pp. 13–24. Springer-
Verlag, Berlin, Heidelberg (2010)

14. Gaiffman, H.: On local and non-local properties. In: Proceedings of the Herbrand 
Symposium, Logic Colloquium 1981. North Holland (1982)

15. Glazer, J., Rubinstein, A.: On optimal rules of persuasion. Econometrica 72(6), 
119–123 (2004)
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