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Stereoelectroencephalography is a surgical procedure used in the treatment of pharmacoresistant epilepsy. Multiple electrodes are inserted in
the patient’s brain in order to record the electrical activity and detect the epileptogenic zone at the source of the seizures. An accurate
localisation of their contacts on post-operative images is a crucial step to interpret the recorded signals and achieve a successful resection
afterwards. In this Letter, the authors propose interactive and automatic methods to help the surgeon with the segmentation of the
electrodes and their contacts. Then, they present a preliminary comparison of the methods in terms of accuracy and processing time
through experimental measurements performed by two users, and discuss these first results. The final purpose of this work is to assist the
neurosurgeons and neurologists in the contacts localisation procedure, make it faster, more precise and less tedious.
1. Introduction: Pharmacoresistant epilepsy is a complicated
illness that can sometimes be curable by resorting to a surgical
intervention, after performing a stereoelectroencephalography
(SEEG) to detect the seizure onset zone [1]. SEEG procedure
consists of inserting electrodes in the patient’s brain to record the
electrical activity within the brain parts that are likely to be
responsible for the seizures.
After this intervention, a post-operative computed tomography

(CT) image is acquired to assess if the electrodes and their recording
contacts are placed as planned. The localisation of electrodes con-
tacts is a crucial step in the post-SEEG phase since the next surgical
intervention aiming at destroying the epileptogenic zone by per-
forming a radio-frequency thermocoagulation [2] or by excising
that zone is based on its accurate localisation. However, the contacts
localisation and identification is difficult and time-consuming, espe-
cially when the neurosurgeon has to process a large number of
slices, and there is a high number of implanted electrodes. To
help the surgeon with this task, a limited number of groups have
recently started to investigate the automatic segmentation of
SEEG [3, 4]. A comparison with their works is proposed in the
discussion. Other studies have been proposed for deep brain stimu-
lation [5] electrodes, with a lower number of contacts and electrodes
involved in the process.
In this Letter, we present an automatic segmentation algorithm

that we have developed. It takes post-operative CT images as an
input (an example of these images is given in Fig. 1 below), then
performs a succession of processing steps in order to detect the dif-
ferent electrodes and provide the surgeons with the location of the
contact.
We have also implemented two versions of simple and intuitive

interactive segmentation processes that require minimal interaction
from the surgeon. The objective is two-fold: the results of these
methods will be used as a reference for the proposed automatic
segmentation to be validated and will be compared with assessing
the interest of automatic methods. In the next sections, we will
expose the principle of each of the interactive and automatic seg-
mentations, preliminary results obtained in each case and a first
comparison between the methods. Finally, we will conclude this
Letter by briefly discussing the performance and the limitations
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of the proposed methods that can already be outlined with these
first results.

Before presenting our approaches, we give below the definitions
of a few concepts that will be used throughout this Letter
(compare Fig. 1):

Electrode: metallic contacts and screw attached to the skull.
Entry point: the position where the electrode is inserted into the
skull.
Target point: the position of the deepest contact of the electrode.
Trajectory length: distance between target and entry point.
Contact length: distance between the first and the last contacts of
the electrode.
2. Materials and methods
2.1. Development platform: The development of the automatic and
interactive algorithms has been carried out using 3D Slicer (version
4.9.0) which is an open-source software where the user can
elaborate his own image processing module depending on his
project purposes and integrate it into the software to visualise the
results [6]. We implemented Python scripted modules to perform
the interactive and automatic segmentations.

2.2. Interactive segmentation: For the neurosurgeon, the interactive
segmentation consists of localising the contacts using clicks with
the mouse. The first method allows the user to point at all the
contacts centres one by one with the mouse on the CT images
volume, as they appear relatively clearly as white dots on the
image (see Fig. 2). A specific user interface has been developed
within the interactive segmentation module. After a short setup,
the user clicks the points and the module creates a small cylinder
around each of them, calculates the trajectory and contact lengths.
This method is tedious, but in the case of electrode bending the
contacts is more precisely pointed. In the rest of this Letter, we
will also refer to this method as the one-by-one interactive method.

The second interactive method is designed to require less inter-
action and reduce segmentation time. The neurosurgeon simply
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Fig. 2 Interactive segmentation: entry point (red), contact centres (green)
that are placed interactively by the surgeon through the created user inter-
face (blue) in 3D Slicer

Fig. 1 Example of a CT post-operative image in SEEG

Fig. 3 Preprocessing steps: original image (top-left), the creation of the
foreground mask (top-right), adjustment of the mask (bottom-left) and
mask application (bottom-right)

Fig. 4 Automatic segmentation steps: step-1 (top-left) screw extraction,
step-2 (top-right) PCA of screw models, step-3 (bottom-left) contacts classi-
fication and step-4 (bottom-right) electrode models’ adjustment
has to click on the entry point of the electrode and its target point,
and a cylinder is placed between them. This method is faster;
however, it produces only straight electrode shapes. In the rest of
this Letter, we will also refer to this method as the fast interactive
method.

2.3. Automatic segmentation
2.3.1 Preprocessing of the CT post-operative images: Preprocessing
the images is a crucial step before implementing the electrodes
detection algorithm. Indeed, the presence of parts that have the
same intensity level as that of the electrodes (essentially external
wires) highly affects the good detection of the SEEG contacts.
The preprocessing is carried out without any interaction from the
user. First, thanks to the 3D Slicer module named Foreground
Masking, a mask of the head with the implanted SEEG electrodes
is created in order to isolate the foreground parts of the CT
images (brain, electrodes and skull bone) from the background
elements (wires). Then, the created mask is adjusted in a way that
makes it cover exactly and only the foreground parts using the
Segment Editor module. Finally, the mask is applied to the image
so that the background voxels are set to zero using the Mask
Scalar Volume module. The modules are called automatically
within the algorithm, resulting in a completely automated pipeline.
Fig. 3 shows illustrations of the preprocessing steps.

2.3.2 Automatic detection of the electrodes and contacts:
Automatic detection of the electrodes is performed on the prepro-
cessed images. First, we segment the images volume using the
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SimpleITK Binary Threshold Image Filter, with the CT images
maximum intensity chosen as the upper threshold, and 2600 as a
lower threshold, based on CT images histograms. This large
value was chosen as providing a good detection for the remaining
bright elements other than electrodes (such as skull bone) to be
eliminated. Then, the Connected Component (CC) Image Filter is
applied to separate the CCs. The resulting CC is automatically
labelled to facilitate their identification. Then, a process in three
steps allows to identify and classify the electrodes and their respect-
ive contacts:

Step-1. Extraction of the electrodes screws.
Step-2. Computation of the electrodes major axes.
Step-3. Contacts classification.

The results of the different steps above are illustrated in Fig. 4.
Among the labelled CC, electrode screws are separated from the
contacts using size as a criterion (Fig. 4, step-1): small CC corre-
sponds to contacts, while large CC corresponds to screws. Before
selecting the CC corresponding to screws, we delete very large
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Table 1 Distribution of electrodes (from DIXI Medical) for the four
patients

Number of
electrodes

Type of electrodes

case #1 14 15AM (5×), 12AM (6×), 10AM (3×)
and very small components for the screws size computation to be
more accurate. Then, we consider as a screw every CC bigger
than one-third of the largest CC size among the remaining CC.
We do thereafter a principal component analysis (PCA) on each
screw to determine its major axis (Fig. 4, step-2). Each of the CC
corresponding to a contact is then assigned to a screw by evaluating
its proximity with the screw’s axis (Fig. 4, step-3). We obtain sets of
screw/contacts corresponding to full separate electrodes. Moreover,
contacts assignment is performed in order from the nearest contact
to the farthest one regarding the electrode’s screw. This order is
important for the electrode contacts to be easily identifiable. At
that point, the contacts are grouped into sets corresponding to the
electrodes. They can possibly follow a slightly bended trajectory
in some cases.
However, contact classification might sometimes have inaccur-

acies due to the presence of artefacts on the CT images. This
problem may happen when two electrodes are close to each other,
as illustrated in Fig. 5.
A variant of this method is proposed to overcome this issue.

It also allows to visualise the electrodes with a geometry that is
closer to their actual specifications. For this, we add a fourth step:

Step-4: Adjustment of the electrodes axes and reconstruction of the
electrodes with respect to their geometrical characteristics.

It consists of adjusting the electrodes axes by considering the
line that links the last contact to the first one. Finally, a reconstruc-
tion of the geometry is performed, thanks to their characteristics
given by the SEEG electrodes manufacturer. Small cylinders are
placed and evenly spaced using the specifications of the electrode
model. This allows correcting the errors due to the multiple seg-
mentation processes and artefacts. The appropriate electrode
model is determined by comparing the distance from the first to
the last contact and the number of contacts with the specifications
of the models.
However, in some cases, it may occur that not all of the contacts

of an electrode are detected, hence the electrode reconstruction
and recognition are not accurate. For example, the electrode
shown in Fig. 6 is supposed to be a 15-contact electrode, but
at Step-3 we obtain a set of screw/contacts containing only four
contacts. Possible solutions to that problem are to use adaptive
thresholding parameters, and/or to try to infer the electrode
Fig. 5 Influence of artefacts (within red circles) on the automatic classifica-
tion of electrodes contacts

Fig. 6 False electrode identification problem: result of the step-3 for a
15-contact electrode (top) and reconstructed 5-contact electrode at step-4
(bottom)
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type even with missing information using electrode’s length
specifications.

The output of the four previous steps is a visualisation in two-
dimensional (2D) and 3D of the detected electrodes and contacts.
A file with information related to the number of electrodes, the
number of contacts in each electrode and the location of the differ-
ent contact centres is also provided.
3. Results:We have tested the proposed automatic algorithm on the
CT post-operative images of four patients. The respective numbers
of electrodes and electrodes models are summarised in Table 1. The
automatic segmentation has been run once, and the interactive
segmentation has been performed by one user. The results are
presented below. For patient case #1, an additional user has also
performed the interactive segmentation.

Fig. 7 shows visual results of the interactive segmentation by one
of the participants using the one-by-one method on patient case # 1:
the 177 contacts of the 14 electrodes interactively clicked by the
user are displayed in blue.

An example of the results of the fast interactive method is illu-
strated for the same patient in Fig. 8. Straight orange cylinders
have been created between entry and target points.

We show in Fig. 9 the electrodes and contacts obtained from the
same image using the automatic segmentation. The screws are pre-
sented in grey and the contacts in green.

In Fig. 10, the contacts obtained for case #1 using the interactive
one-by-one method and the automatic segmentations are superim-
posed for visual comparison. Both methods provide small cylinders
so that their respective positions can easily be compared. We can
already observe that in most cases the depth of the contacts along
the electrodes has been well estimated by the automatic algorithm.
However, a major difference is that the interactive method produces
case #2 18 15AM (6×), 15CM (1×), 12AM (5×),
10AM (4×), 8AM (2×)

case #3 15 18AM (1×), 15AM (5×), 12AM (4×),
10AM (3×), 8AM (2×)

case #4 15 18AM (3×), 12AM (6×), 10AM (5×),
8AM (1×)

Fig. 7 Segmented electrodes using the one-by-one interactive method.
Contacts are represented in blue
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Fig. 9 Segmented electrodes using the automatic detection algorithms.
Contacts are in green and screws are in grey

Fig. 8 Segmented electrodes using the fast interactive method. Orange
cylinders represent the electrodes

Fig. 10 Superposition of the contacts obtained by one-by-one interactive
and automatic methods

Fig. 11 Superposition of the contacts obtained by fast interactive and auto-
matic methods

Fig. 12 Contacts location comparison for patients cases # 1, 2, 3, 4 (from
top to bottom): mean of Euclidean distances between automatic and inter-
active centres. Values are given in millimetres
shapes of irregular curvature, whereas the automatic method pro-
duces smooth straight shapes.

When superimposing the results of the second interactive ( fast)
method (Fig. 11), we can visually compare the main directions of
the electrodes shapes. We can observe that most of them are rela-
tively close to the interactive results.

3.1. Accuracy
3.1.1 Accuracy of the contacts centres position: To compare
the interactive and automatic approaches in terms of accuracy, we
have calculated for each electrode the mean of Euclidean distances
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one-by-one method and the corresponding contact calculated auto-
matically. For the four cases, the comparisons have been performed
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Fig. 14 Result with the highest difference between automatic (green) and
interactive (blue) contacts location (Electrode-14). Yellow curve: user-1
results and purple curve: user-2 results. Values are given in millimetres

Table 3 Execution times for the automatic and interactive segmentations
for the four patients

Case #1 Case #2 Case #3 Case #4

one-by-one 8′ 51″ 11′ 20″ 10′ 10″ 13′ 10″
fast interactive 3′ 27″ 5′ 10″ 4′ 24″ 5′ 22″
automatic 2′ 6″ 2′ 39″ 1′ 41″ 1′ 25″

Fig. 13 Result with the lowest difference between automatic (green) and
interactive (blue) contacts location (Electrode-11). Blue curve: user-1
results, red curve: user-2 results. Values are given in millimetres

Table 2 Electrodes axes comparison: max, min and average angles
between the automatic direction and the fast interactive direction

Max angle Min angle Average angle

case #1 3.30 0.34 1.35
case #2 1.89 0.11 0.93
case #3 3.38 0.23 1.41
case #4 13.2 0.12 2.69

Angles are given in degrees.
only with user-1 who tested on all cases. Results obtained for the
four patients are displayed on the charts of Fig. 12.
When comparing the results obtained by the two users on the

same patient case (#1), we can observe that in both cases the best
results (with the lowest difference between locations of interactive
and automatic centres) are obtained for Electrode-11. Fig. 13
gives the distribution of Euclidean distances between the centres
in function of the associated contact number and a zoom in on
Electrode-11 segmentations (interactive in blue and automatic in
green/grey). On the two curves in Fig. 13, we can observe that
the distance separating centres of contacts segmented automatically
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and interactively stays very close to 0 for all of the 12 contacts
(respective averages of 0.39 and 0.48 mm for the two participants).

On the contrary, the most imprecise result while comparing
interactive and automatic contact centres location is obtained for
both users in the case of Electrode-14 that contains 15 contacts
and for which the variation of the distance between contacts is
shown in Fig. 14 as well as the electrode segmentation. For this
electrode, the average distance is 5.92 and 5.85 mm. We can note
that the distance seems to be mainly a problem with the depth of
the contacts.

A two sample t-test shows that there is no significant difference
in the results between the two participants (p-value>0.05).

As for comparing the automatic and the interactive centres loca-
tions, we can observe in Fig. 12 that the average distance stays
lower than 2 mm for the majority of electrodes (Patient 1: 87% of
electrodes, Patient 2: 100%, Patient 3: 80% and Patient 4: 67%.
However, some electrodes are still presenting a large difference
concerning contacts location. Those electrodes seem to be having
missing contacts (compare Fig. 6).
3.1.2 Accuracy of the electrodes axes direction: Another important
element to consider while assessing the automatic algorithm accur-
acy is the electrodes axes direction. Consequently, axes directions
obtained using the fast interactive method have been compared
with the axes directions returned by the automatic algorithm by
measuring the angle between them. The maximum, minimum and
average angles are computed for each of the four cases and are sum-
marised in Table 2; N.B. Given a patient, the average angle corre-
sponds to the average of the angles obtained for all the electrodes
inserted in that patient’s brain.

3.2. Execution time: Table 3 summarises the execution times on the
four patients’ images for the automatic algorithm and the interactive
approach by user-1. For the automatic method, the preprocessing
time is included. The obtained results show that the proposed
automatic segmentation is significantly faster than both of the
interactive segmentations.

4. Discussion and conclusion: In the previous sections, we have
presented two interactive and an automatic approach to segment
SEEG electrodes in the post-operative phase. The results that we
have obtained on a few patient cases show that the proposed
automatic algorithm was able to segment a large majority of
electrodes with a reasonable accuracy compared with the
one-by-one interactive method. A few exceptions remain, for
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which the accuracy could be improved, mostly due to a small
number of undetected contacts. The automatic method showed a
good approximation of the real position of electrodes contacts
and seems to be a promising method. The automatic algorithm
does not require any intervention from the user and performs
automatically all the SEEG electrodes detection procedure
including the preprocessing phase.

Compared to the literature, after the preprocessing phase, the
automatic algorithm we proposed has the advantage to perform a
completely automatic segmentation of the SEEG electrodes
without the need of any preoperative information or surgeon inter-
action, unlike the method proposed in [3]. The method proposed by
the authors is based on data coming from the preoperative planning
phase to obtain entry and target points for each electrode, calculates
its axis and then determines its contacts positions. In our case, we
propose an automatic classification of contacts that are directly
carried out from the PCA calculated axes from screws without
any prior information, and then automatically adjust the contacts
locations depending on the geometrical characteristics of the
electrodes.

A future improvement of the automatic algorithm is to take into
account electrodes bending, by shifting the automatically segmen-
ted contacts so that they could respect the electrodes curvature
and further minimise the error. Indeed, the segmentation results
obtained after step-3 already allows to have contacts that respect
the actual curvature of the electrodes. It would be feasible to use
this information to produce curved electrode shapes. The method
proposed very recently by Granados et al. [4] is probably the
most interesting and closest to our works. They take into account
electrode bending and require a few if not none interaction. The
detected contacts are visualised as points. Our method is also able
to detect the electrode model and allows to visualise the detected
contacts using the actual shape and spacing of the electrode.

Concerning the execution times, Table 3 shows that the automat-
ic algorithm is fast and competitive with the fast interactive method.
It is a great benefit for the surgeon, who will be freed from a tedious
task, and spare time that can be dedicated to another task.
Furthermore, we could imagine that such an automatic method
could allow for a systematic extraction of contacts localisations
on massive retrospective datasets, in order to feed a deep learning
algorithm in the context of the preoperative planning of SEEG
implantation. Current approaches for preoperative planning of
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electrodes trajectories [7–9] use conventional methods, and it
could be interesting to compare them with machine learning
methods if the number of examples is sufficient, which would
require a huge work of post-operative contacts detection.

Regarding the accuracy, the principal axes of the automatically
segmented electrodes are almost superimposed for the majority of
electrodes as shown in Table 2. This promising result further con-
firms that the automatic method seems to approximate the reality
quite well. However, further investigations and tests are still
needed to find out a generalised solution to the aforementioned
remaining challenges.
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