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An insulin infusion pump (IIP) is a critical software-intensive medical device that infuses insulin satisfying patient needs under safety and timing constraints that are appropriate for the treatment of diabetes. This device is used by millions of people around the world. The USA Food and Drug Administration (FDA) has reported several recalls in which IIP failures were responsible for a large number of serious illnesses and deaths. The failures responsible for this harm to people who are dependent on external insulin were caused by the introduction of hardware or software design errors during the system development process. This paper presents an incremental proof-based development of an IIP. We use the Event-B modelling language to formalize the given system requirements. Further, the Rodin proof tools are used to verify the correctness of functional behaviour, internal consistency checking with respect to safety properties, invariants and events.

Introduction

Patient safety is a major concern and an always challenging goal in the design and manufacture of medical devices. It requires knowledge and skill in both the medical and engineering domains, especially in human factors and systems engineering (HFE). The main reasons for recalls related to medical systems are the lack of attention to HFE in the design and implementation of technologies, processes, and usability. The primary use of HFE is to enhance system performance, including patient safety and technology acceptance [START_REF] Carayon | Patient safety[END_REF].

An insulin pump is a small, complex, safety-critical software-intensive medical device that allows controllable continuous subcutaneous infusion of insulin to patients for diabetes treatment. This device is used by millions of people around the world. The safety of IIPs has been a major concern in health care for a number of years. The USA Food and Drug Administration (FDA) has reported several recalls in which IIP failures are responsible for a large number of serious illnesses and deaths. According to the FDA, 17000 adverse-events were reported during 2006-2009, where 41 deaths were found to be due to malfunctioning IIPs. The FDA found that these deaths and adverseevents were caused by product design and engineering flaws including firmware problems [START_REF] Chen | Insulin pump software certification[END_REF][START_REF] Singh | Formalizing the glucose homeostasis mechanism[END_REF].

Formal methods can, and should play a significant role in verifying the system requirements, and in guaranteeing the correctness, reliability and safety of developed system software. Since software plays an important role in the medical domain, regulatory agencies, like the FDA, need effective means to evaluate the software embedded in the devices in order to certify the developed systems, and to assure the safe behaviour of each system [START_REF] Chen | Insulin pump software certification[END_REF][START_REF] Keatley | A review of the FDA draft guidance document for software validation: guidance for industry[END_REF][START_REF]A reseach and development needs report by NITRD: high-confidence medical devices: cyber-physical systems for 21st century health care[END_REF][START_REF] Lee | High-confidence medical device software and systems[END_REF]. Regulatory agencies are striving for rigorous techniques and methods to provide safety assurance. Many people believe that formal methods have the potential to develop dependable, safe and secure systems that are also more amenable to certification with required features that can be used to certify dependable medical systems [START_REF] Lee | High-confidence medical device software and systems[END_REF][START_REF] Bowen | Safety-critical systems, formal methods and standards[END_REF][START_REF] Singh | Using Event-B for Critical Device Software Systems[END_REF][START_REF] Méry | Real-time animation for formal specification[END_REF]. We also note that many formal techniques need to be much better targeted at practical software development and certification than they seem to be at present [START_REF] Wassyng | Though this be madness, yet there is method in it?[END_REF].

This paper contributes to the formalization and verification of an IIP using incremental refinement in Event-B [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. We previously formalized pacemakers using Event-B [START_REF] Singh | Using Event-B for Critical Device Software Systems[END_REF], and this work now helps us to formulate more general strategies for developing medical devices using formal techniques. It should be noted that in the pacemaker case study, we investigated only a refinement strategy that was used to formalize required behaviours and operating modes incrementally by adding various safety properties. In the IIP case study, we are verifying functional behaviours including various system operations, which are required to maintain insulin delivery, user profile management, and the calculation of required insulin. The complete formal development builds incrementally-refined models of IIP formalizing the required functional behaviour by preserving its required safety properties. The primary use of the models is to assist in the construction, clarification, and validation of the IIP requirements. We use the Rodin [START_REF]Project RODIN: rigorous open development environment for complex systems[END_REF] tool to develop the formal models. This tool provides an Event-B integrated development environment, automated proof strategies, model checking and code generation.

The remainder of this paper is organized as follows. Section 2 presents related work. Section 3 gives preliminary information about an IIP including informal system requirements. The modelling framework is presented in Sect. 4. Section 5 explores an incremental proof-based formal development of an IIP. Section 6 concludes the paper along with an indication of our intended future work.

Related Work

Masci et al. [START_REF] Masci | Model-based development of the generic PCA infusion pump user interface prototype in PVS[END_REF] presented the model-based development of user interface behaviour of an infusion pump in the Prototype Verification System (PVS). The developed model was verified against relevant safety requirements provided by the FDA. Finally, the PVS code generator was used to produce executable code from the verified specifications.

In [START_REF] Kim | Safety-assured development of the GPCA infusion pump software[END_REF], a prototype of the Generic Patient-Controlled Analgesic (GPCA) infusion pump controller was formalized using the UPPAAL model checker, and then this model was used to generate platform-independent C code. In [START_REF] Wang | Developing an insulin pump system using the SOFL method[END_REF], Structured Object-Oriented Formal Language (SOFL), a formal software engineering method was applied to develop a prototype of an insulin pump, in which the prime motivation was to use SOFL's datadriven, comprehensible, graphical notations for describing the specifications. A generic model for an IIP was developed in the Event-B modelling language to verify the safety requirements related to timing issues [START_REF] Xu | An Event-B approach to timing issues applied to the generic insulin infusion pump[END_REF]. An insulin pump has been used as a case study in [START_REF] Sommerville | Software Engineering[END_REF] for formalizing system behaviours using the Z modelling language.

The Insulin Infusion Pump

An insulin pump is a small, complex, software-intensive medical device that allows controllable, continuous subcutaneous infusion of insulin to patients. It delivers physiological amounts of insulin between meals and at meal times. An insulin pump consists of the physical pump mechanism, a disposable reservoir, and a disposable infusion set. The pump system includes a controller, and a battery. The disposable infusion set includes a cannula for subcutaneous insertion, and a tubing system to interface the insulin reservoir to the cannula. At present, open-loop and closed-loop insulin pumps exist. A closed-loop insulin pump is also known as an artificial pancreas, which automatically monitors and controls the blood glucose level of a patient. For an open-loop insulin pump, patients need to monitor the blood glucose level manually. An insulin pump can be programmed to release small doses of insulin continuously (basal), or one shot dose (bolus) before a meal, to control the rise in blood glucose.

Informal IIP Requirements

In this section, we describe briefly the high-level informal functional system requirements of an IIP, that forms the basis of our formal model described in Sect. 5. As far as we know, there are no published system requirements for an IIP, but several research publications provide informal requirements [START_REF] Masci | Model-based development of the generic PCA infusion pump user interface prototype in PVS[END_REF][START_REF] Kim | Safety-assured development of the GPCA infusion pump software[END_REF][START_REF] Xu | An Event-B approach to timing issues applied to the generic insulin infusion pump[END_REF]. We used such informal descriptions as a basis for this work to identifying the system requirements by applying use case and hazard analysis. These system requirements focus on the functional behaviour of an IIP without addressing design requirements, and human computer interaction (HCI) requirements. Our prime objective is to use formal methods to check consistency and required safety properties of the IIP requirements. The informal IIP requirements are described as follows: REQ1: The device must suspend all active basal delivery or bolus deliver during pump refilling and in the case of system failure. REQ2: The device must undergo a power-on-self-test (POST) whenever device power is turned on. REQ3: The device shall allow the user to manage system functionalities related to: stopping insulin delivery; validating basal profiles parameters; reminder management; and validating bolus preset parameters. REQ4: The device shall allow the user to define a basal profile that consists of an ordered set of basal rates, ordered over a 24 hour day, as well as a temporary basal, that consists of a basal rate for a specified duration of time within a 24 hour day. REQ5: The device can contain several basal profiles, but only one basal profile can be active at any single point in time. REQ6: The device must allow the user to override an active basal profile with a temporary basal, without changing the existing basal profile. REQ7: The device shall resume the active basal profile after the temporary basal terminates. REQ8: The device shall enforce a maximum dosage for the normal bolus or extended bolus. REQ9: The user shall be able to stop the active normal or extended bolus. REQ10: The device must maintain an electronic log of every operation associated with an user alert, such as an audio alarm. REQ11: The device shall maintain a history of basal and bolus dosages over the past n days. The n always differs among brands, though most store up to 90 days of data. REQ12: The device shall enable the user to create a food database that can be used to store food or meal descriptions and the carbs associated with them. REQ13: The device shall allow to the user to change parameter setting basal profile, bolus preset, and temporary basal. REQ14: The device shall provide feedback to the user regarding system and delivery status.

The Modelling Framework

In this section, we summarize the Event-B modelling language [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. The Event-B language has two main components: context and machine. A context describes the static structure of a system, namely carrier sets and constants together with axioms and theorems stating their properties. A machine defines the dynamic structure of a system, namely variables, invariants, theorems, variants and events. Terms like refines, extends, and sees are used to describe the relation between components of Event-B models. Events are used in a machine to modify state variables by providing appropriate guards.

Modelling Actions over States

The event-driven approach of Event-B is borrowed from the B language. An Event-B model is characterized by a list of state variables possibly modified by a list of events. An invariant I(x) expresses required safety properties that must be satisfied by the variable x during the activation of events. An event is a state transition in a dynamic system that contains guard(s) and action(s). A guard, predicate built on the state variables, is a necessary condition for enabling an event. An action is a generalized substitution that describes the ways one or several state variables are modified by the occurrence of an event. There are three ways to define an event e. The first is BEGIN x : |(P (x, x ) END, where the action is not guarded and the action is always enabled. The second is WHEN G(x) THEN x : |(Q(x, x )) END, where the action is guarded by G, and the guard must be satisfied to enable the action. The last is ANY t WHERE G(t, x) THEN x : |(R(x, x , t)) END, where the action is guarded by G that now depends on the local state variable t for describing nondeterministic events.

The proof obligations (POs) are generated by the Rodin platform [START_REF]Project RODIN: rigorous open development environment for complex systems[END_REF]. Event-B supports several kinds of POs like invariant preservation, non-deterministic action feasibility, guard strengthening in refinements, simulation, variant, well-definedness etc. Invariant preservation (INV1 and INV2) ensures that each invariant is preserved by each event; non-deterministic action feasibility (FIS) shows the feasibility of the event e with respect to the invariant I; guard strengthening in a refinement ensures that the concrete guards in the refining event are stronger than the abstract ones; simulation ensures that each action in a concrete event simulates the corresponding abstract action; variant ensures that each convergent event decreases the proposed numeric variant; and well-definedness ensures that each axiom, theorem, invariant, guard, action, or variant is well-defined.

INV 1 : Init(x) ⇒ I(x) INV 2 : I(x) ∧ BA(e)(x, x ) ⇒ I(x ) F IS : I(x) ∧ Grd(e)(x) ⇒ ∃y.BA(e)(x, y)

Model Refinement

A model can be refined to introduce new features or more concrete behaviour of a system. The Event-B modelling language supports a stepwise refinement technique to model a complex system. The refinement enables us to model a system gradually and provides a way to strengthen invariants thereby introducing more detailed behaviour of the system. This refinement approach transforms an abstract model to a more concrete version by modifying the state description. The refinement process extends a list of state variables (possibly suppressing some of them) by refining each abstract event to a corresponding concrete version, or by adding new events. These refinements preserve the relation between an abstract model and its corresponding concrete model, while introducing new events and variables to specify more concrete behaviour of the system. The abstract and concrete state variables are linked by gluing invariants. The generated POs ensure that each abstract event is correctly refined by its concrete version. For instance, an abstract model AM with state variable x and invariant I(x) is refined by a concrete model CM with variable y and gluing invariant J(x, y). e and f are events of the abstract model AM and concrete model CM respectively. Event f refines event e. BA(e)(x, x ) and BA(f )(y, y ) are predicates of events e and f respectively. This refinement relation generates the following PO:

I(x) ∧ J(x, y) ∧ BA(f )(y, y ) ⇒ ∃x • (BA(e)(x, x ) ∧ J(x , y ))
The new events introduced in a refinement step are viewed as hidden events, that are not visible to the environment of the system being modelled. These introduced events are outside the control of the environment. Newly introduced events refine skip and are not observable in the abstract model. Any number of executions of an internal action may occur in between each execution of a visible action. This refinement relation generates the following PO:

I(x) ∧ J(x, y) ∧ BA(f )(y, y ) ⇒ J(x, y )
The refined model reduces the degree of non-determinism by strengthening the guards and/or predicates. The refinement of an event e by an event f means that the event f simulates the event e, which guarantees that the set of traces of the refined model contains (up to stuttering) the traces of the resulting model. The Rodin platform provides rich tool support for model development using the Event-B language. The tool support includes project management, model development, proof assistance, model checking, animation and automatic code generation.

Formalizing the Insulin Infusion Pump

To cope with the inherent complexity of an IIP, we will use the stepwise refinement approach mentioned in Sect. 4. In our work, we will use this stepwise incremental approach to specify the IIP requirements by introducing new safety properties at each refinement level. The complete development of the IIP using this approach, required eight phases (the initial abstract model followed by seven refinement steps): power status (initial abstract model); basal profile management; temporary basal profile management; bolus preset management; bolus delivery; reminder management; and insulin output calculator. It should be noted that there is no specific order required in which to apply the refinements. Any order can be chosen after developing the initial abstract model. The abstract model can be further refined by introducing new components, enriching the existing behaviours or strengthening the guards.

Since the length of this paper is limited to 12 pages, we only include a brief description of the model development and refinements. We invite readers to use a detailed version of this work [START_REF] Singh | Report 18: formalizing insulin pump using Event-B[END_REF] to understand the formal development and related refinements of the case study including formally proved Event-B models.

Abstract Model: Power Status

An abstract model of an IIP specifies only power status and related functionality that controls the power status, i.e. turning on/off the system (REQ2). In order to start the formalization process, we need to define static properties of the system. An Event-B context declares three enumerated sets e pwrStatus, e basicResp, and e postResult defined using axioms (axm1 -axm3) for power status. 

An abstract model declares a list of variables defined by invariants (inv1 -inv5).

A variable POST Res is used to state the result of power-on-self-test (POST), where the result 'pass' (P ass postResult) means system is safe to turn on, and the result 'fail' (F ail postResult) means system is unsafe to start. The next variable post completed is used to show successful completion of POST of an IIP. The variable c pwrStatus shows the current power status of the system. The variable M pwrReq is used to model a request for power on/off from the user, and the last variable M pwrResp is used for modelling user responses to system prompts.

We introduce 10 events for specifying the desired functional behaviour for controlling the power status of an IIP. These events include guard(s) for enabling the given action(s), and the actions that define the changes to the states of the power status (c pwrStatus) and power-on-self-test (POST Res). Here, we provide only two events related to the power status and power-on-self-test in order to demonstrate the basic formalization process. An event POST Completed is used to assign pass result (Pass postResult) to POST Res, when post completed is TRUE. Similarly, another event PowerStatus1 is used to set P OST pwr -Staus to c pwrStatus, when power status is standby, and there exists a power request from the user. The remaining events are formalized in a similar way. We now present summary information about each refinement step in the IIP development, since we do not have space for the detailed formalization and proofs.

A Chain of Refinements

First Refinement: User Operations. This refinement introduces a set of operations that is performed by the user to operate/program the system for delivering insulin. These user operations create, remove, activate and manage the basal profile, bolus profile, and reminders (REQ3, REQ12, REQ13). These system operations are allowed when an IIP is on and we want to deliver an insulin amount in a controlled manner according to the physiological needs of a patient. This refinement formalizes the possible interactions for each system operation to make sure that the given requirements are consistent. For example, if no basal profile exists in the system, then the user will not be allowed to perform any operation other than to create a basal profile, and a notification will appear on the screen to direct the user. This step implements all user interactions with the system, including user initiated commands and system responses. This also includes all safeguards generated by safety constraints resulting from the hazard analysis.

In this refinement, we define an enumerated set and a list of variables to formalize user operations. This refinement step introduces 35 events to specify all the possible user operations related to the given requirements. All these new events refine skip. For example, an event CurrActiUserOper Idle1 refines skip that allows a user to create a new basal profile. The guards of this event state that power status is ready, system is in idle state (means no user operation is currently being performed) and there exists an operation requested by a user to create a new basel profile. We omit the formalization of the rest of the events, which are formalized in a similar way. Second Refinement: Basal Profile Management. This refinement introduces basal profile management (REQ4, REQ5) to maintain a record and to store basal profiles defined by the user. The operations of interest are: create a basal profile; remove a basal profile; check the validity of a selected basal profile; activate a basal profile; and deactivate a basal profile. The basal activation process must allow activation only of a valid non-empty basal profile that is stored in the IIP's memory. When a new basal profile is activated then the old basal profile is automatically deactivated, since only one basal profile is allowed to be active at any time. The new profile activation is always confirmed by the user before it can take effect. These operations are introduced in this refinement along the lines seen in the First Refinement, above.

Third Refinement: Temporary Basal Profile Management. This refinement introduces temporary basal profile management (REQ6, REQ7) that allows for activating, deactivating and checking the validity of a selected temporary basal profile. The temporary basal profile management is similar to the basal profile management. As soon as the elapsed period is finished, the paused basal profile resumes after notifying the user.

In this refinement, we formalize the possible operations related to the temporary basal management by introducing several new events just as in the previous refinement steps.

Fourth Refinement: Bolus Preset Management. This refinement introduces bolus preset management (REQ3, REQ9) that allows for creating a new bolus preset, removing an existing bolus preset, checking the validity of a created bolus preset, and activating the selected bolus preset. Using new events in a similar way to previous refinement steps, we can formalize the required behaviour. For example, scheduling a bolus has different states like 'no' bolus, 'normal' bolus, and 'extended' bolus. We define transitions between these states to inform the user by notification to confirm a proper bolus status.

Fifth Refinement: Bolus Delivery. This refinement introduces bolus delivery that includes events to start bolus delivery, to calculate the required dose for insulin delivery, and to check the validity of the calculated bolus and manually entered bolus. The bolus delivery formalization step describes how the system will calculate and behave when the user requests a bolus (REQ9, REQ11). When an IIP is on, the requested bolus is compared against an average bolus size. The bolus standard deviation must always satisfy the given range. The bolus notification process informs the user whether the bolus is within the regular bolus size, or whether it is larger/smaller than normal. At the time of bolus delivery, an IIP needs confirmation from the user. If the user does not confirm the bolus delivery confirmation, the bolus delivery is unchanged. This refinement formalizes the calculation of bolus delivery and other controlling operations to make sure that an IIP always delivers a correct amount of bolus at the scheduled time.

Sixth Refinement: Reminder Management. This refinement introduces reminder management (REQ10, REQ14) that allows for creating a new reminder, checking the validity of a newly entered reminder, and for removing an existing reminder. The reminder management is a complex task to control several user operations. It includes events to store and maintain reminders defined by the user. Invalid reminders will not be accepted. This refinement step introduces all the events necessary to model all the elements and operations for describing the reminder management, and to verify the requirements of reminder management.

Seventh Refinement: Insulin Output Calculator. This is the last refinement that models the insulin output calculator (REQ8, REQ11). It calculates the insulin required over the course of the day, the appropriate time segment, and the time steps for delivering the insulin. It also keeps track of the insulin delivered within the time segment. The infusion flow rate can be 0, if the system is off, and there is no active profile or the maximum amount of insulin has already been delivered.

In this refinement, we introduce 26 events to model the insulin calculator and 14 events to refine other previously abstractly defined events. Again, as an example to demonstrate the refinement process, a new event InsulinOutputCalculator1 is defined to calculate the amount of insulin to output. It depends on both basal and bolus that are formalized in actions (act1-act2). The guards of this event are: power status is ready (grd1); temporary basal is active (grd2); there exists an active temporary basal in which the rate of temporary basal is less than or equal to the maximum allowable rate (grd3); bolus delivery is in progress (grd4); and there exists an active bolus in which the bolus amount to be delivered is greater than the remaining allowable maximum amount for the next time step (grd5). The generated proof obligations also guarantee that an IIP does not deliver excess insulin to a patient. 

Safety Properties

Informally, a safety property stipulates that "bad things" do not happen during system execution. A formalized specification that satisfies a safety property involves an invariance argument. This section presents a list of safety properties using invariants (spr1 -spr9). These safety properties are introduced to make sure that the formalized IIP system is consistent and safe. The first safety property (spr1) ensures that when EnteredBasProfValid is TRUE, the entered basal delivery rate is within the safe range. Similarly, when EnteredBasProfValid is TRUE, spr2 ensures that the total amount of insulin delivered over a day is within the state limit. spr3 and spr4 perform the same checks for the selected basal rate and amount when SelectedBasalProfileIsValid is TRUE. spr5 and spr6 perform the same checks for the temporary basal profile when EnteredTemporaryBasalIsValid is TRUE. spr7 states that when SelectedPresetIsValid is TRUE, the bolus rate of a selected bolus profile must be within the range of minimum bolus bound and maximum bolus bound. spr8 ensures that when EnteredBolusIsValid is TRUE, the bolus rate of the entered bolus profile must be within the range of minimum bolus bound and maximum bolus bound. The last safety property (spr9) states that the total amount of insulin to output over the next time unit is less than or equal to the maximum daily limit of insulin that can be delivered. In this section, we present the proof statistics by presenting detailed information about generated proof obligations. Event-B supports consistency checking which shows that a list of events preserves the given invariants, and refinement checking which makes sure that a concrete machine is a valid refinement of an abstract machine. This complete formal specification of an IIP contains 263 events, 16 complex data types, 15 enumerated types, and 25 constants for specifying the system requirements. The formal development of an IIP is presented through one abstract model and a series of seven refinement models. In fact, the refinement models are decomposed into several sub refinements. Therefore, we have a total of 43 refinement levels for describing the system behaviour. In this paper, we have omitted the detailed description of the 43 refinements by grouping them into the main components we used to present the formal specification of an IIP.

spr1 : EnteredBasP rof V alid = T RUE ⇒ (∃x, y •x → y = M basP rof ∧ (∀i•i ∈ index range ∧ i ∈ dom(y) ⇒ y(i) ≥ k minBasalBound ∧y(i) ≤ k maxBasalBound)) spr2 : EnteredBasP rof V alid = T RUE ⇒ (∃x, y, insulin amount•x → y = M basP rof ∧ insulin amount ∈ y insulinV alue ∧ (∀i•i ∈ index range ∧ i ∈ dom(y)⇒ insulin amount = insulin amount + y(i) * k segDayDur)∧ insulin amount ≤ k maxDailyInsulin) spr3 : SelectedBasalP rof ileIsV alid = T RUE ⇒ (∃x, y •x → y = M basActSelected∧ (∀i•i ∈ index range ∧ i ∈ dom(y) ⇒ y(i) ≥ k minBasalBound ∧y(i) ≤ k maxBasalBound)) spr4 : SelectedBasalP rof ileIsV alid = T RUE⇒ (∃x, y, insulin amount•x → y = M basP rof ∧ insulin amount ∈ y insulinV alue∧ (∀i•i ∈ index range ∧ i ∈ dom(y)⇒ insulin amount = insulin amount + y(i) * k segDayDur)∧ insulin amount ≤ k maxDailyInsulin) spr5 : EnteredT emporaryBasalIsV alid = T RUE⇒ (∃x, y, z •x → y → z = M tmpBas∧ y ≥ k minBasalBound ∧ y ≤ k maxBasalBound) spr6 : EnteredT emporaryBasalIsV alid = T RUE⇒ (∃x, y, z •x → y → z = M tmpBas ∧ y * z ≤ k maxDailyInsulin) spr7 : SelectedP resetIsV alid = T RUE ⇒ (∃x, y •x → y = M bolSelected∧ y ≥ k minBolusBound ∧ y ≤ k maxBolusBound) spr8 : EnteredBolusIsV alid = T RUE ⇒ (∃x, y •x → y = M bolus∧ y ≥ k minBolusBound ∧ y ≤ k maxBolusBound) spr9 : c insulinOut ≤ k maxDailyInsulin

Model Analysis

Table 1 shows the proof statistics of the development in the Rodin tool. To guarantee the correctness of the system behaviour, we established various invariants in the incremental refinements. This development resulted in 444 (100 %) proof obligations, of which 342 (77 %) were proved automatically, and the remaining 102 (23 %) were proved interactively using the Rodin prover (see Table 1). These interactive proof obligations are mainly related to the complex mathematical expressions, which are simplified through interaction, providing additional information for assisting the Rodin prover. Other proofs are quite simple and were achieved by simplifying the predicates.

Conclusion and Future Challenges

An insulin pump is a critical software-intensive medical device for delivering controllable continuous subcutaneous infusion of insulin to patients. An insulin delivery process can be programmed by monitoring the patient's condition. Every year recalls are reported by FDA related to insulin pump malfunctions, and many of these recalls are a result of software issues. These software issues include unexpected controller behaviour for delivering insulin, incorrect measurement of insulin dose, overdose of insulin delivery, incorrect inputs for configuration management, etc. To address these software issues, we have proposed a refinement based formal development of an insulin pump to capture the essential requirements and to verify the required safety properties.

formalize the requirements an IIP, we used the Event-B modelling language [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] that supports an incremental refinement approach to design a complete system using several layers from an abstract to a concrete specification. Each refined model was proven to guarantee the preservation of required (safety) properties in that model. The initial model captured the basic behaviour of IIP in an abstract way. Subsequent refinements were used to formalize the concrete behaviour for the resulting IIP that covers user operations, basal profile management, temporary basal management, bolus preset management, reminder management, and insulin calculation. In order to guarantee the 'correctness' of the system behaviour, we established various invariants in the incremental refinements. Our complete formal development of this IIP is available in the appendix of report [START_REF] Singh | Report 18: formalizing insulin pump using Event-B[END_REF], which is more than 1500 pages long. In summary, our main contributions are:

1. Formalizing the requirements of an IIP. 2. Verifying and validating the required behaviour of an IIP. 3. Defining a list of safety properties. 4. Demonstrating how we can help to meet FDA requirements for certifying IIPs using formal methods. 5. Showing how to use Event-B's refinement process to retain intellectual control of the modelling process, formalization, and analysis.

The prime objective of this IIP model is to verify the requirements of an IIP, to check that all the system operational and functional behaviours are consistent that may help to certify the IIPs. In the future, we will use this model to produce source code using EB2ALL [START_REF] Singh | Using Event-B for Critical Device Software Systems[END_REF]. Moreover, we have plans to develop a closed-loop system using our glucose homeostasis model [START_REF] Singh | Formalizing the glucose homeostasis mechanism[END_REF] to verify the correctness of system behaviour, to analyze system operations, and to provide the required safety assurances to meet certification standards.

  axm1 : partition(e pwrStatus, {Standby pwrStatus}, {P OST pwrStatus}, {Ready pwrStatus}, {OffReq pwrStatus}) axm2 : partition(e basicResp, {Accept basicResp}, {Cancel basicResp}) axm3 : partition(e postResult, {P ass postResult}, {F ail postResult})

  inv1 : P OST Res ∈ e postResult inv2 : post completed ∈ BOOL inv3 : c pwrStatus ∈ e pwrStatus inv4 : M pwrReq A ∈ BOOL inv5 : M pwrResp ∈ e basicResp

  EVENT POST Completed WHEN grd1 : post completed = T RUE THEN act1 : P OST Res := P ass postResult END EVENT PowerStatus1 WHEN grd1 : c pwrStatus = Standby pwrStatus grd2 : ∃x•x ∈ BOOL ∧ x = M pwrReq THEN act1 : c pwrStatus := P OST pwrStatus END

  grd1 : c pwrStatus = Ready pwrStatus grd2 : c operation = Idle operations grd3 : ∃x•x ∈ BOOL ∧ x = M basCreateReq THEN act1 : c operation := CreateBasP rof operations END

  pwrStatus = Ready pwrStatus grd2 : T emporaryBasalIsActive = T RUE grd3 : ∃x, y, z •x → y → z = f activeT mpBasal∧ y ≤ k maxOutputRate ∧ val = y ∧ val ∈ N grd4 : BolusDeliveryinP rogress = T RUE grd5 : ∃s, t•s → t = f activeBolus∧ t > (k maxOutputRateval)/k msP erHr * Delta T THEN act1 : f basalOut := (val/k msP erHr) * Delta T act2 : f bolusOut := ((k maxOutputRateval)/k msP erHr) * Delta T END

Table 1 .

 1 Proof Statistics

	Model	Total number Automatic Interactive
		of POs	Proof	Proof
	Abstract Model	3	3(100%) 0(0%)
	First Refinement	22	22(100%) 0(0%)
	Second Refinement 98	82(83%) 16(17%)
	Third Refinement	26	25(100%) 1(0%)
	Fourth Refinement	52	45(87%) 7(13%)
	Fifth Refinement	54	54(100%) 0(0%)
	Sixth Refinement	66	60(91%) 6(9%)
	Seventh Refinement 123	51(42%) 72(58%)
	Total	444	342(77%) 102(23%)
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