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Abstract 25 
Strain 1T, isolated in the seventies from the thallus of the carrageenophytic red algae Eucheuma 26 

spinosum collected in Hawaii, USA, was retrospectively characterized using phenotypic, 27 

phylogenetic and genomic methods. Bacterial cells were Gram-stain-negative, strictly aerobic, 28 

non-flagellated, coccoid, ovoid or rod-shaped, and grew at 10-42 °C (optimum 20-25 °C), at 29 

pH 5.5-10 (optimum pH 6-9) and with 2-12 % NaCl (optimum 2-4 %). Strain 1T grew on the 30 

seaweed polysaccharides i-carrageenan, laminarin and alginic acid as sole carbon sources. The 31 

major fatty acids (>10 %) were C16:0, C18:1 ω7c and summed feature 3 (C16:1w7c and/or iso-C15:0 32 

2OH) and significant amounts of C16:0 N alcohol (6.7 %) and 10 methyl C17:0 (8.6 %) were also 33 

present. The only respiratory quinone was Q-8, and major polar lipids were 34 

phosphatidylethanolamine, phosphatidylglycerol and an unknown aminolipid. Phylogenetic 35 

analyses based on 16S rRNA gene sequence comparisons showed that the bacterium is affiliated 36 

to the genus Alteromonas (family Alteromonadaceae, class Gammaproteobacteria). Strain 1T 37 

exhibits 16S rRNA gene sequence similarity values of 98.8-99.2 % to the type strains of 38 

Alteromonas mediterranea and Alteromonas australica respectively, and of 95.7-98.6 % to 39 

those of the other species of the genus Alteromonas. The DNA G+C content of strain 1T is 43.9 40 

mol%. Based on the genome sequence of strain 1T, DNA-DNA hybridization predictions by the 41 

average nucleotide identity (ANI) and Genome-to-Genome Distance Calculations (GGDC) 42 

between strain 1T and other members of the genus Alteromonas showed values of 70-80 %, and 43 

below 26 %, respectively. The phenotypic, phylogenetic and genomic analyses show that strain 44 

1T is distinct from species of the genus Alteromonas with validly published names and that it 45 

represents a novel species of the genus Alteromonas, for which the name Alteromonas fortis sp. 46 

nov. is proposed. The type strain is 1T (= ATCC 43554T = CIP XXXX). 47 

  48 
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The genus Alteromonas, the type genus of the family Alteromodaceae (order Alteromonadales, 49 

class Gammaproteobacteria), was proposed by Baumann et al. [1] with Alteromonas macleodii 50 

as the type species of the genus. At the time of writing, the genus Alteromonas comprises 21 51 

validly named species, all isolated from marine environments. In the late seventies, Pr. W. 52 

Yaphe and its co-workers (McGill University, Montréal, Quebec, Canada) collected samples of 53 

the red alga Eucheuma spinosum J. Agardh 1847 (Rhodophyta, Solieriaceae) from Hawaii 54 

(USA) in order to isolate carrageenolytic bacterial strains. Strain 1T was isolated from the 55 

surface of Eucheuma spinosum thalli [2] for its capacity to produce a i-carrageenase activity 56 

useful to determine the structure of carrageenans [3]. Strain 1T was deposited in the American 57 

Type Culture Collection (ATCC 43554) and its iota-carrageenase was also intensively studied 58 

at the molecular, biochemical and structural levels, [4-9] and used as an enzymatic tool for 59 

carrageenan structural analyses [10]. Despite all these studies, no taxonomic study of strain 1T 60 

has been undertaken yet. Here, we present a detailed taxonomic investigation of strain 1T using 61 

a polyphasic approach, including some genomic data deduced from its complete genome and 62 

also techniques of whole-genome comparison such as the Average Nucleotide Identity (ANI) 63 

and dDDH (digital DNA–DNA hybridization) that have been shown to yield data similar to 64 

those of traditional DNA–DNA hybridization method [11, 12, 13]. 65 

For comparison, Alteromonas australica H17T = CIP 109921T [14] and Alteromonas 66 

mediterranea DET = CIP 110805T [15] were purchased from the Collection de l’Institut Pasteur 67 

(CIP; France) and used as reference strains; they were grown and studied in parallel with strain 68 

1T in all phenotypic tests and in quinone, fatty acid and polar lipid analyses. The three strains 69 

were routinely cultivated on ZoBell medium 2216E [16], either liquid or solidified with 1.5 % 70 

(w/v) agar. Pure cultures were stored at -80 °C in the culture medium containing 20 % (v/v) 71 

glycerol. All experiments were performed in triplicate. Growth was evaluated in ZoBell broth 72 

at 4, 9, 11, 12, 13, 15, 17, 18, 20, 22, 24, 30, 37, 40, 42, 45 and 48 °C. The optimal pH value 73 
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for growth was determined at 20 °C in ZoBell broth which pH values had been adjusted by 74 

using 50 mM of the following buffers: MES for pH 5.5; Bis Tris for pH 6.0, 6.5, 7.0 and 7.5; 75 

Tris for pH 8.0, 8.5 and 9.0; CHES for pH 9.5 and CAPS for pH 10.0, 10.5 and 11.0. The effect 76 

of NaCl on growth was determined at 20 °C and at pH 8 in ZoBell broth prepared with distilled 77 

water containing 0, 0.5, 1.0, 2.0, 3.0, 6.0, 8.0, 10, 12, 15, 20, 25 and 30 % NaCl. To test the 78 

influence of other salts on growth, the same NaCl range was used in ZoBell broth prepared with 79 

artificial seawater without NaCl but containing 6.3 g MgSO4 l-1, 4.2 g MgCl2 l-1, and 0.7 g KCl 80 

l-1. 81 

Cell morphology and motility were investigated on wet mounts of an exponential phase ZoBell 82 

broth culture at 20 °C, by using phase-contrast microscopy Olympus BX60 (Olympus, Tokyo, 83 

Japan). The presence of flagella was determined using transmission electron microscopy. For 84 

negative staining, samples were sedimented onto formvar grids for 10 minutes. They were 85 

stained 2 minutes in uranyl acetate 2 % and washed in distilled water. Grids were dried and 86 

examined using a JEOL JEM61400 transmission electron microscopy (Jeol, Tokyo, Japan). The 87 

Gram Stain Set S kit (BD Difco) and the Ryu non-staining KOH method [17] were used for 88 

testing the Gram reaction. 89 

Oxidase activity was assayed using small pieces of 3MM paper (Whatman) soaked of the 90 

reagent N,N,N’,N’-tetramethyl-p-phenylenediamine dihydrochloride (BioMérieux). Catalase 91 

activity was assayed by mixing one colony from a ZoBell agar plate with a drop of hydrogen 92 

peroxide (3 %, v/v). Amylase activity was assayed on 0.2 % (w/v) soluble starch ZoBell agar 93 

plates. DNase activity was detected on DNA agar (Difco) prepared with seawater. Amylase and 94 

DNase activities were revealed by flooding the plates with Lugol’s solution or 1 M HCl, 95 

respectively. Tween compounds (1 %, v/v) was assayed in ZoBell agar according to Smibert & 96 

Krieg [18]. Alginate lyase, agarase, k-carrageenase and i-carrageenase activities were tested by 97 

inoculating ZoBell media solidified with (per litre): 50 g sodium alginate (Sigma-Aldrich, ref. 98 



 5 

180947), 15 g agar (Sigma-Aldrich, ref. A7002), 10 g k-carrageenan (X-6913; Danisco) or 20 99 

g i-carrageenan (X-6905; Danisco) respectively. Strains were considered positive when 100 

colonies liquefied or produced craters in the solidified substrate. Additional phenotypic 101 

characterizations were performed using API 20 E, API 20 NE, API 50CH and API ZYM strips 102 

according to the manufacturer instructions (bioMérieux) except that API AUX medium and 103 

API 50 CHB/E medium were adjusted to 2.5 % NaCl. All strips were inoculated with cell 104 

suspensions in artificial seawater and incubated at 25 °C for 48 h. The ability to use 105 

carbohydrates as sole carbon and energy sources was also tested in marine minimal medium 106 

[19] supplemented with 250 mg casaminoacid l-1 and containing 5 g l-1 of the following sugars 107 

(all from Sigma-Aldrich unless otherwise stated): D-glucose, D-galactose, D-fructose, L-108 

rhamnose, L-fucose, D-xylose, sucrose, lactose, maltose, melibiose, mannitol, glycerol, starch 109 

(Fluka), amylopectin (Merck), pullulan, arabinan, dextran, sulfate dextran, xylan, xanthan, 110 

pectin (apple), agar, agarose (Eurogentec), laminarin (Goëmar), alginic acid, n-carrageenan 111 

(Danisco), i-carrageenan, µ-carrageenan (Goëmar), k-carrageenan, l-carrageenan (Danisco), 112 

sulphated fucoidan (extracted from Pelvetia canaliculata) and ulvan (kindly provided by Pr. 113 

Bruno Moerschbacher, University of Münster, Germany).  114 

Sensitivity to antibiotics was tested by the disc-diffusion method on ZoBell agar plates and 115 

using antibiotic discs (Bio-Rad) containing (µg per disc, unless otherwise stated): ampicillin 116 

(10), penicillin G (10 IU), gentamicin (10), kanamycin (30), streptomycin (10) neomycin (30 117 

IU), tetracycline (30), erythromicin (15), rifampicin (5), chloramphenicol (30) and nalidixic 118 

acid (30). The effects of the antibiotics on cell growth were assessed after 3 days incubation at 119 

20 °C, and susceptibility was scored on the basis of the distance from the edge of the clear zone 120 

to the disc. 121 
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Analysis of respiratory quinones [20, 21], fatty acids [22, 23] and polar lipids [24; 25] of strain 122 

1T, A. australica H17T and A. mediterranea DET were carried out by the Identification Service 123 

and Dr. Brian Tindall, DSMZ, Braunschweig, Germany.  124 

Genomic DNA from strain 1T was extracted as described by Barbeyron et al. [26] and purified 125 

on a caesium chloride gradient. The genome of strain 1T was sequenced using Illumina 126 

(GAIIx, 2 x 74 paired-end reads with 300 bp insert size) reads. The 22,629,503 sequence 127 

reads were assembled in 37 contigs (>1 kb, coverage > 70X) using Velvet [27]. Contigs were 128 

ordered using an optical map (Argus system, OpGene, Maryland, USA) and the SpeI 129 

restriction enzyme [28], and most of the gaps were filled using PCR and Sanger sequencing. 130 

The Velvet contigs and the Sanger reads were assembled using the whole-genome shotgun 131 

assembler Phrap and the assembly was visualized with the interface Consed [29]. The final 132 

assembly consists of 1 scaffold (7 ordered contigs) validated using the optical map. The 16S 133 

rRNA gene sequence was amplified by PCR using pure genomic DNA as template and the 134 

couple of primers specific for Bacteria, 8F [30] and 1492R [31]. PCR reactions were typically 135 

carried out in a volume of 25 µl containing 10-100 ng template, 0.4 µM each specific primer, 136 

250 µM each dNTPs, 0.1 mg BSA, 1X GoTaq buffer (Promega) and 1.25 U GoTaq DNA 137 

polymerase (Promega). The different polymerization steps were as previously described [32]. 138 

PCR products were purified using the Exostar kit according to the manufacturer’s protocol 139 

(GE Healthcare) and sequenced by using BigDye Terminator V3.1 (Applied Biosystems), and 140 

an ABI PRISM 3130xl Genetic Analyzer automated sequencer (Applied Biosystems/Hitachi). 141 

Chargaff’s coefficient of the genomic DNA, expressed as the molar percentage of guanine + 142 

cytosine, of strain 1T were deduced from the complete genome sequence. The nucleotide 143 

sequence of 16S rRNA gene deduced from the complete genome sequence of the strain 1T and 144 

sequence of 16S rRNA genes from all valid species of the genus Alteromonas were aligned 145 

using the software MAFFT version 7 with the L-INS-I strategy [33] and the alignment was 146 
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then manually refined. Phylogenetic analysis using the neighbour-joining [34], maximum-147 

parsimony [35] and maximum-likelihood [36] methods were applied, as implemented in the 148 

MEGA 5.1 package [37]. The different phylogenetic trees were built from a multiple 149 

alignment of 55 sequences and 1444 positions. For the neighbour-joining algorithm, the 150 

evolutionary model Kimura Two Parameters [38] was used. The maximum-likelihood tree 151 

was calculated using the evolutionary model GTR (Generalised Time Reversible) [39] with a 152 

discrete Gamma distribution to model evolutionary rate difference among sites (4 categories). 153 

This substitution model was selected among other models submitting the alignment to the 154 

online server IQ-TREE (http://iqtree.cibiv.univie.ac.at/). The maximum-parsimony tree was 155 

obtained using the Subtree-Pruning-Regrafting algorithm [39]. Bootstrap analysis was 156 

performed to provide confidence estimates for the phylogenetic tree topologies [40]. Pairwise 157 

comparisons of 16S rRNA gene sequences were made by using the database EzBioCloud 158 

(https://www.ezbiocloud.net/identify) [41] and the FASTA software [42]. Genomic 159 

relatedness was investigated by comparing the strain 1T genome sequence with those of the 160 

type strains of other Alteromonas species using the Average Nucleotide Identity (ANI; 161 

http://jspecies.ribohost.com/jspeciesws/#analyse) [11, 12, 13] and the dDDH via the online 162 

server Genome to Genome Distance Calculator 2.1 (GGDC; 163 

http://ggdc.dsmz.de/distcalc2.php) [43]. The results from GGDC analysis were obtained from 164 

the alignment method Blast+ and the formula 2 (sum of all identities found in HSPs / by 165 

overall HSP length) for incomplete genome sequences [44, 45]. Exploration of carbohydrate 166 

active enzyme-coding genes in the genomes of the strains 1T, A. australica H17T and A. 167 

mediterranea DET was carried out via the online server Microscope from the French National 168 

Sequencing Center (http://www.genoscope.cns.fr/agc/microscope/mage) and the database 169 

CAZy (www.cazy.org) [46]. 170 



 8 

The best pairwise comparison scores with 16S rRNA gene from the strain 1T (1521 bp) were 171 

obtained with Alteromonas mediterranea DET (99.2 %) and A. australica H17T (98.8 %; Table 172 

S1, available in the online version of this article). Phylogenetic analyses of 16S rRNA genes 173 

from species of the family Alteromonadaceae showed that strain 1T was only distantly related 174 

to Alteromonas species and that A. australica H17T and A. mediterranea DET formed a clade 175 

with strain 1T (Figs 1 and S1). The 16S rRNA gene sequence similarities between the strain 1T 176 

and other Alteromonas species were in the range of 95.2 % with A. pelagimontana 5.12T [47] 177 

and 98.6 % with A. hispanica F-32T [48] (Table S1). The complete genome of strain 1T was 178 

sequenced to evaluate its potentiality for degradation. The genome was composed of 4,664,520 179 

nucleotides. The ANI and GGDC values for strain 1T when compared with other Alteromonas 180 

species were less than 83 % and less than 30 % respectively (82.9 % and 27.2 % with A. 181 

macleodii 107T; Table S2). As the normally accepted thresholds of species delineation for ANI 182 

and GGDC are 95 % and 70%, respectively [11, 13, 49, 50], these values suggest that strain 1T 183 

represents a new species of the genus Alteromonas. In addition, a pairwise genome comparison 184 

with other Alteromonas species showed that A. stellipolaris ANT 69aT [51] and A. addita 185 

R10SW13T [52] may represent the same species since ANI and GGDC (formula 2) values 186 

between them were 98.7 and 90.1 %, respectively (Table S2). 187 

Cells of strain 1T were Gram-stain-negative, irregular-shaped short rods or coccoids (Fig S2). 188 

In contrast with Alteromonas australica H17T and A. mediterranea DET which showed an active 189 

motility with one polar flagellum (Fig. S2), strain 1T was non-motile and devoid of flagella 190 

(Fig. S2). The absence of flagella and of motility was already reported for A. confluentis 191 

DSSK2-12T [53]. So far, strain 1T and A. confluentis DSSK2-12T are the only two Alteromonas 192 

species that share this characteristic. 193 

Growth was observed with many carbohydrates and a few sugars allowed to differentiate strain 194 

1T from A. australica H17T and A. mediterranea DET. However, some polysaccharides from 195 
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marine environments, such as i-carrageenan were exclusively hydrolysed by strain 1T (Table 1, 196 

and Fig. S3). This observation was consistent with the absence of any gene encoding a family 197 

82 of glycoside hydrolases (GH82) having i-carrageenase activity in the genomes of A. 198 

australica H17T and A. mediterranea DET, whereas the genome of the strain 1T contains three 199 

GH82-encoding genes. Moreover, some marine polysaccharides could be used as sole carbon 200 

source by strain 1T, such as  n-, i-, and l-carrageenans (Table 1) while µ- and k-carrageenans 201 

were not used. None of the three strains studied hydrolyzed k-carrageenan. Alginic acid was 202 

liquefied by the strain 1T and by A. australica H17T but not by A. mediterranea DET (Table 1 203 

and Fig. S3). This result is consistent with the observations that the genomes of strain 1T and 204 

A. australica H17T possess 7 and 6 genes encoding for alginate lyases respectively, whereas 205 

that of A. mediterranea DET has only 3 genes. Finally, more common polysaccharides such as 206 

xylan, pectin, lichenin and glycogen were only used by strain 1T (Table 1). Although the three 207 

strains were able to use starch as sole carbon and energy sources, only strain 1T showed a 208 

hydrolysis area on soluble starch ZoBell agar plates (Fig. S3). The absence of secreted amylase 209 

from A. mediterranea DET was already reported [15]. In contrast, we were not able to confirm 210 

the presence of an amylase previously reported from A. australica H17T [14]. Analysis of the 211 

genomes of A. australica H17T and A. mediterranea DET revealed that among the genes 212 

encoding for GH13 enzymes involved in the hydrolysis of a-1,4 glucans, no a-amylase-213 

encoding gene was present, whereas strain 1T genome contains a gene encoding for a secreted 214 

a-amylase. The utilisation of starch as sole carbon source by A. australica H17T and A. 215 

mediterranea DET could be due to the presence of a pullulanase-encoding gene present in their 216 

genome and whose enzyme product is predicted as an outer-membrane-linked lipoprotein. 217 

The other physiological growth features of strain 1T compared with A. australica H17T and A. 218 

mediterranea DET are listed in Table 1. The three strains shared the same antibiotics sensitivity 219 

profile. The major fatty acids (>10 % of the total fatty acids) of strain 1T were summed feature 220 



 10 

3 (21.3 %; C16:1w7c and/or iso-C15:0 2OH), C16:0 (15.2 %) and C18:1w7c (14.5 %) (Table 2). The 221 

fatty acid profile of strain 1T was similar to those of A. australica H17T and A. mediterranea 222 

DET (Table 2) and conform to previous results [54]; however, strain 1T showed some 223 

differences in its fatty acid composition. The presence of significant amounts of 10 methyl C17:0 224 

(8.6 %) and of the fatty alcohols C16:0 N alcohol (6.7 %) and C16:1 ω7c alcohol (3.3 %) appears 225 

to be specific to the strain 1T since A. australica H17T and A. mediterranea DET, contain only 226 

1 % or less of these components (Table 2). The respiratory quinone of strain 1T was ubiquinone-227 

8 (Q-8) in line with A. australica H17T and A. mediterranea DET; the latter strains also contain 228 

1 % of Q-7. The major polar lipids of strain 1T were phosphatidylethanolamine, 229 

phosphatidylglycerol and an unknown aminolipid (Fig. S4), in line with A. australica H17T and 230 

A. mediterranea DET and with previously published results for the genus Alteromonas [14; 54]. 231 

In conclusion, phenotypic characterizations and phylogenetic analysis using 16S rRNA gene 232 

sequences together with whole-genome pairwise comparisons show that strain 1T represents a 233 

novel species in the genus Alteromonas, for which the name Alteromonas fortis sp. nov. is 234 

proposed. 235 

EMENDED DESCRIPTION OF THE GENUS ALTEROMONAS BAUMANN ET AL. 236 

1972 (APPROVED LISTS 1980) EMEND. GAUTHIER ET AL. 1995, VAN TRAPPEN 237 

ET AL. (2004) 238 

The description of the genus is as given by Gauthier et al. [55] and by Van Trappen et al. [51] 239 

with the following additional morphological feature. Motile by means of a single unsheathed 240 

polar flagellum or non-motile and non-flagellated. 241 

DESCRIPTION OF ALTEROMONAS FORTIS SP. NOV. 242 

Alteromonas fortis (for′tis. L. masc. adj. fortis, strong). 243 
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Cells are Gram-reaction-negative, aerobic, chemoorganotrophic, heterotrophic, non-motile and 244 

ovoid or rod-shaped, approximately 0.8–1.4 µm in diameter and 0.8-2.5 µm in length; a few 245 

cells greater than 4 µm in length may occur. Flagella are absent. Prosthecae and buds are not 246 

produced. Colonies on ZoBell agar are cream-coloured, convex, circular and mucoid in 247 

consistency and 2.0–3.0 mm in diameter after incubation for 24 hours at 30 °C. Growth in 248 

ZoBell broth occurs at 10 and 42 °C (optimum, 25 °C), at pH 5.5 to 10 (optimum pH 6.0-9.0) 249 

and in the presence of 2 to 12 % NaCl (optimum, 2-4 %) In the presence of Mg and KCl, the 250 

growth also occurs with 0 and 1 % NaCl. Nitrate is not reduced. Oxidase- and catalase-positive. 251 

DNA, aesculin, gelatin, starch, i-carrageenan, alginic acid and Tween 20, 40, 60 and 80 are 252 

hydrolysed, but agar and k-carrageenan are not. D-glucose, D-galactose, D-fructose, D-ribose, 253 

sucrose, D-turanose, D-maltose, D-lactose, melibiose, cellobiose, raffinose, glycerol, D-254 

mannitol, methyl-a-D-glucoside, laminarin, starch, amylopectin, pullulan, glycogen, galactan 255 

(gum arabic), pectin (apple), xanthan, n-carrageenan, i-carrageenan, arbutin and salicin are 256 

utilized as carbon and energy sources, but L-rhamnose, L-sorbose, D-arabinose, L-arabinose, 257 

D-xylose, L-xylose, D-fucose, L-fucose, D-lyxose, D-tagatose, melezitose, erythritol, D-258 

arabitol, L-arabitol, dulcitol, inositol, D-sorbitol, xylitol, adonitol, methyl-a-D-mannoside, 259 

methyl-b-D-xyloside, N-acetyl-glucosamine, inulin, dextran, arabinan, agar, agarose, µ-260 

carrageenan, k-carrageenan, ulvan, sulfated fucoidan and gluconate are not. Acid is produced 261 

from D-glucose (weakly), D-galactose, D-fructose, D-maltose, D-lactose, melibiose, sucrose, 262 

D-mannitol, methyl-a-D-glucoside, salicin, D-cellobiose, starch, glycogen, but not from D-263 

mannose, L-sorbose, L-rhamnose, D-arabinose, L-arabinose, D-ribose, D-xylose, L-xylose, D-264 

lyxose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, glycerol, erythritol, dulcitol, 265 

inositol, sorbitol, adonitol, xylitol, methyl-a-D-mannoside, methyl-b-D-xyloside, N-acetyl-266 

glucosamine, D-turanose, melezitose, raffinose and inulin. Negative for indole and H2S 267 

production and for arginine dihydrolase, tryptophan deaminase, urease, lysine decarboxylase, 268 
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ornithine decarboxylase activities. In the API ZYM system, activity from acid phosphatase, 269 

alkaline phosphatase, esterase lipase (C8), leucine arylamidase, valine arylamidase, cystine 270 

arylamidase, trypsin, a-chymotrypsin, naphthol-AS-BI- phosphohydrolase, a-galactosidase, b-271 

galactosidase, a-glucosidase, and b-glucosidase activities are present. but activity from a-272 

mannosidase, a-fucosidase, b-glucuronidase, and N-acetyl-b-glucosaminidase activities are 273 

absent. Resistant to (mg per disc) gentamycin (10), kanamycin (30), penicillin (6), ampicillin 274 

(10) and tetracycline (30). The only ubiquinone detected is Q-8. The major fatty acids (>10 % 275 

of the total fatty acids) are summed feature 3 (C16:1w7c and/or iso-C15:0 2OH), C16:0 and 276 

C18:1w7c. Significant amounts of 10 methyl C17:0, C16:0 N alcohol and C16:1 ω7c alcohol are also 277 

present. The major polar lipids are phosphatidylethanolamine, phosphatidylglycerol and an 278 

unknown aminolipid. The DNA G+C content of the type strain 1T is 43.9 mol%. 279 

The type strain is 1T (=ATCC 43554T), isolated in the late seventies from decomposing marine 280 

red algae Eucheuma spinosum J. Agardh 1847 in Hawaii, USA. 281 
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Table 1. Phenotypic characteristics of strain 1T and of two Alteromonas species used as 
reference strains 
1, Strain 1T (Alteromonas fortis sp. nov.); 2, Alteromonas australica H17T; 3, Alteromonas 
mediterranea DET. The three strains share the following characteristics: Gram-negative, 
aerobic, heterotroph, chemorganotroph with respiratory metabolism; do not form endospores, 
do not accumulate poly-b-hydroxybutyrate as an intracellular reserve product; require Na+ ion 
or seawater for growth. All strains are positive for the utilization of D-glucose (A. fortis 1T 
weakly positive), D-galactose, D-fructose, sucrose, maltose, lactose, melibiose, cellobiose, 
starch, pullulan, laminarin, glycerol, mannitol, and aesculine; for the hydrolysis of Tweens 20, 
40, 60 and 80; and for DNase, gelatinase, alkaline and acid phosphatases, lipase esterase (C8), 
leucine, valine and cystine arylamidases, trypsin, a-glucosidases, b-galactosidases, oxidase and 
catalase activities All strains are negative for the utilization of L-rhamnose, L-sorbose, D- and 
L-arabinose, D- and L-xylose, D- and L-fucose, erythritol, lyxose, tagatose, arabitol, dulcitol, 
inositol, D-sorbitol, xylitol, adonitol and gluconate; for the hydrolysis of melezitose, inulin, 
arabinan, dextran, sulfate dextran, agar, agarose and µ-and k-carrageenan; for a-mannosidase, 
a-fucosidase, arginine dihydrolase, lysine and ornithine decarboxylases, tryptophan deaminase, 
urease, b-glucuronidase, and N-acetyl-b-glucosaminidase activities; and for indole reaction and 
H2S production.  +, Positive; -, negative; W, weakly positive. 
  

Characteristic 1 2 3 
Growth     
 Temp optimum, (°C) 25 NA NA 
 Temp range, (°C) 10-42 4-37* 4-40† 
 pH optimum 6-9 7.5-8* 7.5-8† 
 pH range 5.5-10 6-10* 6-11† 
 NaCl, range (%) 2-12 1-10* 1-15† 
Flagellar motility - + + 
Nitrate reduction - + + 
Hydrolysis of    
 Alginic acid + + - 
 i-Carrageenan + - - 
Utilization of     
 D-Mannose + + - 
 Glycogene + - - 
 Lichenin + - - 
 Alginic acid + + - 
 Pectin + - - 
 Xylan + - - 
 n-Carrageenan + - - 
 i-Carrageenan + - - 
 l-Carrageenan + - - 
Enzymes (API ZYM)    
 Lipase (C14) - + + 
 α-Chymotrypsin + w w 
 α-Galactosidase + w + 
Production of diffusible 
amylase + - - 

DNA G+C mol % 43.9 43* 44.9† 
*Data from Ivanova et al. [14] 
†Data from Ivanova et al. [15] 
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Table 2. Cellular fatty acid composition of strain 1T and the type strains of two reference 

strains. 

Strains: 1, 1T (Alteromonas fortis sp. nov.); 2, A. australica H17T; 3, A. mediterranea DET. Data 

are percentages of the total fatty acids. Fatty acids that represented <1.0 % in the three strains 

were omitted. Fatty acids that represented >10.0 % are indicated in bold. -, Fatty acids not 

detected or below 1 %. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Summed feature 2 contained C14:0 3OH and/or iso-C16:1 I; summed feature 3 contained 

C16:1w7c and/or iso-C15:0 2OH

Fatty acid 1 2 3 

Straight-chain    

C12:0 1.7 1.9 1.9 
C14:0 1.8 1.6 1.6 

C15:0 2.2 2.8 2.7 
C16:0 15.2 15.8 15.7 
C16:0 N alcohol 6.7 - - 
C17:0 3.3 5.5 5.5 

C18:0 - 1.0 1.2 
Branched chain    

iso-C16:0 1.0 - - 
anteiso-C17:0 1.0 - - 

10 methyl C17:0 8.6 1.1 1.1 
Unsaturated    

C15:1 ω8c 1.7 1.6 1.5 
C16:1 ω7c alcohol 3.3 - - 

C17:1 ω8c 7.5 12.7 12.5 
C18:1 ω7c 14.5 18.6 18.7 
Hydroxy    
C10:0 3-OH 1.1 1.0 1.1 

C11:0 3-OH 1.0 1.3 1.3 
Summed features*    

2 2.7 2.8 2.9 
3 21.3 21.9 21.7 
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Fig. 1. Neighbour-joining tree based on 16S rRNA gene sequences, showing the phylogenetic 

relationships between strain 1T and related taxa from the family Alteromonadaceae. Numbers 

at the nodes refer to the bootstrap values (1000 replicates) in neighbour-joining, maximum-

likelihood and maximum-parsimony analyses respectively, while dashes instead of numbers 

indicate that the node was not observed in the corresponding analysis. For nodes conserved in 

at least two trees, all bootstrap values are shown. Nodes without bootstrap value are not 

conserved in other trees and < 70 %. The T letter in superscript after the species epithet 

indicate the type species of the genus. Pseudoalteromonas haloplanktis 215T was used as an 

outgroup. Bar, 0.02 changes per nucleotide position. 
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Supplementary Table S1 
Pairwise nucleotide comparisons (in percentage of similarity sequence) between Alteromonas species 16S rRNA gene sequences. 
 

  1                      
Alteromonas fortis 1T 1 100 2                     

A. australica H17T 2 98.8 100 3                    

A. mediterranea DET 3 99.2 98.8 100 4                   

A. abrolhosensis PEL67ET 4 98.5 99.0 98.1 100 5                  

A. addita R10SW13T 5 97.4 97.7 97.8 98.1 100 6                 

A. aestuariivivens JDTF-113T 6 97.6 96.9 97.7 96.9 96.7 100 7                
A. confluentis DSSK2-12T 7 97.7 96.6 97.7 96.9 96.6 97.5 100 8               

A. genovensis 4EP3T 8 98.5 97.2 98.0 97.2 97.2 97.2 97.2 100 9              

A. gracilis 9a2T 9 98.1 98.7 98.3 99.4 98.0 96.9 97.1 97.4 100 10             

A. halophila JSM 073008T 10 96.8 95.5 96.2 95.4 95.5 96.2 96.2 96.7 95.5 100 11            

A. hispanica F-32T 11 98.6 97.6 98.3 97.5 97.6 97.3 97.4 99.1 97.6 97.0 100 12           

A. indica IO390401T 12 96.1 97.0 96.5 96.7 97.4 95.8 95.4 96.2 97.1 94.8 96.5 100 13          
A. lipolytica JW12T 13 98.0 97.0 97.8 97.1 96.5 98.5 98.4 97.2 97.3 96.0 97.2 95.5 100 14         

A. litorea TF-22T 14 98.3 97.7 98.7 98.3 97.5 97.7 98.1 98.1 98.5 96.4 98.1 96.8 97.8 100 15        

A. macleodii 107T 15 98.1 98.7 97.9 99.8 98.2 96.9 97.0 97.2 99.4 95.4 97.4 96.8 97.2 98.2 100 16       

A. marina SW-47T 16 98.3 98.5 98.3 99.6 97.9 97.1 97.4 97.5 99.1 95.7 97.7 96.5 97.4 98.6 99.2 100 17      

A. naphthalenivorans SN2T 17 97.5 97.9 97.5 98.4 99.4 96.4 96.3 97.4 98.1 95.3 97.7 97.2 96.3 97.4 98.2 98.1 100 18     

A. oceani S35T 18 97.4 97.0 97.8 96.7 96.6 98.1 97.2 96.5 96.9 95.3 96.9 95.7 98.6 97.3 96.8 96.9 96.3 100 19    
A. pelagimontana 5.12T 19 95.2 94.3 95.0 94.3 94.4 95.7 95.1 94.8 94.7 94.4 95.2 95.4 95.6 95.0 94.0 94.3 94.1 96.5 100 20   

A. simiduii AS1T 20 97.1 97.0 96.7 98.0 96.6 95.3 95.9 96.2 97.6 94.6 96.3 94.9 96.1 97.0 98.1 98.2 96.9 96.1 93.8 100 21  

A. stellipolaris ANT 69aT 21 97.5 97.8 97.8 98.3 99.7 96.6 96.7 97.2 98.0 95.5 97.7 97.3 96.7 97.7 98.1 98.1 99.7 96.6 94.4 98.4 100 22 
A. tagae AT1T 22 96.9 96.6 97.0 97.7 96.5 96.1 96.3 96.3 97.2 94.7 96.4 94.0 96.1 97.5 97.2 98.0 96.8 94.6 93.6 97.8 96.8 100 
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Supplementary Table S2 

Whole genome relatedness analysis (in percentage) of strain 1T and Alteromonas species which whole genome sequences are available. 

Average nucleotide identities (ANI) are shown below the diagonal and genome-to-genome distance calculations (GGDC) are shown below the 

diagonal. GGDC values were calculated online (http://ggdc.dsmz.de/distcalc2.php) and the results from formula 2 were used. ANI values were 

calculated with an online program (http://jspecies.ribohost.com/jspeciesws/#analyse). The GenBank accession numbers for the whole genome 

sequences are given in the top row. 

 
        GGDC       

  
Alteromonas 

fortis 
1T 

A. 
australica  

H17T 

A. 
mediterranea  

DET 

A. 
abrolhosensis 

PEL67ET 

A.  
addita 

R10SW13T 

A. 
aestuariivivens 

JDTF-113T 

A.  
confluentis 
DSSK2-12T 

A.  
gracilis  

9a2T 

A.  
lipolytica 

JW12T 

A. 
macleodii 

107T 

A. 
naphthalenivorans 

SN2T 

A. 
pelagimontana 

5.12T 

A. 
stellipolaris 

ANT 69aT 

 Accession number ERS2860007 CP008849 CP001103 MEJH01000002 CP014322 QRHA00000000 MDHN01000001 PVNO00000000 MJIC01000001 CP003841 CP002339 NGFM01000001 CP013926 

 Alteromonas fortis 1T  22.10 24.60 26.10 21.30 20.30 20.80 23.90 21.70 27.20 21.30 19.80 21.50 

 A. australica H17T 73.88  23.50 21.90 20.30 19.80 19.20 21.60 21.70 22.00 20.50 18.20 20.50 

 A. mediterranea DET 80.91 74.65  24.30 21.30 20.60 21.80 23.60 23.30 24.30 22.20 22.30 21.20 

 A. abrolhosensis PEL67ET 82.18 73.87 80.31  20.80 20.40 21.10 24.40 21.60 36.30 21.20 19.50 20.80 

 A. addita R10SW13T 73.44 73.31 73.47 73.49  20.90 21.30 21.20 22.40 21.00 39.30 19.40 90.10 

AN
I A. aestuariivivens JDTF-113T 69.92 69.55 70.0 69.78 69.52  19.50 21.40 20.20 20.80 20.70 18.90 20.90 

A. confluentis DSSK2-12T 69.99 69.46 70.40 69.93 69.72 70.49  21.20 21.30 21.80 20.90 18.60 21.40 

 A. gracilis 9a2T 80.26 73.69 80.00 80.52 73.35 70.09 69.96  24.00 24.80 21.20 20.30 21.20 

 A. lipolytica JW12T 69.61 69.12 69.60 69.50 69.19 69.95 69.90 69.40  22.50 24.30 20.00 23.00 

 A. macleodii 107T 82.93 73.64 80.41 88.40 73.38 69.90 69.92 80.71 69.47  21.20 19.90 21.10 

 A. naphthalenivorans SN2T 73.59 73.59 73.92 73.59 89.62 69.59 69.68 73.25 69.13 73.48  21.00 39.20 

 A. pelagimontana 5.12T 69.92 69.51 70.44 69.72 69.81 70.49 70.05 69.81 69.22 69.72 70.17  19.30 

 A. stellipolaris ANT 69aT 73.59 73.54 73.52 73.56 98.74 69.68 69.73 73.26 69.21 73.48 89.64 69.75  

The pecentages in bold indicate the values above the thresholds of species boundary (95 % for ANI and 70 % for GGDC). 
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Supplementary Fig. S1 
Maximum-likelihood (ML) tree based on 16S rRNA gene sequences, showing the 

phylogenetic relationships between strain 1T and related taxa from the family 

Alteromonadaceae. Numbers at nodes are bootstrap values shown as percentages of 1000 

replicates; only values >70 % are shown. Filled circles indicate that the corresponding nodes 

were also recovered in the trees generated with the neighbour-joining (NJ) and maximum-

parsimony algorithms, while open circles indicate that the nodes were only recovered in the 

tree generated with the NJ and ML algorithms. The T letter in superscript after the species 

epithet indicate the type species of the genus. Pseudoalteromonas haloplanktis 215T was used 

as an outgroup. Bar, 0.02 changes per nucleotide position. 
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Supplementary Fig. S2 

Transmission electron micrographs of negatively stained cells of strain 1T (Alteromonas fortis sp. nov.), Alteromonas australica H17T and A. 

mediterranea DET. Cells of A. fortis 1T are devoid of flagella whereas cells of A. australica H17T and A. mediterranea DET display one or two 

polar flagella.
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Supplementary Fig. S3  

Hydrolytic activities on polysaccharides by 1, strain 1T (Alteromonas fortis sp. nov.); 2, A. australica H17T; and 3, A. mediterranea DET. 

(a), Lugol-flooded ZoBell agar plates containing 0.2 % soluble starch showing the presence of a halo of starch hydrolysis around the culture of 

strain 1T. No hydrolysis is visible around the cultures of A. australica H17T and A. mediterranea DET.  

(b), ZoBell alginate plates showing the degradation and liquefaction of the alginate gel by strain 1T and A. australica H17T, in contrast with A. 

mediterranea DET. 

Bacterial growth on (c), ZoBell agar; (d), ZoBell k-carrageenin; (e), ZoBell i-carrageenin showing the absence of degradation of agar and k-

carrageenan by the three strains and hydrolysis of i-carrageenan by strain 1T only.
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Supplementary Fig. S4  

Two-dimensional thin layer chromatography of the polar lipids of strain 1T (Alteromonas fortis sp. nov.), Alteromonas australica H17T and A. 

mediterranea DET. L, unidentified lipid; AL, aminolipid; GL, glycolipid; PG, phophatidylglycerol; PE, phosphatidylethanolamine, PNL, 

phosphoaminolipid.
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