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GENERAL RESEARCH

Measurements and Modeling of Wetting Efficiency in Trickle-Bed Reactors:

Liquid Viscosity and Bed Packing Effects

Carine Julcour-Lebigue,*,† Frédéric Augier,‡ Harold Maffre,† Anne-Marie Wilhelm,† and
Henri Delmas†

UniVersité de Toulouse, Laboratoire de Génie Chimique, UMR CNRS 5503, 5 rue P. Talabot,

BP 1301, 31106 Toulouse, France, and IFP-Lyon, BP3, 69390 Vernaison, France

An experimental parametric study on wetting efficiency is reported which evaluates the influence of liquid
viscosity, as well as the effect of particle size(/shape) and bed porosity (εB), separately. A 10-fold increase
of liquid viscosity improves slightly catalyst wetting (by about 10%), while an increase of either bed porosity
or particle size has the opposite effect. Wetting efficiency is reduced by about 0.1 for an increase of εB from
0.38 and 0.40 due to a change of particle size from 1.8 to 7 × 10-3 m while the decrease is only 0.05 for a
similar variation of εB (0.38-0.41) with the same particles. The effect of particle shape (cylindrical/trilobe
extrudates or spheres) appears very small in the investigated conditions. A new correlation for wetting efficiency
is proposed, using a bounded function and only three dimensionless groups (liquid Froude and Morton numbers
and bed porosity). This correlation is able to predict wetting efficiency with a very good precision on a large
database, provided wetting liquids are used. Adding fines in the fixed bed is also examined, and its positive
effect can be correlated with the size ratio between catalyst particles and fines.

1. Introduction

1.1. Industrial Context. The issue of partial wetting inside

trickle bed reactors (TBRs) has been addressed for several

decades, but it is still a subject of investigation due to the

complexity of the phenomenon and its growing importance in

oil industry. When superficial liquid velocities are below a

critical value (usually about 0.01 m/s), the probability to wet

only a fraction of the catalyst surface is high, resulting in some

cases in a lower reaction efficiency. This is particularly true

when the chemical reactions are limited by the diffusion of the

liquid reactant (e.g., hydrodesulfurization), because partial

wetting can affect liquid/solid mass transfer and apparent

diffusivity inside catalyst particles.

Lab-scale reactors generally operate at a very low superficial

liquid velocity in order to keep the same liquid hourly space

velocity as in commercial plants. Reliable measuring techniques

and prediction tools are thus needed by chemical engineers,

either to avoid partial wetting of the catalyst or to be able to

account for it when scaling up or down industrial processes.

1.2. Measuring Techniques. Partial wetting in trickle bed

reactors has been experimentally investigated by five main

techniques: the dynamic tracer technique,1-4 chemical reaction

method,5,6 and, more recently, the hydrodynamic technique,7,8

magnetic resonance imaging (MRI),9 and dye adsorption

technique.10-12

Except the last two ones, all of those approaches are overall

and indirect and require a model of the reactor involving

hydrodynamic, transfer, and/or kinetic parameters. The choice

of some well-known reactive systems limits also the parametric

range of the chemical method. The MRI method appears to be

a very promising tool to get features and quantitative analysis

of the gas-liquid flow, as well as a mapping of chemical

conversion for reactive systems,13-15 but it requires both

complex equipment and a delicate treatment.

Recently Baussaron et al.12 have compared three measuring

techniques of wetting efficiency. The original hydrodynamic

technique based on simple pressure drop measurements has been

found unable to predict wetting efficiency with convenient

accuracy in a wide range of operating conditions. The other

ones, based on analysis of residence time distribution (RTD)

and on dye adsorption on wetted surfaces, have given similar

results. However the tracer technique is more delicate to operate

as it requires a pretreatment of experimental signals as well as

a precise knowledge of axial dispersion and effective diffusivity

from separate experiments. Moreover, RTD signals acquired at

low liquid flow rates often show long tails, and the fitting of

the reactor model, necessary to calculate the wetting efficiency,

is less accurate.

1.3. Existing Correlations. Several correlations have been

proposed in the past to calculate the global wetting efficiency

in TBR,3,4,16-20 but they give very dispersed results over the

same range of operating conditions. Those discrepancies can

be explained by the various measuring techniques, whose

precision was not fully examined, and also by the operating

conditions, especially the bed prewetting procedure as pointed

out by van Houwelingen et al.10

Recently Lappalainen et al.21 have evaluated different models

based on dimensional similitude and optimized their parameters

using about 250 experimental points from literature, distinguish-

ing the prewetting procedure and reconciliating some of the data.

They have concluded that a wetting efficiency model does not

describe all known trends suitably when including less than four

dimensionless groups, despite the fact that the precision of data

fitting is not really improved above two Π groups. Their final

correlation is consistent with most of reported trends, but it is
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not bounded and may thus lead to unrealistic values when

applied out the range of previously investigated conditions.

In this work, a previous experimental database (20 points with

same type of alumina beads) has been completed to 90 points

by using the same measuring technique (dye adsorption), the

same setup device and operating procedure, to better understand

the effect of the different operating parameters separately.

A special effort has been addressed to account for the

parameters poorly investigated: liquid viscosity and the separate

effects of particle diameter and bed porosity. Finally a new

correlation has been developed, using a bounded function

(ensuring 0 < f < 1) and with special attention given to the choice

of the most relevant dimensionless numbers according to the

observed trends.

2. Experimental Section

2.1. Trickle Bed Setup and Operating Procedure. The

experimental technique used to measure the catalyst wetting is

based on the step injection of a colored liquid at the inlet of a

bed of adsorbing particles and the image processing of the

photographs of partially colorized particles.10,11

In their previous studies, those authors underlined the dramatic

effects of the liquid distribution and bed prewetting procedure

on the catalyst wetting efficiency. In the present work, only an

optimized gas-liquid distributor and a prewetted bed have been

used for the parametric study.

The trickle bed setup (Figure 1a) consists of two concentric

columns, the inner one being allowed to move by means of a

piston. This central tube of 0.057 m internal diameter is divided

in 11 modules of 0.035 m height in order to get the axial

evolution of the catalyst wetting. The liquid is uniformly injected

on the bed cross-section by 49 capillaries of 1 × 10-3 m

diameter and 0.1 m high, while the gas is supplied independently

through 24 openings of 2 × 10-3 m in diameter. Two storage

tanks, containing either the clear liquid or the colored one, are

connected to the distributor by means of a three-way valve in

order to easily switch from one liquid to the other one.

The bed of porous alumina particles is first prewetted with

the (clear) liquid by flooding it for 5 min. It is then drained

until only the residual liquid holdup remains. Afterward liquid

(and gas) is (are) allowed to circulate in the bed over 30 min at

the investigated velocities to ensure that stable hydrodynamic

conditions are reached.

According to the terminology proposed by van Houwelingen

et al.,10 this corresponds to a “Levec pre-wetting” procedure.

Then, the clear liquid is replaced by a flow of the same liquid

but containing a dissolved dye (Sudan red in heptane and gasoil),

to colorize the surface of the particles which is wetted by the

flowing liquid. Depending on the operating conditions, the flow

of colored liquid is maintained for 5-30 min, so that all bed

sections can be colored while preventing any color spreading

due to dye diffusion inside the porous particles.

The bed is finally rinsed with the pure liquid before being

carefully dismounted and photographed section by section.

Details of the image processing used to calculate the average

wetting efficiency of the bed can be found in the work of

Baussaron et al.11 It is based on an automated procedure using

the Image Processing toolbox of Matlab, to divide the photo-

graphed cross sections of the bed (Figure 1b) into wet zones

(red), dry zones (white), and interparticle spaces of dark color

for which no distinction can be made between wet and dry. On

every processed image, colored markers are selected for each

group to identify its levels of color (2 criteria) and luminosity.

Each pixel on the image is then classified into one of the three

categories depending on the Euclidean distance between the

pixel and the markers. The average value of the wetting

efficiency is then calculated as the surface ratio of the red zones

to the sum of the white and red zones.

2.2. Investigated Parameters. In the previous papers of

Baussaron et al.,12,20 many operating parameters were already

investigated either by the dye adsorption technique or a tracer

technique: liquid and gas flow rates, operating pressure and gas

density, and particle shape and size, as well as the liquid-solid

affinity, and a first correlation was proposed for wetting

efficiency since deviation was too large with literature ones.3,17,18

This correlation based on five dimensionless numbers (Rey-

nolds numbers for gas and liquid flows, Galileo number, and

two capillary numbers based on gas/liquid and liquid/solid

surface tensions) predicted the experimental wetting efficiencies

with a maximum deviation of 13%.

However due to the very low number of tested values for

particle diameter and bed porosity, the wetting efficiency was

Figure 1. Photographs of (a) fixed bed column for dye-adsorption and (b) column cross-sections.



not very sensitive to the Galileo number. The effect of liquid

viscosity described in the correlation through the Reynolds

number was also not checked.

In order to complete the previous data bank, the following

parameters are thus investigated in this work:

• viscosity of the liquid phase in the range 0.39-3.4 × 10-3

Pa · s, by using heptane, gasoil (whose density, surface tension,

and contact angle with alumina are very similar to those of

heptane), and a mixture of the two (50 vol %),

• bed porosity by varying the bed loading with the same

particles, to discriminate between the real effect of particle size

and that resulting from the change in bed porosity due to the

different particle sizes,

• particle diameter, from 1.8 to 7 × 10-3 m for spherical

particles (five lots),

• particle shape: spheres and cylindrical and trilobe-shape

extrudates,

• addition of fine nonporous particles (silicon carbide, 0.9 ×

10-3 m diameter) varying the size ratio in between the alumina

particles and the SiC particles (from 3 to 8). Only complete

loadingsto fully fill the interparticle spaces between the original

beadsshas been investigated.

For all cases, wetting efficiency (f) was measured at liquid

velocities from 0.2 × 10-3 to 8 × 10-3 m/s, extending the range

of Baussaron et al.12 (VSL g 0.5 × 10-3 m/s).

These experiments were conducted at 25 °C and atmospheric

pressure, with no gas flow.

The properties of the different liquids and solids investigated

in the present study are reported in Tables 1 and 2, respectively.

According to the Washburn technique, the first three liquids

mentioned in Table 1 were found to perfectly wet the alumina

particles.

3. Results and Discussion

3.1. Validation of the Method. Both from preliminary study

in a 2D-monolayer of particles11 and MRI visualization in a

3D trickle-bed,22 the position of the rivulets in trickle flow was

proved to be very stable, which validates the dye-adsorption

method that integrates the wetting history in the final result.

It was also shown that for liquid velocities higher than 2 ×

10-3 m/s the particle wetting efficiency does not vary axially

after a few centimeters in the bed (about 0.1 m, corresponding

to modules 1-3) if the bed is prewetted, and an effective liquid

distribution is provided.11 It is still observed here for a much

lower liquid velocity (VSL ) 3 × 10-4 m/s, Figure 2).

Thus in the present work, the global wetting efficiency is

calculated as the average value of modules 4 and 5, showing

standard deviation of less than 5%.

In the previous studies, two types of photographs were taken

and compared:

• “section views” obtained along the column by taking

photographs of the cross section on the top of each column slice,

• “volume views” of a representative sample of the pellets

taken from each module and spread randomly on a perforated

plate. The section views allowed the detection of some typical

patterns of the trickle flow but could be biased for a quantitative

measurement of wetting efficiency as they only showed the part

of the beads facing the flow, so that the “volume views” were

initially preferred.

However, the data obtained from analysis of the two

photograph types were found to match within 10% at various

axial locations.12

In the present work, some photographs were also taken after

turning the column upside down, to analyze the sections that

were not oriented toward the flow. The corresponding wetting

efficiencies are also in very good agreement with the values

obtained from direct section views (cf. Figure 3).

Finally in Figure 3, the wetting efficiencies obtained by

averaging the values from section views 4 and 5 are compared

to the previous data of Baussaron et al.,11 showing a difference

of less than 5% in the investigated range of liquid velocity.

As expected, wetting efficiency is found to be an increasing

function of liquid velocity, with a very steep slope below 1 ×

10-3 m/s.

3.2. Influence of Operating Parameters. 3.2.1. Liquid

Viscosity. Few studies investigated the effect of this parameter

in the past, although many of the existing correlations predict

a decrease of wetting efficiency when increasing liquid viscosity

by including Reynolds number with a positive exponent.

Conversely Luciani et al.23 reported an improved wetting of

the particles when increasing the concentration of carboxymethyl

cellulose in water, but as the solutions exhibited also a rather

lower surface tension (and thus a better expected spreading of

the liquid), they could not discriminate between the influence

of each parameter separately.

Here heptane, gasoil, and a mixture of the two are chosen to

investigate the influence of viscosity, as their other physical

properties (density, surface tension, contact angle with alumina)

are quite similar (cf. Table 1).

Figure 4 shows that increasing the liquid viscosity improves

slightly the wetting of the particles, by less than 10% when

viscosity is multiplied by a factor 8.5. This can be explained

by an increased liquid holdup as reported for instance by Ellman

et al.24

Figures also include predictions of the developed correlation,

presented later in section 3.3. Its agreement with experimental

data will also be discussed in that section.

3.2.2. Particle Size and Bed Porosity. Most of the studies

conclude that there is a positive effect of size decrease on

particle wetting,1,9,18 even if some contradictory results are also

found.25,26

In those studies, the number of particle sizes examined is

rather low (2 or 3) and the probable change of bed porosity not

always accounted for.

The wetting efficiency of five lots of spherical particles of

same alumina type, but different diameters from 1.8 to 7 ×

10-3 m, is plotted as a function of liquid velocity in Figure 5.

Wetting efficiency is found to decrease when increasing

particle size, by about 15% in between the two extreme sizes.

The effect is more sensible for liquid velocities above 1 × 10-3

m/s. Nevertheless, this result may also depend on the noticeable

difference of bed porosity (0.40 for the largest particles and

0.38 for the smallest ones).

Thus, in Figures 6a and b the influence of bed porosity is

studied separately by varying the bed loading with the same

particles (spherical pellets or cylindrical extrudates).

As expected, increasing bed porosity leads to a lower wetting

efficiency as a result of the lower number of particle-particle

contacting points and thus less liquid menisci to drive the liquid

Table 1. Physical Properties of the Liquids (25 °C)

FL (kg/m3) µL (Pa · s) σL (N/m)

heptane 680 3.9 × 10-4 20.1 × 10-3

gasoil 830 3.4 × 10-3 28.1 × 10-3

heptane/gasoil (50/50 vol %) 780 1.2 × 10-3 23.9 × 10-3

watera 1000 1.0 × 10-3 72 × 10-3

ethanola 790 1.1 × 10-3 22.4 × 10-3

a Used in previous work.



rivulets. The effect of the bed porosity is found to be similar

for the two shapes of pellets. It can be noticed that wetting

efficiency is reduced by about 0.1 for an increase of bed porosity

from 0.38 and 0.40 due to a change of particle size from 1.8 to

7 × 10-3 m (Figure 5) while the decrease is only 0.05 when

varying εB from 0.38 to 0.41 with the same particles (Figure

6).

Table 2. Physical Properties of the Alumina Particles

dp (m) or dp(m) × lp (m) shape εB (-) supplier

pellet A 1.8-3.7 × 10-3 spherical 0.369-0.410 AXENS

pellet B 4.5-7.0 × 10-3 spherical 0.391-0.407 CALDIC (4-8 grade D)

pellet C (1.25 × 10-3) × (4.0 × 10-3) cylindrical 0.367-0.398 AXENS

pellet D (1.29 × 10-3) × (8.0 × 10-3) trilobe 0.372 AXENS

Figure 2. Axial evolution of wetting efficiency from the bed top (with
corresponding module number). Case 6 from Table 3.

Table 3. Operating Conditions of the Different Investigated Cases

case dv (m) εB dv/dSiC liquid pellet VSL range (m/s) mean std deviation

1 2.5 × 10-3 0.37 heptane A (0.5-8) × 10-3 2.4%

2 5.5 × 10-3 0.41 heptane B (0.5-6.5) × 10-3 5.7%

3 5.5 × 10-3 0.41 water B (0.5-6) × 10-3 15.4%

4 5.5 × 10-3 0.41 ethanol B (0.5-6) × 10-3 12.6%

5 3.65 × 10-3 0.395 heptane A (0.5-5) × 10-3 4.6%

6 2.85 × 10-3 0.385 heptane A (0.2-8) × 10-3 2.7%

7 1.8 × 10-3 0.38 heptane A (0.2-8) × 10-3 4.0%

8 1.8 × 10-3 0.405 heptane A (0.3-5) × 10-3 3.0%

9 2.1 × 10-3 0.37 heptane C (0.2-5) × 10-3 3.5%

10 2.1 × 10-3 0.40 heptane C (0.5-5) × 10-3 4.5%

11 1.8 × 10-3 0.385 gasoil A (0.15-3) × 10-3 2.6%

12 1.8 × 10-3 0.38 heptane+gasoil A (0.15-3) × 10-3 5.0%

13 4.5 × 10-3 0.39 heptane B (0.2-5) × 10-3 2.8%

14 4.5 × 10-3 0.40 5 heptane B (0.2-5) × 10-3 1.1%

15 7.0 × 10-3 0.40 heptane B (0.2-8) × 10-3 2.8%

16 7.0 × 10-3 0.40 7.8 heptane B (0.2-5) × 10-3 1.5%

17 2.85 × 10-3 0.39 3.2 heptane A (0.2-5) × 10-3 1.7%

18 2.85 × 10-3 0.37 heptane D (0.5-5) × 10-3 2.4%

Figure 3. Wetting efficiency calculated from direct and reversed section views.
Comparison with the results of Baussaron et al.11 Case 6 from Table 3.

Figure 4. Effect of liquid viscosity. Cases 7, 11, and 12 from Table 3.

Figure 5. Influence of particle diameter. Cases 5, 6, 7, and 15 from
Table 3.



This allows thus a conclusion about the real extent of particle

size effect on the wetting of particles: an increase of 5-10%

when particle size is divided by about 4.

3.2.3. Particle Shape. Catalyst particles with extruded

shapes, as cylinders or trilobes, are very common in industry

because they provide higher surface/volume ratios than spherical

particles for the same specified pressure drop. It is usually

admitted that the use of long extrudates may result in a worse

liquid distribution due to a preferential orientation of the particles

in a downward slant toward the reactor walls and thus to a lower

global wetting efficiency of the bed. On the other hand,

Trivizadakis et al.27 have reported a noticeably greater dynamic

liquid holdup (up to 40%) when using extrudates instead of

spheres of comparable Sauter diameter. Figure 7 compares the

wetting efficiency of cylindrical and trilobe shape extrudates

to that of spherical pellets. Those extrudates being rather long

compared to their diameter (cf. Table 2), the question could

arise about the most suitable equivalent diameter to use for this

comparison: based on the sphere of equivalent volume dv )

(6Vp/π)1/3 or based on the sphere of same specific area ds )

6Vp/Sp (Sauter diameter). Those diameters give indeed a different

weight to the particle length, resulting in dv ) 2.1 × 10-3 m

(respectively 2.85 × 10-3 m) and ds ) 1.6 × 10-3 m

(respectively 1.85 × 10-3 m) for the cylindrical (or trilobe shape)

extrudates. In Figure 7, the different particles exhibit similar

volume diameter dv and rather close wetting efficiency. This

argues here for a negligible effect of particle shape. However

corresponding experiments could not be performed with exactly

the same bed porosity, and depending on the extent of size

effect, this conclusion may not stand if another equivalent

diameter (e.g., ds) is chosen. According to the previous

paragraph, the influence of particle size is rather moderate and

the wetting efficiency variation from dv to ds should not be very

significant. Thus, it has been decided to keep the equivalent

volume diameter as a reference for further calculations.

It can be finally noticed that no significant dry zones have

been observed with those long extrudates.

3.2.4. Addition of Fines. Al-Dahhan and Dudukovic28 first

reported the use of fine nonporous particles to improve the

wetting efficiency of a catalyst bed. In this study silicon carbide

(SiC) particles of 0.9 × 10-3 m diameter are used to dilute beds

of different packing sizess2.8 × 10-3, 4.5 × 10-3, and 7 ×

10-3 msto fully fill the interparticle spaces between the original

beads (φ ) dv/dSiC ranging from 3.2 to 7.8). Only the wetted

surface of alumina particles is measured, after the top layer of

fines has been carefully removed. Results reported in Figure 8

show that for all packing diameters a positive effect of fines is

observed, that is higher at a larger size ratio of alumina to SiC

particles. The presence of SiC deeply modifies the bed topology

in several ways, and two major positive effects are a decrease

of the bed porosity (divided by 2 approximately) and an increase

of the number of contact points between solid particles. This

last factor has been pointed out by Gladden et al.22 as a major

parameter to explain local heterogeneities of wetting efficiency

in TBRs. A detailed inspection of pictures reveals that the

fraction of fully unwetted particles is less than 10% when VSL

g 0.5 mm/s. At VSL ) 0.2 mm/s, a few more unwetted particles

have been observed without fines or when φ ) 3.2, but not at

higher values of φ.

3.3. Development of a New Correlation. 3.3.1. Character-

istics of the Proposed Correlation. Experimental Database. The

experimental database used to develop the correlation includes

the above-mentioned data as well as the data of Baussaron et

al.12 measured by the dye adsorption technique with the same

types of alumina particles, resulting in 90 experimental points.

Table 3 reports the operating conditions corresponding to the

different cases investigated (pellet diameter, porosity of alumina

Figure 6. Influence of bed porosity. Cases 7-10 from Table 3.

Figure 7. Effect of particle shape (with close equivalent volume diameter).
Cases 6, 9, and 18 from Table 3.



particle bed, size ratio of alumina/SiC particles when fines are

used, fluid type, pellet shape, liquid velocity range, and standard

deviation of the developed correlation). Cases 5-19 are new

experimental results obtained in the present study.

Choice of the Π Groups and Expression of the Correla-

tion. The feedback about the use of nonbounded correlations to

estimate wetting efficiencies (f) is often disappointing, leading

to nonphysical values of f (f > 1) when applying them out of

their domain of validity. Thus, the developed correlation is

expressed as follows:

where C0... Cn are fitted constants and Ni are different

dimensionless groups. The use of similar exponential functions

has been already proposed by Mills and Dudukovic,16 Ring and

Missen,29 and Gonzales-Mendizabal et al.30

According to the conclusions of the present study and those

of the previous works, the following physical scales have to

be accounted for: liquid superficial velocity VSL, equivalent

volume diameter of the particles dv, bed porosity εΒ, properties

of the liquid phase (FL, µL, σL), and ratio of alumina to SiC

particles dv/dSiC when fines are added. The gas phase effect has

been neglected as measurements performed with either dye

adsorption technique at atmospheric pressure or tracer method

at various pressures with N2 and SF6 have showed that both

the gas velocity and the gas density have a very low influence

on wetting efficiency, rather positive at liquid velocity higher

than 2 × 10-3 m/s.12 Thus, it would lead to an exponent of the

(1 + ReG) group almost equal to zero. In the literature, there is

actually no real consensus about the effect of gas velocity:

Herskowitz and Mosseri31 and Burghardt et al.18 observed a

decrease of wetting efficiency when increasing gas flow rate,

while Al-Dahhan and Dudukovic,4 Pironti et al.,7 and Kundu

et al.8 found the opposite trend, especially at elevated pressure,

as the consequence of an improved spreading of the liquid film

despite a lower liquid holdup.

Ni are then chosen in the following list: ReL, WeL, StkL, MoL,

FrL, GaL. The term εΒ is considered as an additional independent

number (N1 ) εΒ).

Figure 8. Effect of silicon carbide fines: alumina particles of (a) dv ) 2.85 × 10-3 m, (b) dv ) 4.5 × 10-3 m, (c) dv ) 7 × 10-3 m. Cases 6 and 13-17
from Table 3 (φ ) 0 corresponds to the bed without fines, φ ) dv/dSiC otherwise).

Table 4. Standard Deviations Obtained with the Different Π Group Combinations (Case of n ) 3)

C0 εB (C1) ReL WeL StkL MoL FrL GaL std dvtn

1.581 -2.269 -0.181 0.224 0 0 0 0 6.02%

0.580 -2.976 0.228 0 0 0.100 0 0 7.42%

2.252 -1.583 0 0.086 0.107 0 0 0 5.07%

0.862 -2.632 0 0.128 0 0.038 0 0 6.53%

2.256 -1.777 0 0.138 0 0 0 -0.072 5.32%

4.059 0.095 0 0 0.219 -0.066 0 0 5.75%

1.986 -1.552 0 0 0 0.020 0.139 0 5.00%

f ) 1 - exp[-C0 ∏
i)1

n

Ni
Ci] (1)



3.3.2. Parameter Optimization. The case n ) 3 (εΒ + 2

dimensionless numbers) is studied first to predict wetting

efficiencies without SiC. The mean standard deviation is

minimized using a generalized reduced gradient algorithm.

Among the possible couples of dimensionless numbers, best

results are obtained using Morton and Froude numbers (cf. Table

4). In particular, the use of the Reynolds number, often proposed

in literature to represent the effect of liquid phase velocity,

appears in fact rather inconvenient, because the associated

effects of both the viscosity and the particle diameter are not

consistent with the experimental trends.

The following correlation is then obtained:

resulting in a mean standard deviation of 5% between experi-

mental and predicted values.

In this expression, the three dimensionless groups (FrL, MoL,

and εΒ) are representative of three independent global features:

respectively, the flow behavior at the pellet scale, the physical

properties of the fluid, and the bed topology. Larger combina-

tions of groups have been also tested (up to n ) 4), but they

have not improved the optimization criteria. As the effect of

bed porosity on wetting efficiency did not prove to depend on

the shape of the particles, the exponent of εB has been supposed

independent of the particle shape.

Available correlations using exponential functions have been

compared with the developed one. The two relations proposed

by Mills and Dudukovic16 account for four dimensionless groups

(ReL, FrL, WeL, atdp
2/εΒ) and are potentially able to represent

the impact of all the physical parameters considered. The

correlation of Ring and Missen29 is only based on the superficial

velocity of the liquid phase. Standard deviations with the

considered data are about 10% for the relations proposed by

Mills and Dudukovic and 13% for that of Ring and Missen.

The present correlation thus improves the fitting, in particular

due to a better description of the viscosity effect. It is interesting

to note that a very simple relation like the one of Ring and

Missen gives a not so bad prediction of the data. It underlines

the preponderant effect of liquid velocity.

3.3.3. Further Examination of the Correlation. Case of

Wetting Liquids. Corresponding parity diagram and individual

standard deviations are given in Figure 9 (for the case of wetting

liquids only) and Table 3, respectively.

For nonspherical particles, the deviation between experimental

and calculated points is slightly modified ((0.5%) if dv is

replaced by ds in the correlation. This allows indeed the

assessment of the negligible effect of the particle shape discussed

before.

As shown in Figures 4-6, the correlation is able to predict

the wetting efficiency evolution when increasing liquid velocity

and viscosity, bed porosity, and particle diameter.

The good agreement between experimental and calculated

values confirms the relevance of the exponential function used

in the expression of f.

Case of Water and Ethanol. The influence of the liquid

wetting properties observed by Baussaron et al.11 at very low

liquid velocity (lower than 2 × 10-3 m/s) is not actually well

described by the correlation (the mean standard deviation is

about 14% for ethanol and water). Despite the fact that the

correlation predicts a negative influence of the surface tension

σL in accordance to the trend found by Baussaron et al.sf(water)

< f(ethanol) < f(heptane)sthis effect is balanced by the viscosity

change in the Morton number. This may suggest that for those

cases an additional parameter is required which is specific to

the liquid-solid affinity. The contact angles (θ) measured by

the Washburn technique are: 65° and 39° for water and ethanol,

respectively, and 0° for heptane (reference) and gas oil. The

smaller the contact angle, the stronger the affinity of the liquid

for the solid and the thinner and wider the liquid film. However,

for VSL > 2 × 10-3 m/s, the wetting efficiencies measured with

heptane are only 5% higher than those measured with water.

Thus the weight of this parameter is not the same in the whole

velocity range.

A corrective term accounting for the contact angle and a

critical Froude number is proposed here, that can further improve

the predictions of the correlation:

where Frc is a critical Froude number equal to 7.4 × 10-5

(corresponding to VSL ) 2 × 10-3 m/s for the considered particle

size). Note that C4 is here not a constant, but a decreasing

function of the Froude number (bounded between 0 and 1) and

that N4 ) 1 for heptane and gasoil which are considered as

perfectly wetting liquids.

Figure 10 shows the parity diagram of the correlation (with

and without the corrective factor) for the experiments of

Baussaron et al. with different liquids. All data points are found

to be still slightly overpredicted by the modified correlation,

even with heptane. This bias is not well understood, leading to

give to those points a weight penalty for the correlation

regression.

f ) 1 - exp[-1.986FrL
0.139

MoL
0.0195

εB
-1.55

] (2)

Figure 9. Parity diagram for wetting liquid/alumina systems. See Table 3
for experimental conditions.

N4
C4 ) (cos θ)

1/(1+5Fr/Frc) (3)

Figure 10. Parity diagram of original and modified correlation for heptane,
ethanol, and water (data from Baussaron et al.11). See Table 3 for
experimental conditions.



Addition of SiC Fine Particles. As discussed in section 3.2.4,

the effect of SiC particles is complex and difficult to model.

Accounting only for the modification of bed porosity due to the

addition of SiC particles is not adequate to describe the effect of

fines. The number of contact points between catalyst and SiC

particles is thought to be the predominant factor, but this parameter

is very difficult to calculate or measure. According to the observed

trend, the effect of fines has been described using an additional

dimensionless parameter, written as a function of the size ratio

between catalyst and SiC particles: N5 ) (1 + φ) where φ ) 0

when fines are not used and φ ) dv/dSiC otherwise. Data

regression leads to C5 ) 0.11, and the corresponding parity

diagram is shown in Figure 11.

4. Conclusions

The experimental work has provided wide information on

wetting efficiency by using a direct method, based on the

adsorption of a dye at the wetted surface of particles. The

influence of liquid phase viscosity has been investigated, as well

as the separate effects of bed porosity, particle size, and shape.

The parametric study performed when adding SiC particles has

also allowed the correlation of the effect of fines with the size

ratio between catalyst particles and fines.

The experiments performed for this study and other existing

data obtained with the same procedure have been used to

optimize a new model for wetting efficiency. It is based on a

bounded function (decreasing exponential) and involves only

three dimensionless groups (liquid Froude and Morton numbers

and bed porosity) to describe classical experiments without fines

and with a wetting liquid. This correlation is able to predict

wetting efficiency with a very good precision for a large

database. It is thus particularly suited for the small downward

pilot reactors used in refineries and petrochemical research and

development centers. The prediction of wetting efficiency in

case of poorer liquid/solid affinity is still a challenge because

it is difficult to dissociate contact angle and surface tension

effects. A corrective term accounting for the contact angle and

a critical Froude number has been proposed that can further

improve the correlation predictions in this case. The effect of

fines can be accurately described by including an additional

parameter, written as a function of the size ratio between catalyst

and SiC particles.

A complementary aspect to be investigated in the future

would be the influence of bed anisotropy to verify the observed

trends regarding the effect of bed porosity.
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Notations

at ) packing external surface area per unit volume of reactor, 1/m

Ci ) fitted constants of eq 1, -

dSiC ) SiC (inert fines) diameter, m

dv ) equivalent volume diameter, dV ) (6Vp/π)1/3, m

f ) wetting efficiency, -

g ) gravitational constant, m/s2

Ni ) Π groups or dimensionless parameters of eq 1, -

VSG ) superficial gas velocity, m/s

VSL ) superficial liquid velocity, m/s

εB ) porosity of the alumina particle bed, -

φ ) fines parameter, φ ) 0 when not used and φ ) dv/dSiC

otherwise, -

µG ) gas viscosity, Pa · s

µL ) liquid viscosity, Pa · s

θ ) contact angle (measured by the Washburn technique), deg

FG ) gas density, kg/m3

FL ) liquid density, kg/m3

σL ) liquid surface tension, N/m

FrL ) liquid Froude number, FrL ) (VSL
2/gdv), -

GaL ) liquid Galileo number, GaL ) (dv
3gFL

2/µL
2), -

MoL ) liquid Morton number, MoL ) (gµL
4/FLσL

3), -

ReG ) gas Reynolds number, ReG ) (VSGdvFG/µG), -

ReL ) liquid Reynolds number, ReL ) (VSLdvFL/µL), -

StkL ) liquid Stokes number, StkL ) (µLVSL/gdv
2FL), -

WeL ) liquid Weber number, WeL ) (FLVLS
2dv/σL), -
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