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Abstract. The coupling between the power supply and a Dielectric Barrier Discharge (DBD) for 

UV production purposes (excilamp) is a major issue for the design of powerful and efficient UV 

sources. In order to improve this coupling, new power supply topologies have been developed, 

based on the current control of the DBD. The aim of this paper is to present the modeling results of 

such a control on the performances of the excilamp. 

1. INTRODUCTION

Dielectric Barrier Discharge (DBD) established in rare gas or rare gas/halogen mixtures (excilamps) 

are promising sources of high power Ultraviolet or Vacuum Ultraviolet (UV or VUV). Their specific 

properties such as efficiency, high power and mercury free, make these lamps especially suited for 

various industrial applications [1]. Previous researches have shown that these sources are especially 

efficient when supplied in pulsed mode [2], [3], [4], [5], and efficiencies above 60% were reported for 

DBD in xenon [8]. It was shown that the optimum parameters for supplying these excilamps are 

voltage pulses of some kilovolts applied at frequencies of some tens of kilohertz (around 100kHz) 

with a duty ratio about 1%. Unfortunately, these values can hardly be achieved with a high voltage 

switching topology for the power supply and, most of the time, a step-up transformer is used to 

generate the high voltage pulses. In this case, the strong coupling between the inductive load of the 

transformer and the capacitive load of the excilamp leads to a ringing which might affects the 

efficiency of the system. As a result, the most important issue nowadays for a high efficiency excilamp 

system is to improve the coupling between the excilamp and the power supply. 

In [7] was presented a power supply topology which would improve the UV output control of an 

excilamp in generating current pulses instead of voltage pulses. The aim of this paper is to evaluate, on 

a model, the effect of a current source controlled DBD on its UV emission. In a first part, sine wave is 

considered and in the second part, current pulses are applied in the model. 

2. MODEL DESCRIPTION

We have developed a Partial Differential Equation (PDE) based model [9] for a planar double-

dielectric layer Xenon excilamp. The plasma is assumed homogeneous and side effects around the 

electrodes are neglected. The computation is consequently performed in 1D, along the axis of the 

geometry similar to the one presented in [6]. The thick of the dielectric layers are 2mm, the gas gap is 

4mm and the Xenon filling pressure is 5.33104Pa (400Torr). The model solves the drift-diffusion 

equations for the species considered in the model coupled to Poisson's equation. 

A voltage supplied DBD is modeled in imposing a potential on both outer sides of the dielectrics. This 

leads to two Dirichlet boundary conditions for Poisson's equation. Usually, one side is grounded and 

the other is held at the voltage chosen for the modeling. A current supplied DBD is modeled in 

grounding one side of the outer surface of a dielectric and in imposing the electric field, which is 

proportional to the time integral of the current, on the outer surface of the other dielectric: 
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 is the electric field at the outer surface of the dielectric,   the permittivity of the 

dielectric and ),( 0 txj


the current density flowing through the dielectric. This corresponds to a 

Neumann boundary condition for Poison's equation. 

The model relies on the local field approximation and consequently the transport coefficients and 

source terms depend on the electric field. These coefficients and source terms are computed by Bolsig 

[11]. Once solved, the model can display the evolution of the plasma species density, as well as the 

electric field, in time and space. 

The mechanism which has the major impact on the development of the discharge is the propagation of 

the ionization wave, occurring in the neighborhood of the dielectrics in cathode phase. This ionization 

wave has a strong impact on the current waveform and leads to a massive production of charges, 

excited species and especially excimers [7]. This is the argument that led to the concept of controlling 

the current in the DBD in order to achieve a control of the UV flux of the excilamp. 

3. SINE WAVE CURRENT CONTROLED EXCILAMP

3.1. Effect of the current frequency 

Figure 1 presents the results of the discharge controlled by a sine wave current of 5mA peak at 

different frequencies. 
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FIGURE 1. a) Time evolution of the current, voltage drop and UV flux of the excilamp at 50kHz. b) Mean 

electrical power and mean UV flux of the excilamp as a function of the current frequency. 

When the current flows in the DBD, at steady state, it increases the voltage drop in the cathode sheath 

until this voltage achieves the value for the ionization wave to occur. This leads to a strong formation 

of excimers and consequently, a high peak in the UV emission of the discharge. Then, if the current is 

maintained, the ionization wave is sustained and produces excimers. 

This can be observed on figure 1a), where the UV peak occurs suddenly, some microseconds after the 

zero crossing of the current. Then, after this peak, the current is still important and the UV emission 

has the same shape as the current. In this phase, the current is significantly controlling the UV output.  

When the frequency increases, the repetition rate of the UV pulses increases. But, in the same time, 

the duration of the current-sustained UV emission phase decreases, leaving the UV peak due to the 

ionization wave as the most part of the total UV output. These antagonist effects lead anyway to an 

increase in the mean UV output of the excilamp until 200kHz. Above this frequency, the current half 
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period if too short to generate a significant electric field in the cathode sheath and the ionization wave 

is weak or even does not occur at each half period. The mean UV output falls consequently. As it can 

be seen on figure 1b), the mean UV flux of the excilamp has thus a maximum around 200kHz. 

Nevertheless, the efficiency is monotonically increasing and a good compromise between UV flux and 

efficiency is achieved for a frequency between 200kHz and 250kHz. 

3.2. Effect of the current amplitude 

Figure 2 presents the results obtained for current amplitudes of 1mA, 2.5mA, 5mA, 10mA and 15mA. 

The effect of an increase of the amplitude is an increase of the efficiency of the excilamp, especially at 

high frequencies.  
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FIGURE 2. a) Electrical power and UV flux of the excilamp versus current amplitude, b) Efficiency of electrical 

power to UV conversion versus current amplitude. 

Efficiencies as high as 57% can then be achieved at 400kHz. The low efficiency obtained at this 

frequency for low current amplitude is due to the lack of development of the ionization wave, as 

mentioned previously. 

4. PULSED CURRENT CONTROLED EXCILAMP 

The power supply topology described in [7] is a pulsed current source. The chosen shape for the 

current pulses applied to the model corresponds consequently to what would be expected from such a 

topology: a sudden current rising front followed by a sine wave portion. This last part depends on the 

coupling of the lamp and the power supply. As a result, it was chosen empirically at 3s, according to 

the experimental values from [10]. The junction between the vertical current rising front and the sine 

wave portion occurs when the current achieves 90% of the maximum current amplitude. 

4.1. Effect of the frequency 

Figure 3 presents the wave forms of the current, voltage and UV flux in the discharge for different 

frequencies. Unlike the case of a voltage source, the current source does not change drastically the 

performances of the excilamp when switching from sine wave to pulsed wave. The UV flux is 

approximately similar, around 2W, but the electrical power is higher, with a resulting efficiency 

around 40%, which is lower than the sine wave case. 
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FIGURE 3. a) Time evolution of the current, voltage drop and UV flux of the excilamp at 50kHz. b) Mean 

electrical power and mean UV flux of the excilamp as a function of the current frequency. 

4.2. Effect of the amplitude 

The computation was performed with a current amplitude of 1mA, 2.5mA, 5mA, 10mA and 15mA, 

for frequencies of 50kHz, 100kHz and 150kHz. An increase of the amplitude of the current involves 

an increase of the UV flux. In the best case, it achieves around 6W which is a value similar to the one 

obtained in the sine wave form at the same frequency, but the efficiency is drastically lower. 

4.3. Effect of the duty ratio and the pulse width 

Table 1 presents the results obtained for different duty ratio and pulse width. The first line displays, as 

a reference, the value obtained in sine wave form at 50kHz with 5mA of amplitude. The line 2 

presents the pulsed wave form considered previously but with a different duty ratio. In this case, it can 

be seen that the values are quite similar than in the case of a 50% duty ratio (Fig. 3). Despite the 

values of the UV flux is lower than in the sine wave case, this supply mode is more efficient. The line 

3 concerns a pulsed wave form which differs from the ones considered previously by its shorter pulse 

width (1s instead of 3s). In this case, the UV flux is lower but the efficiency achieves a high value 

(62%). In this case, changing the duty ratio does not affect drastically the powers (line 4 of Table 1). 

5. CONCLUSION

A DBD model was used to compute the electrical and radiative parameters of an excilamp. This model 

was supplied by a sine wave current and it was shown that an optimum frequency could be found, with 

a maximum UV output, around 2W, and an efficiency around 45%. An increase of the amplitude of 

the sine wave current increases the UV flux as well as the efficiency. A value of 57% was obtained at 

400kHz with an amplitude of 15mA. 

The pulsed current mode presents, with 3s pulse width, a lower performance of the excilamp 

according to the model. But, the model predicts that a short pulse width significantly increases its 

efficiency, which then exceeds the best value achieved in sine wave. 

The pulsed current mode seems, in these conditions, a promising mode for an efficient coupling of the 

excilamp and the power supply. 
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TABLE 1. Electrical Power, UV Flux and Efficiency of the excilamp for different wave forms 

Current wave form Electrical Power 

[W] 

UV Flux 

[W] 

Efficiency [%] 

Sine wave, 50kHz, 5mA of current amplitude 6.10 1.22 20 

Pulsed wave, 50kHz, 5mA of current amplitude, 3s of 

pulse width, 0.5s of delay between the two pulses of the 

same period. 

1.97 0.78 40 

Pulsed wave, 50kHz, 5mA of current amplitude, 1s of 

pulse width, 50% of duty cycle 

0.77 0.48 62 

Pulsed wave, 50kHz, 5mA of current amplitude, 1s of 

pulse width, 0.5s of delay between the two pulses of the 

same period. 

0.72 0.45 64 
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