

# The laterally acquired GH5 ZgEngAGH5\_4 from the marine bacterium Zobellia galactanivorans is dedicated to hemicellulose hydrolysis

Jonathan Dorival, Sophie Ruppert, Melissa Gunnoo, Adam Orlowski, Maylis Chapelais-Baron, Jérôme Dabin, Aurore Labourel, Damien Thompson, Gurvan Michel, Mirjam Czjzek, et al.

# ▶ To cite this version:

Jonathan Dorival, Sophie Ruppert, Melissa Gunnoo, Adam Orlowski, Maylis Chapelais-Baron, et al.. The laterally acquired GH5 ZgEngAGH5\_4 from the marine bacterium Zobellia galactanivo-rans is dedicated to hemicellulose hydrolysis. Biochemical Journal, 2018, 475 (22), pp.3609-3628. 10.1042/BCJ20180486. hal-02353908

# HAL Id: hal-02353908 https://hal.science/hal-02353908v1

Submitted on 7 Nov 2019

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The laterally-acquired GH5 ZgEngA<sub>GH5</sub> 4 from the marine bacterium Zobellia 1 2 galactanivorans is dedicated to hemicellulose hydrolysis Jonathan Dorival<sup>a§</sup>, Sophie Ruppert<sup>a§</sup>, Melissa Gunnoo<sup>b</sup>, Adam Orłowski<sup>b</sup>, Maylis Chapelais-3 Baron<sup>a</sup>, Jérôme Dabin<sup>a</sup>, Aurore Labourel<sup>a</sup>, Damien Thompson<sup>b</sup>, Gurvan Michel<sup>a</sup>, Mirjam 4 Czjzek<sup>a\*</sup> and Sabine Genicot<sup>a\*</sup> 5 <sup>a</sup> Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de 6 7 Roscoff (SBR), 29680 Roscoff, France <sup>b</sup> Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland 8 9 §These authors contributed equally to this work. \*Co-corresponding authors to whom correspondence should be addressed: 10 Mirjam Czjzek, Station Biologique de Roscoff (SBR), Place Georges Teissier, 29680 Roscoff, France; 11 12 czjzek@sb-roscoff.fr; Phone number: + 33 2 98 29 23 75 13 Sabine Genicot, Station Biologique de Roscoff (SBR), Place Georges Teissier, 29680 Roscoff, France; 14 genicot@sb-roscoff.fr; Phone number: + 33 2 98 29 23 30 15 Short title: Structure/ function analysis of a marine GH5 4 endoglucanase 16 17 ABBREVIATIONS: PUL: polysaccharide utilization locus; MLG, mixed-linked glucan; GH, glycoside hydrolase; 18 GH5, family 5 of glycoside hydrolases; CAZy, Carbohydrate active Enzyme; MES , 2-(N-19 Morpholino)ethanesulfonic acid hydrate; MOPS, 3-morpholino-1-propanesulfonic acid; Tris, 2-amino-2-20 hydroxymethyl-1.3-propanediol; CMC, Carboxymethylcellulose; G, Glucose; G2, cellobiose; G3, cellotriose; 21 G4, cellotetraose; G5, cellopentaose; G6, cellohexaose; G3G, L2, laminaribiose; G3GG, G3A, Glucosyl-(1->3)-22 β-D-cellobiose; GG3G, Cellobiosyl-(1->3)-β-D-Glucose; GGG3G, Cellotriosyl-(1->3)-β-D-Glucose; GG3GG, 23 Cellobiosyl-(1->3))- $\beta$ -D-cellobiose; HPAEC, High Performance Anion Exchange Chromatography; FACE, 24 Fluorophore assisted carbohydrate electrophoresis; ANTS, 8-aminonaphthalene-1,3,6-trisulfonate; NaBH<sub>3</sub>CN, 25 cyanoborohydride; DMSO, dimethylsulfoxyde; SEC, size exclusion chromatography; DLS, dynamic light

Use of open access articles is permitted based on the terms of the specific Creative Commons Licence under which the article is published. Archiving of non-open access articles is permitted in accordance with the Archiving Policy of Portland Press ( http://www.portlandpresspublishing.com/content/open-access-policy#Archiving).

- 1 scattering; SEC-MALLS, size exclusion chromatography coupled to multiple angle laser light scattering; MD,
- 2 Molecular dynamics; RMSD, Root Mean Square Deviations.
- 3
- 4 **KEYWORDS:** Endo-β-(1.3-1.4) glucanase; MLG; glucomannan; *Zobellia galactanivorans*; PUL;
- 5 horizontal gene transfer.
- 6

# 7 SUMMARY STATEMENTS

8 Marine heterotrophic bacteria play a crucial role in the carbon cycle since some species have
9 developed important enzymatic machineries to degrade algal polysaccharides. We show here that the
10 model algae-associated bacterium *Zobellia galactanivorans* is also involved in biodegradation of
11 hemicellulose through the activity of a horizontally-acquired endo-β-D-glucanase.

#### 1 ABSTRACT

2 Cell walls of marine macroalgae are composed of diverse polysaccharides that provide abundant carbon sources for marine heterotrophic bacteria. Among them, Zobellia galactanivorans is 3 considered as a model for studying algae-bacteria interactions. The degradation of typical algal 4 polysaccharides, such as agars or alginate, has been intensively studied in this model bacterium, but 5 the catabolism of plant-like polysaccharides is essentially uncharacterized. Here we identify a 6 7 polysaccharide utilization locus in the genome of Z. galactanivorans, induced by laminarin ( $\beta$ -1,3-8 glucans), and containing a putative GH5 subfamily 4 (GH5 4) enzyme, currently annotated as a 9 endoglucanase (ZgEngA<sub>GH5 4</sub>). A phylogenetic analysis indicates that ZgEngA<sub>GH5 4</sub> was laterally 10 acquired from an ancestral Actinobacteria. We performed the biochemical and structural 11 characterization of ZgEngA<sub>GH5 4</sub> and demonstrate that this GH5 is in fact an endo-β-glucanase, most active on mixed-linked glucan (MLG). Although ZgEngA<sub>GH5 4</sub> and GH16 lichenases both hydrolyze 12 MLG, these two types of enzymes release different series of oligosaccharides. Structural analyses of 13 14 ZgEngA<sub>GH5 4</sub> reveal that all the amino acid residues involved in the catalytic triad and in the negative glucose binding subsites are conserved, when compared to the closest relative, the cellulase EngD 15 from Clostridium cellulovorans, and some other GH5s. In contrast, the positive glucose binding 16 subsites of ZgEngA<sub>GH5 4</sub> are different and this could explain the preference for MLG, with respect to 17 18 cellulose or laminarin. Molecular dynamics computer simulations using different hexaoses reveal that the specificity for MLG occurs through the +1 and +2 subsites of the binding pocket that display the 19 20 most important differences when compared to the structures of other GH5 4 enzymes.

#### **1 INTRODUCTION**

For a long time, the presence of mixed-linked glucans ( $\beta$ -(1,3-1,4)-glucans, MLG) in primary 2 3 cell walls was considered a unique feature that has evolved in flowering plants (for review see for example [1]). This vision was first challenged by a large and systematic analysis across the plant 4 kingdom using a glycan microarray approach, which highlighted that MLG were also present in some 5 6 less commonly found, early diverging vascular plants and freshwater green algae [2, 3]. Surprisingly 7 and more recently,  $\beta$ -(1,3-1,4)-glucans have been identified in the cell wall of brown macro-algae [4]. 8 Well studied for their occurrence in the cell walls of grasses, these  $\beta$ -(1,3-1,4)-glucans are a major 9 component of carbohydrate storage compounds in the endosperm of cereals, such as barley, rice, or 10 wheat [2]. These glucans consist of linear chains of  $\beta$ -1,3- and  $\beta$ -1,4-linked glucosyl residues, and the 11 pattern of distribution of these two linkages varies according to the plant botanical origin and growth conditions [4], in particular the distribution of  $\beta$ -1,3-linkages was found to be more frequent in the 12 13 marine brown algae [4].

Involved in important carbon storage catabolizing processes, enzymes that efficiently hydrolyse
these substrates (frequently named lichenases, mixed-linked-glucanases or termed β-(1,3-1,4)glucanases) are found largely distributed in many kingdoms of life (*i.e.*, plants, bacteria, fungi) and
their sequences are present in numerous glycoside hydrolase (GH) families, which are GH5, GH9,
GH16, GH17 and GH26 according to the CAZy (Carbohydrate Active Enzymes) database
(http://cazy.org; [5]). Among these different GH families, to date most characterized bacterial β-(1,3-1,4)1,4)-glucanases are found in the families GH16 [6] and GH5 [7] based on the CAZY database [5].

GH5 is one among the large families in the CAZy database, with more than 12,000 available sequences. Enzymes belonging to this family are retaining glycoside hydrolases that operate *via* the classical Koshland double-displacement mechanism [8]. The first crystallographic structure of a member of the GH5 family, solved in 1995 [9], was considered a pure  $\beta$ -1,4-glucanases (cellulase). It revealed a ( $\beta/\alpha$ )<sub>8</sub> barrel fold, common to several other GH families, founding the structural clan GH-A. Since then, up to 20 different activities have been reported for this large family [7], hindering assignment of enzyme specificity, although they are predicted to be involved mainly in plant cell wall degradation. Family GH5 has recently been subdivided into 51 subfamilies to improve correspondence
between specificity and sequence [7]. Several recent structure-function studies [10-12], covering
various GH5 subfamilies with formerly undefined specificities, have shed new light on important
residues lining the catalytic active site cleft that govern substrate specificity.

5 GH5 enzymes are relatively frequent in marine Bacteroidetes, especially in Flavobacteriia, which are the prevalent class of *Bacteroidetes* in marine ecosystem [13]. However *Flavobacteriia* 6 7 species do not efficiently degrade crystalline cellulose [14, 15]. Regrettably, and without taking into account its polyspecificity, the GH5 family has often been used as a 'marker' for cellulose occurrence 8 in marine environments in microbial ecology studies. Nonetheless, a study highlights that the 9 abundance of GH5 enzymes (mainly belonging to Gammaproteobacteria, Firmicutes and 10 Actinobacteria) positively correlates with chlorophyll concentration in the eastern part of the North 11 Atlantic Ocean, and that the diversity of GH5 enzymes was greater in coastal water than in the open 12 13 ocean [16].

In the present study, we have analyzed, using multiple biochemical approaches, the detailed structure-function relationship of one of the three GH5 enzymes from *Zobellia galactanivorans* Dsij<sup>T</sup>, a model macroalgae-associated bacterium [13]. The gene name of this GH5 enzyme (*engA*) was given in the initial genome annotation of *Z. galactanivorans* [13] by homology to the closest characterized enzyme, the endoglucanase EngD from *Clostridium cellulovorans* [17]. The corresponding recombinant enzyme will thus be named here  $ZgEngA_{GH5_4}$ . The evolutionary trail of this enzyme leading to its presence in the genome of this marine flavobacterium is also discussed.

#### 1 **Experimental**

2

## Unless otherwise stated, all chemicals were purchased from Sigma.

#### **3** Phylogenetic analyis

Homologues ZgEngA<sub>GH5\_4</sub> (gene: engA; systematic ID: ZGAL\_208) were identified using
BlastP at the GenBank database. These sequences were aligned using MAFFT with the iterative
refinement method and the scoring matrix Blosum62 [18]. This multiple alignment allowed
calculation of model tests and maximum likelihood trees with MEGA version 6.0.6 [19]. Tree
reliability was tested by bootstrap using 100 resamplings of the dataset. The trees were displayed with
MEGA 6.0.6.

## 10 Cloning and site-directed mutagenesis

The engA gene encodes a 397 amino acids protein which includes a peptide signal (residues 1 to 11 20, analyzed with LipoP 1.0 [20]) and a large GH5 module (residues 21 to 397) (Figure S1). For the 12 biochemical and structural characterizations, the precise boundaries of the catalytic module were 13 identified using Hydrophobic Cluster Analysis (HCA) plot [21]. Genomic DNA from Zobellia 14 galactanivorans was prepared as previously described [22]. The primers forward (5'-15 16 gggggggggagatctaatatgagggagatagcccctaag-3'; BgIII restriction site is underlined) and reverse (5'-17 cccccccaattgttacttaacaatggcctcggcaatttc-3'; MfeI restriction site is underlined), deduced from the engA gene of Z. galactanivorans (GenBank<sup>TM</sup> accession no. <u>CAZ94281.1</u>), were used to amplify the 18 sequence encoding for the catalytic module (residues 56 to 385) (Figure S1). After digestion with the 19 20 restriction enzymes BglII and MfeI, the purified PCR product was ligated using the T4 DNA ligase into the expression vector pFO4 predigested by BgIII and MfeI, resulting in a recombinant protein 21 with a N-terminal hexahistidine tag. The plasmid was then used to transform E. coli DH5  $\alpha$  strain for 22 23 storage and E. coli BL21 (DE3) strain for expression as described in [23]. The sequence of the gene 24 was checked using a genetic analyzer ABI 3130xl (Applied Biosystems) equipped with 50 cm capillaries and POP7<sup>TM</sup> polymer. Site directed mutagenesis of ZgEngA<sub>GH5 4</sub> was performed using the 25 QuickChange II XL site-directed mutagenesis kit according to the manufacturer's instructions (Agilent 26 Technologies). Sixteen individual mutations were produced using specific forward and reverse primers 27

described in Table S1. Mutated plasmids were then used to transform *E. coli* XL-10 Gold<sup>R</sup>
ultracompetent cells (Agilent Technologies) for storage and *E. coli* strains BL21(DE3) (Novagen<sup>R</sup>) for
protein expression. Mutated plasmids were sequenced to confirm the effectiveness and the position of
the mutation.

# 5

# Production and purification of ZgEngA<sub>GH5\_4</sub> and mutant ZgEngA<sub>GH5\_4\_E323S</sub>

6 Unless otherwise stated, experiments were performed at 20°C. Transformed E. coli strains BL21(DE3) (Novagen<sup>R</sup>) were grown for 72 hours in 250 mL ZYP 5052 medium [24] containing 100 7 μg mL<sup>-1</sup>ampicillin. *E. coli* BL21 (DE3) bearing pFO4 without insert was used as the negative control. 8 9 Culture was stopped by centrifugation at 3,000 g for 20 min. at 4°C and the pellet was stored at -20°C 10 until further use. The pellet was then suspended in 5 mL 25 mM Tris HCl (pH 7.5), 100 mM NaCl, 15 mM imidazole (Buffer A) containing 5 µL DNAse I (500 units µL<sup>-1</sup>). The suspension was incubated 11 12 for 20 min. at 4°C. The cells were then disrupted using a Cell disruption system (Constant Systems 13 Ltd). After centrifugation for 1 hour at 29,000 g and  $4^{\circ}$ C, the cell-free supernatant was then 0.2  $\mu$ m filtered before being loaded at a flow rate of 1 mL min<sup>-1</sup> onto a HisPrep FF 16/10 column (1.6 x 10 14 cm, GE Healthcare) equilibrated in buffer A. The column was washed at a flow rate of 2 mL min<sup>-1</sup> 15 16 with buffer A until the absorbance at 280 nm was negligible. Elution of the protein was performed at the same flow rate using a linear gradient increasing from 15 mM to 500 mM imidazole. The final 17 18 concentration of imidazole was reached after 10 column volumes. 2 mL fractions were collected during the elution step. Fractions containing the recombinant tagged enzyme were estimated by SDS-19 20 PAGE analysis and by Western blot. Transfer from SDS gel onto ready to use 0.2 µm nitrocellulose membrane (BioRad) was performed using a Trans Blot Turbo system in the conditions specified by 21 the manufacturer (BioRad). Monoclonal anti-polyhistidine peroxidase conjugate (Sigma) was used at a 22 final concentration of 1/10000 to specifically recognize the His-tagged fusion protein. Immuno-23 detection was performed by chemiluminescence using the Clarity Western ECL Substrate kit (BioRad) 24 25 and visualization was achieved using the Chemi-Capt 50001 software. Fractions containing the histagged protein were then pooled prior being loaded at a 2 mL min<sup>-1</sup> flow rate on top of an HiPrep 26 Desalting FF 26/10 column (2.6x 10 cm, GE Healthcare) previously equilibrated in 25 mM Tris HCl 27

(pH 7.5), 100 mM NaCl (Buffer B). The same flow rate was used during the elution step and 1 mL
 fractions were collected. Purity of the desalted ZgEngA<sub>GH5\_4</sub> and ZgEngA<sub>GH5\_4\_E323S</sub> was further
 checked by SDS PAGE analysis and dynamic light scattering (DLS).

# 4 **Protein quantification**

Protein amount was estimated at 280 nm using a Thermo Scientific NanoDrop One
spectrophotometer. A molar extinction coefficient of 85,500 M<sup>-1</sup> cm<sup>-1</sup> and a molecular weight of 37.5
kDa, both deduced from the protein sequence, were used to calculate the concentration of
ZgEngA<sub>GH5 4</sub> protein solutions.

# 9 Enzymatic activity assay of pure enzymes

10 Unless otherwise stated, assays were performed using  $\beta$ -D-glucan from barley (0.2 % (W/V) in 50 mM MES buffer pH 6.5) as substrate. The activity was determined using the reducing sugar assay 11 described by Kidby and Davidson [25]. Reactions were performed at 30°C upon incubation of 180 µL 12 of substrate with 20 µL ZgEngA<sub>GH5 4</sub> (100 nM). 20 µL of reaction mixture were withdrawn every 15 13 14 seconds and up to 105 seconds and added to 180  $\mu$ L of ferricyanide reagent. The samples were then incubated for 15 minutes at 95°C and cooled down to 20°C. The absorbance was read at 420 nm using 15 16 a Spark 10M microplate reader (Tecan, Switzerland). A calibration curve was performed under the 17 same conditions, using glucose solutions at different concentrations (from 0.1 to 1.2 mM) as standard.

# **18** Substrate specificity of ZgEngA<sub>GH5\_4</sub>

To assess the enzymes specificity among glycan polysaccharides, degradation of the following
substrates were assayed: β-D- glucan from barley, lichenan, glucomannan, xyloglucan, CMC, Avicel,
Laminarin and curdlan. Activity was measured using the ferricyanide assay described above. Unless
otherwise stated, all these substrates were used at a final concentration of 0.2% W/V in 50 mM MES
pH 6.5. The enzymatic activity was expressed in min<sup>-1</sup>.

To refine the characterization of substrate specificity for  $ZgEngA_{GH5_4}$ , standard commercial oligosaccharides were used as substrates and the hydrolysis products were analyzed by HPAEC coupled with pulse amperometry. Based on the major activities on polysaccharides, the following

oligosaccharide substrates were chosen: laminaribiose (G3G), and different cello oligosaccharides 1 2 (G2, G3, G4, G5 and G6), and also  $\beta$ -(1,3-1,4)- oligosaccharides (G3GG, GG3G, GGG3G and 3 GG3GG). All oligosaccharide substrates were purchased from Megazyme except for GG3GG 4 (Carbosynth). Briefly, 2 mL of oligosaccharides (100  $\mu$ M) were incubated with 150  $\mu$ L recombinant 5 ZgEngA<sub>GH5 4</sub> (0.5  $\mu$ M). Aliquots (170  $\mu$ L) of the reaction mixture were taken at different times (from 6 0 to 120 min.) and boiled for 15 min. to stop the reaction. Samples were then filtered through 4 mm 7 syringe filter (Millipore) and 20 µL were injected onto a CarboPac PA1 column (4x 200 mm, Thermo 8 Scientific) equipped with the accompanying guard column (4x 50 mm, Thermo Scientific), both thermostated at 30°C. Elution was carried out using an isocratic flow rate of 1 mL min<sup>-1</sup> with 175 mM 9 NaOH containing 50 mM NaOAc. Detection of the oligosaccharides was performed by integrated 10 amperometry using a quadruple pulse waveform (E1 +0.1, E2, -2.0, E3 +0.6 and E4 -0.1). Integration 11 of signal intensities was performed using the Chromeleon 6.80 software. Calibration of the different 12 13 oligosaccharides was done using different concentrations of appropriate oligosaccharides from which a dose-response was determined using the Chromeleon software. 14

15 Fluorophore assisted carbohydrate electrophoresis (FACE) was performed to further analyze the 16 specificity of ZgEngA<sub>GH5</sub> 4 on oligo- and poly-saccharides. Depending on the objective, labelling of 17 oligosaccharides was either performed prior hydrolysis with  $ZgEngA_{GH5 4}$  or after hydrolysis. However, the applied reaction conditions were the same. Briefly, 100 µg of poly- or oligo- saccharides 18 19 were labelled with 2 µL 150 mM 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) and incubated for 30 20 min. at 37°C before the addition of 5 µL of 1M NaBH<sub>3</sub>CN in DMSO. Incubation at 37°C was further 21 continued for about 4 to 5 hours. Samples were then dried under vacuum before being suspended. The labeled oligosaccharides were either suspended at ~2- 2.5  $\mu$ g  $\mu$ L<sup>-1</sup> in 25% glycerol (W/V) or, if used as 22 substrate for enzymatic hydrolysis, at ~3.5  $\mu$ g  $\mu$ L<sup>-1</sup>in 50 mM MES (pH 6.5). 23

Conditions used for the hydrolysis of oligosaccharides were as follows: 50  $\mu$ g of oligosaccharides (2  $\mu$ g  $\mu$ L<sup>-1</sup> non labeled and ~3.5  $\mu$ g  $\mu$ L<sup>-1</sup> labeled) in 50 mM MES (pH 6.5) were incubated overnight at 30°C with 4  $\mu$ L of 100 nM ZgEngA<sub>GH5\_4</sub>. Hydrolysis of β-D- Glucan (450  $\mu$ g in 50 mM MES pH 6.5) was performed overnight at 30°C using either 10  $\mu$ L of 100 nM ZgEngA<sub>GH5\_4</sub> or 10  $\mu$ L of lichenase (0.18 U mg<sup>-1</sup>, 0.7 U mL<sup>-1</sup>; Megazyme). After incubation, enzymes were inactivated for 10 minutes at
100°C. For each reaction, a blank was made under the same conditions except that the enzyme was
first inactivated for 10 minutes at 100°C prior to the incubation with the poly- or oligo-saccharides.

About 8-10 µg labeled oligo- and ~12.5 µg labeled β-D glucan (both in 25% glycerol (w/v) final
concentration) were loaded on a chilled 27% polyacrylamide gel. The electrophoresis was performed
in the dark at 125 volts (constant voltage), 4°C, using chilled migration buffer (25 mM Tris, 192 mM
Glycine, pH 8.5). Visualization of the fluorescent oligosaccharides was achieved under UV using a
UV Transiluminator (Thermofisher Scientific Bioblock).

# 9 Optimal pH determination of ZgEngA<sub>GH5 4</sub>

10 The Teorell and Stenhagen buffer (pH 4.2 to 8.5) [26] was used at a final concentration of 100 11 mM to evaluate the pH optimum. Both enzyme and MLG were diluted in this buffer prior hydrolysis 12 reactions which were performed as described above. The enzymatic activity was estimated using the 13 ferricyanide assay. Results are expressed as percentage of relative activity.

# 14 Optimal temperature determination of ZgEngA<sub>GH5 4</sub>

For this measurement both  $ZgEngA_{GH5_4}$  and  $\beta$ -D-glucan from barley were incubated at different temperatures (from 5 to 60°C), in steps of 5°C. The produced amount of reducing sugars was determined as described above. Results are expressed as the percentage of relative activity.

## 18 Thermostability analysis

The thermostability of ZgEngA<sub>GH5\_4</sub> was studied by DLS using a Zetasizer Nano instrument (Malvern). ZgEngA<sub>GH5\_4</sub> (1.15 mg mL<sup>-1</sup>) was filtered through a 0.2 μm membrane filter prior to being heated from 5 to 65°C in steps of 1°C. The hydrodynamic gyration radius (Rg) was measured at each step and the denaturation temperature is defined as the temperature for which the gyration radius sharply increases.

#### 24 Oligomerization state studies

The oligomerization state of  $ZgEngA_{GH5_4}$  was determined both by size exclusion chromatography (SEC) and by size exclusion chromatography coupled to multiple angle laser light

scattering (SEC-MALLS). For the SEC experiments, ~ 600 µg of affinity chromatography purified 1 ZgEngA<sub>GH5 4</sub> in 1 mL of buffer B were loaded on top of a Superdex 75HiLoad 16/60 column (GE 2 Healthcare) previously equilibrated in buffer B. The elution was performed at a 0.7 mL min<sup>-1</sup> flow 3 4 rate. Calibration of the column was carried out in the same conditions using the appropriate calibration standards (GE Healthcare). For the experiments of size exclusion chromatography coupled with 5 MALLS, 100  $\mu$ L at 300  $\mu$ g mL<sup>-1</sup> of ZgEngA<sub>GH5 4</sub> from the Superdex 75 chromatography were loaded 6 7 onto a Superdex 200 Increase 10/300 GL column (GE Healthcare), previously equilibrated for at least 8 24 hours in buffer B. Elution of the protein was performed for 80 minutes at a flow rate of 0.5 mL min<sup>-</sup> <sup>1</sup> and the detection was carried out using both an Optilab rEX detector (Wyatt) and Dawn Heleos light 9 Scattering detector (Wyatt). Results were analyzed using the ASTRA V software (Wyatt Technology) 10

#### 11

# Crystallization and structure determination

Crystals for  $ZgEngA_{GH5 4}$ , in solution at a concentration of 15 mg mL<sup>-1</sup>, were obtained using the 12 hanging drop vapor diffusion method by mixing 2  $\mu$ L of protein solution with 1  $\mu$ L of crystallization 13 solution composed of 14% PEG 6000, 200 mM CaCl<sub>2</sub>, 100 mM sodium acetate buffer at pH 5.0. 14 Crystals were cryo-protected using the crystallization buffer supplemented with 10% glycerol and 15 16 flash frozen in a N<sub>2</sub>-stream at 100K. X-ray diffraction data were collected at 1.2 Å resolution at the 17 European Synchrotron Radiation Facilities (ESRF, Grenoble France) on beamline ID23-1. The images were integrated using XDS [27] in the space group  $P2_1$ . The structure was solved by molecular 18 replacement with MolRep [28] using EngD (PDB ID: 3NDZ) as the search model. An initial model 19 20 was built automatically with the CCP4 version of ARP-wARP, [29] with several cycles of manual 21 rebuilding in Coot [30] and refinement with Refmac5 [31].

Crystals of  $ZgEngA_{GH5_4_E323S}$  in complex with cellotriose were obtained using the same hanging drop method, in drops containing 2 µL of  $ZgEngA_{GH5_4_E323S}$  mutant at 7 mg mL<sup>-1</sup> mixed to 1 µL of well solution consisting in 24-24.5% PEG 3350, 160 mM MgCl<sub>2</sub>, 100 mM Bis- Tris pH 5.5.  $ZgEngA_{GH5_4_E323S}$  mutant was co-crystallized with 0.04% of a mixture of oligohexa- to oligononasaccharides obtained from limited digestion of MLG by  $ZgEngA_{GH5_4}$ . Crystals were soaked in crystallization buffer supplemented with 30% glycerol before being frozen in liquid nitrogen. Data

were collected at the Soleil synchrotron on beamline Proxima1 to 2.2 Å resolution. The images were 1 integrated using XDS [27] and the space group P3<sub>2</sub>. The structure of ZgEngA<sub>GH5 4 E323S</sub> in complex 2 3 with substrate was solved by molecular replacement, using the software Phaser [32] and the structure 4 of ZgEngA<sub>GH5</sub> 4 as the search model. The structure was refined using REFMAC [31] in iterative cycles with manual corrections using the graphic interface Coot [30]. All Figures representing the structures 5 6 were prepared using the program PyMol (Schrödinger, LLC). The atomic coordinates and the atomic 7 factors of both ZgEngA<sub>GH5 4</sub> and ZgEngA<sub>GH5 4 E3238</sub> have been deposited at the Protein Data Bank 8 collection (http://wwwpdb.org/) as PDB ID: 6GL2 and PDB ID: 6GL0 respectively.

# 9 Molecular Dynamics simulations

10 Molecular dynamics (MD) simulations were performed to predict the cellulose recognition properties of native ZgEngA<sub>GH5 4</sub> and ZgEngA<sub>GH5 4</sub> E323S. The input starting protein structures for the 11 12 calculations were generated using the experimental crystal coordinates, and the cellulose substrate was built into the binding pocket of the enzyme. Specifically, four different oligo-glucose, hexameric 13 14 chains were tested in the simulations: a cellohexaose chain with  $\beta$ -1,4 linkages between all sugars, and three mixed-linked oligoplucans with the  $\beta$ -1,3 linkage at different positions (Fig. S2). The simulations 15 are summarized in Supporting Information (Tables S2-S5) together with details of the model 16 construction and simulation protocols. Each model was named according to the position and type of 17 18 linkage present in the oligosaccharide substrate:  $\beta(1,4)$  for the oligosaccharide with  $\beta$ -1,4 linkages between all units;  $-1/+1 \beta(1,3)$  for that with a  $\beta$ -1,3 linkage between units -1 and +1;  $+1/+2 \beta(1,3)$  for 19 that with a  $\beta$ -1,3 linkage between units +1 and +2; and +2/+3  $\beta$ (1,3) for that with a  $\beta$ -1,3 linkage 20 between units +2 and +3. The final coordinates for all trajectories can be accessed through the 21 following link: https://1drv.ms/f/s!ArX4zU6cjMUQnHQ9m5ScGJkyY Kr 22

- 23
- 24

#### 1 **Results**

#### 2 The engA gene was acquired from an ancestral clostridial bacterium

The engA gene (systematic ID: ZGAL 208), coding a single CAZyme module, is localized within 3 a potential polysaccharide utilization locus (PUL 4) [13] (Fig. 1). Besides engA, PUL 4 also includes 4 a gene encoding a lipoprotein of unknown function (ZGAL 209) displaying a C-terminal carbohydrate 5 binding module (CBM4) and two tandem susD/SusC-like pairs (ZGAL 211/212 and ZGAL 213/214) 6 (Fig. 1). PUL 4 was previously identified as strongly induced by  $\beta$ -1,3-glucans [33]. In the context of 7 8 the development of a new screening method for carbohydrate-related proteins, the susD-like protein ZGAL 213 was shown to specifically bind xyloglucans [34]. Altogether, these transcriptomic and 9 10 biochemical results suggest that PUL 4, and thus likely the engA-encoded protein, which will be named ZgEngA<sub>GH5\_4</sub>, could be involved in the degradation of hemicelluloses. 11

Homology searches in the GenBank database indicate that close homologues of ZgEngA<sub>GH5 4</sub> are 12 relatively rare in other marine flavobacteria. Unexpectedly, this protein is highly similar to numerous 13 14 subfamily GH5 4 beta-glucanases from Firmicutes (e.g. 51% sequence identity with the cellulase EngD from *Clostridium cellulovorans* [17]). A phylogenetic analysis of the GH5 4 subfamily 15 indicates that ZgEngA<sub>GH5 4</sub> belongs to a clade only composed of marine flavobacterial proteins. This 16 late-diverging clade is rooted by two successive clades of GH5 4 proteins from Firmicutes (Clostridia 17 18 class) (Fig. 2). Therefore, the paucity of ZgEngA<sub>GH5 4</sub> homologues in marine flavobacteria and their phylogenetic position support that marine flavobacteria have horizontally acquired these GH5 4 genes 19 20 from an ancestral clostridial bacterium.

#### 21 $ZgEngA_{GH5 4}$ is a $\beta$ -glucanase with broad substrate specificity

In the genome of *Z. galactanivorans*, *engA* was annotated as encoding for an endoglucanase, referred here to as  $ZgEngA_{GH5_4}$ . To verify the prediction of this activity, the nucleotide sequence corresponding to the catalytic module was cloned into a pFO4 plasmid. The protein was produced with a yield of ~130 mg L<sup>-1</sup> in *E coli* BL21(*DE3*) strain using an auto-inducible medium. The protein was purified to electrophoretic homogeneity by nickel affinity chromatography (Fig. S3). The purity of the enzyme was further confirmed by DLS (Fig. S3). Both SEC and SEC-MALLS were used to verify that *Zg*EngA<sub>GH5\_4</sub> is a monomer in solution (Fig. S3). SEC-MALLS additionally showed that the enzyme is
 characterized by a molecular weight of 36.5 kDa. This value is slightly lower than the theoretical
 molecular weight of 37.5 kDa deduced from the amino acid sequence of the recombinant protein using
 the ProtParam tool [35] (Fig. S1).

5 DLS was also used to study the thermostability of  $ZgEngA_{GH5_4}$  (Fig. S4A). Indeed, in the range of 6 temperatures from 5 to 37 °C, the protein is characterized by a hydrodynamic radius of gyration of 7 5.59 ± 0.12 nm. This value increases when temperature reaches 40°C and is almost doubled at a 8 temperature of 44°C, indicating the enzymatic denaturation which then further increases with 9 temperature.

10 The ferricyanide reducing sugar assay was used to screen for the hydrolytic activity of the enzyme on several soluble  $\beta$ -glucans such as the carboxymethyl cellulose, lichenan,  $\beta$ -D-glucan from 11 barley, xyloglucan and konjac glucomannan. Activity was also screened on  $\beta$ -1,3-glucans such as 12 13 laminarin, a  $\beta$ -1,3-glucan from *Euglena gracilis* and carboxy methyl curdlan (a bacterial 14 exopolysaccharide) but revealed to be non detectable (Table 1). Although the enzyme is active on 15 soluble cellulose derivatives, its activity towards this substrate is very low, compared to its activity towards mixed linked  $\beta$ -(1,4-1,3)-glucans, such as  $\beta$ -D-glucan from barley and lichenan from Iceland 16 17 moss. ZgEngA<sub>GH5 4</sub> is also able to degrade substituted  $\beta$ -1,4-glycosides such as glucomannan and, to 18 some extent, xyloglucan (Table 1). Taken together, these results classify this enzyme as a  $\beta$ -(1,3-1,4)-19 endoglucanase.

Prior to the determination of which linkage and which minimal substrate the enzyme is able to hydrolyze, an evaluation of its optimal conditions was carried out. Using β-D-glucan (MLG) from barley as substrate, the universal buffer of Teorell and Stenhagen, was used to study the pH dependence of the activity of  $ZgEngA_{GH5_4}$ . The enzyme shows activity between pH 5.0 and 8.5 but the optimum of activity is observed at pH 6.0-6.5 (Fig. S4B). At pH 5.5, the enzyme loses about 40% of its activity, as it does at pH values above 8. Similar results have been observed using biological buffers such as MES, MOPS, phosphate and Tris, further showing that the activity of the enzyme in
the MES buffer is higher than in the other ones (Fig. S4B).

β-D-glucan from barley was also used as substrate to study the influence of the temperature on 3 the enzyme activity. In this case, the substrate was first thermostated at different temperatures, 4 5 between 5 and 60°C, prior to the enzymatic reaction. As shown on Fig. S4C, the enzyme displays an optimal activity at 45°C. At 50°C, the enzyme loses almost half of its activity, which drops to only 6 about 10 % at 60°C. In order to avoid denaturation, all the subsequent enzymatic reactions were 7 8 however performed at 30°C, a compromise temperature between enzymatic activity and stability. The 9 influence of NaCl was evaluated at different concentrations, up to 1M and seems to have no significant effect on the enzymatic activity 10

# 11

# ZgEngA<sub>GH5 4</sub> is able to cleave both $\beta$ -1,3 and $\beta$ -1,4 linkages

To establish which linkages are cleaved by  $ZgEngA_{GH5_4}$ , different standard  $\beta$ -1,4 and  $\beta$ -(1,4-13)-oligosaccharides were used as substrates. The hydrolysis products were identified by HPAEC using a CarboPAc PA1 column, specifically dedicated to the separation of small oligosaccharides. From these experiments, it appears that, even when the reaction lasts overnight,  $ZgEngA_{GH5_4}$  is unable to hydrolyze di- and tri-saccharides, whether they originate from cellulose or MLG polymers. A minimum of 4 glucose units (G4) is therefore essential for the activity of the enzyme.

In a first step, the nature and the concentration of different products released during hydrolysis 18 of cello- oligosaccharides by ZgEngA<sub>GH5 4</sub> were measured as a function of time (Fig. 3). While after 19 20 60 minutes, 20 % of cellotetraose (G4) remain to be hydrolyzed (Fig. 3A), hydrolysis of cellopentaose 21 and cellohexaose are a lot faster as they both are completely hydrolyzed within 1 and 2 minutes, respectively (Fig. 3B and C) Hydrolysis of cellopentaose (G5) is straightforward and produces only 22 23 cellobiose (G2) and cellotriose (G3) (Fig. 3B). Hydrolysis of cellohexaose (G6) proceeds in two steps, 24 since both cellotetraose (G4) and cellotriose (G3) are produced within the first two minutes, however, 25 as hydrolysis proceeds, cellotetraose (G4) is further hydrolyzed into cellobiose (G2) (Fig. 3C).

26 In a next step, and to evaluate the ability of  $ZgEngA_{GH5_4}$  to hydrolyze β-1,3 linkages, two β-27 (1,4-1,3)-tetrasaccharides, namely GGG3G and GG3GG, differing from each other by the position of

the β-1,3 linkage, were used as substrates. In GGG3G the β-1,3 linkage is at the reducing end, while it is flanked by a β-1,4 linkage on both sides in GG3GG. Hydrolysis of GGG3G (G4B) yielded glucose (G1), cellobiose (G2), cellotriose (G3) and laminaribiose (G3G; L2) (Fig. 3D) whilst only cellobiose (G2) was produced upon hydrolysis of GG3GG (G4C) (Fig. 3E). Altogether, these results indicate that  $ZgEngA_{GH5_4}$  is able to accommodate both β-1,4 and β-1,3 linked glucose in the +1 binding subsite, whereas only β-1,4 linkages are accepted in the negative binding subsites (Fig. 4E and F). It also shows that the specificity of  $ZgEngA_{GH5_4}$  is dictated by the position of the β-1,3 linkages.

8 Hydrolysis of oligosaccharides, as well as of  $\beta$ -D glucan from barley, was also followed by FACE (Fig. 4A-D). The ANTS was used as a fluorophore to label the reducing end of the 9 oligosaccharides, which were then separated by electrophoresis. In addition to corroborating the 10 results obtained by HPAEC about the products formed upon hydrolysis of the oligosaccharides, this 11 12 technique showed in particular that cellotetraose and cellohexaose are hydrolyzed with different modes. Indeed, depending on whether labeling was performed on the substrate or on the hydrolysis 13 products, the end products of these oligosaccharides are different: when cellotetraose (G4) is labeled 14 before hydrolysis (Fig. 4A), the fluorescent oligosaccharides migrate as cellotriose (G3) and minor 15 16 amounts of cellobiose (G2). When labeling is performed after hydrolysis (Fig. 4B), the major 17 oligosaccharide is cellobiose (G2), although there are traces of cellotriose (G3) and even of glucose (G). Similarly, when labeling cellohexaose (G6) before hydrolysis mostly cellotriose (G3) but also 18 some cellobiose (G2) oligosaccharides are detected (Fig. 4A), whilst when cellohexaose (G6) is first 19 20 hydrolyzed and then labeled, both cellobiose (G2) and cellotriose (G3) are detected at the same 21 intensity (Fig. 4B).

22 Comparison of the end products generated from the hydrolysis of  $\beta$ -D-glucan with the 23 lichenase and with  $ZgEngA_{GH5_4}$  reveals that the size of the products are similar but the cleavage sites 24 of the enzymes are different (Fig. 4C). As expected, GG3G and GGG3G are the end products of the 25 MLG hydrolysis by lichenase, whilst G2, G3, G4 and to some extent G5 are the end products observed 26 after hydrolysis with  $ZgEngA_{GH5_4}$ . These oligosaccharides, as well as the complete absence of 27 oligosaccharides with  $\beta$ -1,3 bonds such as GG3G, GGG3G, G3GG and GG3GG attest therefore that, 1 at the polymer level, the preferred cleavage site of the  $ZgEngA_{GH5_4}$  are  $\beta$ -1,3 bonds that are 2 neighbored by  $\beta$ -1,4 bonds, at least towards the non-reducing end (Fig. 4G).

Further hydrolysis overnight with ZgEngA<sub>GH5\_4</sub> of the labeled oligosaccharides produced by the
lichenase shows that GG3G is not hydrolyzed whilst the complete hydrolysis of GGG3G into
laminaribiose (G3G) (Fig. 4D) is attained, again attesting thereby that, on small oligosaccharides,
ZgEngA<sub>GH5\_4</sub> is able to cleave the β-1,4 bond that precedes a β-1,3 bond (Fig. 4F). Altogether, these
experiments allow deducing the subsites and their involvement in substrate binding, and they also
show that the +1 or +2 binding subsites do not tolerate/accommodate the fluorophore (Fig. 4E and F).
Further interpretation of these results is described in the discussion below.

#### 10 Three-dimensional structure of ZgEngA<sub>GH5</sub> 4

In order to determine the molecular basis of substrate recognition by ZgEngA<sub>GH5</sub> 4, we solved the 11 crystal structure of ZgEngA<sub>GH5\_4</sub> wild-type and the E323S mutant (ZgEngA<sub>GH5\_4\_E323S</sub>) in complex with 12 13 the cellotriose (three glucose units linked by  $\beta$ -1,4 bonds) (Table 2). The structure of ZgEngA<sub>GH5</sub> 4 was solved at 1.2 Å resolution by molecular replacement using the structure of EngD (PDB ID: 3NDZ, 14 15 51% sequence identity, Fig. 5) as a search model. There is only one molecule in the asymmetric unit. The ZgEngA<sub>GH5 4</sub> adopts a typical TIM-barrel ( $\beta/\alpha$ )<sub>8</sub> fold. An additional helix ( $\alpha$ 0) closes the  $\beta$ -barrel 16 at its N-terminal face, consistent with other GH5 enzymes (Fig. 6A). Structural similarity searches 17 using the DALI server [36] identified close relationship to other GH5 enzymes. The closest ones were 18 19 the structure of endoglucanase E from Ruminiclostridium thermocellum (PDB ID: 4IM4) and of endoglucanase D from Clostridium cellulovorans (PDB ID: 3NDZ). Both are GH5 enzymes that 20 exhibit broad substrate specificity, preferentially displaying high activity on  $\beta$ -1,4 linked glucans and 21 22 xylans.

Like other GH5 enzymes, the active site is formed by a catalytic cleft, which runs across the whole protein, where specific binding subsites recognize each glucose unit. Two glutamic acid residues (E200 and E323, in  $ZgEngA_{GH5_4}$ ) correspond to the catalytic acid-base and nucleophile respectively, and are positioned between the -1 and +1 sub-binding sites (Figs. 6B, 7A). Consistently 1 with all other TIM-barrel hydrolases, these residues are located at the end of  $\beta$ -strands  $\beta$ 4 and  $\beta$ 7 (Fig.

2 5).

3 The co-crystallization of ZgEngA<sub>GH5 4 E323S</sub> with a mixture of oligosaccharides (mainly hexa- to nona-saccharides, all produced by the native enzyme upon hydrolysis of MLG) resulted in the 4 5 complex structure solved at 2.2 Å resolution, with three molecules in the asymmetric unit. A clear 6 electron density corresponding to a cellotriose (G3) oligosaccharide, linked by  $\beta$ -1,4 bonds only, is 7 present in the active site of each of the three monomers (Fig. 6B). The presence of this substrate 8 molecule could either be due to a contamination of our oligosaccharide mixture by cellotriose, which are preferentially selected by ZgEngA<sub>GH5 4 E3238</sub>, or additional units at the non-reducing end are 9 10 completely disordered in the crystal structure. These substrate molecules (further on named cellotriose 11 or G3) occupy the negative binding subsites from -3 to -1. The glucose unit bound to the -3 subsite 12 establishes a stacking interaction with W89. In the -2 subsite, N77 and N358 are involved in substrate binding via hydrogen bonds. The glucose unit bound to the -1 subsite is the most stabilized one, 13 stacked against W356, and hydrogen bonded to H155, H156, Y277 and E200 (Fig. 6B). 14

A particular feature in  $ZgEngA_{GH5_4}$  is the loop following the  $\beta$ -strand  $\beta$ 8 that is shorter by 4 residues when compared to CcEngD (PDB ID: 3NDZ) or CcCel5A (PDB ID: 1EDG). This feature creates a more open active site at the non-reducing end (negative binding subsites), which could accommodate branched substrates (Fig.7B). Indeed, in the above mentioned other GH5 enzymes, this loop binds the glucose unit occupying the -3 subsite, by forming hydrogen bonds between an Asp or Glu residue and the O6 of this glucose unit. Here, the residue E363 is located too far to interact with the substrate (Fig.7A).

Another outstanding feature is the conformation of residue Y280. Indeed, the loop between  $\beta$ strand  $\beta \delta \alpha$ -helix  $\alpha \delta$ , carrying this residue, has a completely different conformation than in other GH5 enzymes (Fig. 7B). First, the presence of T287 directed towards the short  $\alpha \delta'$  helix can be noted, whereas in other GH5, this threonine is substituted by a short residue which points to the solvent. This feature forces D285 to adopt a different conformation compared to all other GH5 enzymes. To avoid a steric clash with T287 or D285, the neighboring Y280 is orientated in the opposite direction compared to tyrosine residues at this position of other GH5 enzymes. The change of conformation of this residue
is also possible by the presence of Q281, instead of an aromatic residue at this position in most of the
other GH5 enzymes, which would clash with Y280 in this orientation. Overall, the presence of Y280
that changes the loop position also leads to a narrowing of the binding cleft on the positive binding
subsites (Fig. S22A). Notably, when replacing Y280 by alanine (Fig. S22B) by computational
mutation, the overall substrate binding cleft resembles closely that of F32EG5 (Fig. S22C).

# 7 Site directed mutagenesis of selected residues and molecular modeling to explore the catalytic 8 active site

9 In order to investigate the role of a selection of residues in the active site, we undertook site directed mutagenesis experiments. Based on the 3D structure analyses, we chose to mutate residues 10 that potentially interact with different polysaccharide substrates, outside the -1 sub-binding site, since 11 the importance of residues surrounding the -1 sub-binding site in substrate recognition and catalytic 12 activity has already been demonstrated [10, 37]. We also included two residues, Y82 and E363, which 13 are not directly involved in interaction with a linear polysaccharide but that could accommodate 14 15 branching in substrates, such as xyloglucan or glucomannan. However, mutation of both of these residues does not affect the activity, even on branched substrate (Table 3). On the other hand, 16 replacement of the residues N77, H156, W210 or N358 by alanine substantially decreases or even 17 18 completely abolishes the catalytic activity. These residues interact with glucose units bound to the -2, -19 1 and +1 subsites in the model obtained by molecular dynamics, respectively (Fig. 6B, C and D). Mutation of W210 to phenylalanine partially restores the activity (about 40% of activity when 20 compared to  $Z_{gEngA_{GH5 4WT}}$ , which supports the fact that this residue establishes van der Waals 21 contacts with the glucose unit positioned in the +1 subsite. Surprisingly, mutations of Y280 and K211, 22 23 which are thought to interact with glucose units bound to +2 and +3 subsites, respectively, did not 24 decrease the activity.

25 *Computed protein structure and molecular dynamics:* 

We used atomic resolution molecular dynamics computer simulations to model the binding of the full range of putative hexaose ligands (poorly resolved in the crystal structures) to wild type  $ZgEngA_{GH5_4}$ and the mutant  $ZgEngA_{GH5_4_E3238}$  endoglucanases. The ligand structures are described in Methods.

Both native and mutated structures show preservation of the protein secondary structure throughout 1 2 the few-hundred nanosecond simulations (Figs. S5-S8 and Figs. S9-S12), even in cases where the 3 glucan substrate leaves the binding pocket. The computed Root Mean Square Deviations (RMSD) of 4 protein backbone non-hydrogen atoms in both mutant and native ZgEngA<sub>GH5</sub> 4 (Figs. S13, S14) were within 0.2-0.3 nm, indicating a stable protein structure throughout the simulations. Calculated Root 5 Mean Square Fluctuations (RMSF) (Figs. S15, S16) show the steric freedom of the more flexible and 6 7 loose parts of the crystal structure such as turns and loops (residues 85-90, 125-126, 162-164 and 207-8 211).

9 *Computed substrate dynamics – glucan in the binding site:* 

The -1/+1 ( $\beta$ -1,3) oligosaccharide with a  $\beta$ -1,3 linkage between units -1 and +1 (see Experimental) and 10 the +1/+2 ( $\beta$ -1,3) glucan remain bound in 5 and 3 out of 8 repeats, respectively. The -1/+1 ( $\beta$ -1,3) and 11 +1/+2 ( $\beta$ -1,3) glucans remain bound in 5 and 3 out of 8 repeats, respectively. Computed glucan RMSD 12 values (Figs. S17-S18) show that -1/+1 ( $\beta$ -1,3) forms a stable binding interaction with both the native 13 (RMSD 0.24  $\pm$  0.04 nm) and mutated ZgEngA<sub>GH5 4 E3238</sub> (RMSD 0.26  $\pm$  0.04 nm). The next most 14 15 strongly bound ligand was +1/+2 ( $\beta$ -1,3), followed by +2/+3 ( $\beta$ -1,3). The ( $\beta$ -1,4) glucan either 16 dissociates (4 out of 8 repeats) or else forms a loose complex with both the native and mutated enzyme 17 (4 out of 8 repeats) with high glucan RMSD values of up to  $0.44 \pm 0.14$  nm. In all other simulations, 18 we observe either loose unstable binding of a substrate or dissociation into solution, and we did not 19 include these dissociated structures in the analysis of binding energetics below.

20 *Computed sugar – protein interactions:* 

The number of hydrogen bonds forming between the protein and substrate were monitored over time
(Tables S6-S19) to identify protein residues contributing strongly to glucan binding (Figs. S19-S20).
Eight hydrogen bonds (Tables S20-S21) stabilize the glucan in both native and mutated enzyme
binding pockets. Namely, N77, E200, T253, H275, Y277, W356, N358, and E363.

The -1/+1 ( $\beta$ -1,3) glucan exhibits the most favorable affinity for both wildtype and mutated ZgEngA<sub>GH5\_4\_E323S</sub>, as it stays strongly bound to the protein by 6 or more hydrogen bonds (Tables S20-S21) in 80% of the simulations. The computed MD structures in Fig. 6C and D show that T253 and Y277 stabilize the sugar unit bound at the +3 subsite, W210 and E209 form H-bonds with +2, H275
and Y280 bind to +1, E200 binds to -1, and N358, W356, Y82 and N77 bind to the -2 subsite.
Aromatic residues also contribute to carbohydrate recognition and orientation (Tables S22-S23 and
Fig. 6C and D). Eight aromatic residues Y82, H155, W210, H275, Y277, Y280, W356 and F364 (Fig.
6C and D) interact with the substrate as it hydrogen bonds with adjacent polar and charged residues.

Computed binding energies (Table S24) show significantly stronger time-averaged substrate binding 6 to mutated ZgEngA<sub>GH5 4 E323S</sub> than wildtype (-38.2  $\pm$  10.6 kcal.mol<sup>-1</sup> vs. -22.5  $\pm$  8.5 kcal.mol<sup>-1</sup>). The -7 1/+1 (β-1,3) glucan showed the strongest binding energy (-42.7 ± 9.0 kcal.mol<sup>-1</sup>), consistent with its 8 low RMSD (Figs. S17-S18) and extensive H-bonding (Figs. S19-S20). By contrast,  $(\beta - 1, 4)$  showed the 9 10 weakest binding energies, reflecting its poor fit to the ZgEngA<sub>GH5 4</sub> active site pocket. In the most 11 stable binding trajectories, the glucose chain is stabilized by H-bonding to approximately six polar and 12 charged residues and makes close contacts with adjacent aromatic residues. The 'S-shaped' binding pocket better fits the natural conformation of the  $-1/+1(\beta-1,3)$ -linked glucan than the linear all ( $\beta$ -1,4) 13 14 ligand.

## 15 *Other insights from molecular modelling:*

In the last frame of two simulations between  $ZgEngA_{GH5_4_E323S}$  and GGGG3GG, the substrate is correctly positioned in the catalytic cleft. Then, the glucose in the +1 binding subsite interacts by stacking with W210. This interaction seems to be of high importance to position the substrate in such way to enable catalysis. The  $\beta$ -1,3 linkage induces a turn, which allows stacking interaction between glucose in +2 and Y280. However, this interaction seems to be more labile since it is present in only one model out of three. The glucose in +3 seems to have more degrees of liberty, and it establishes only weak contact with K211 and S252 (Fig. 6C).

In the simulations between  $ZgEngA_{GH5_4_E323S}$  and GGG3GGG, the turn induced by the  $\beta$ -1,3 does not affect the stacking with W210, which is in a flexible loop. Indeed, in all simulations, it adapts its position to interact with glucose in +1. Y280 does not establish stacking contact with the glucose in +2 but it interacts with the glucose unit in +3 via a hydrogen bond (Fig. 6D)

- 1 Fixation of the whole  $\beta$ -1,4 substrate or GGGGG3G, seems to be weaker, as only W210 interacts with
- 2 the substrate in the positive binding subsites.

#### 1 DISCUSSION

2 The frequent classification of family GH5 enzymes as cellulases in marine *Flavobacteriia* [13, 16], despite the fact that these bacteria usually do not degrade crystalline cellulose [14, 15], is 3 4 puzzling. Therefore, and in the context of recent work highlighting that GH5 enzymes belong to one of the largest, multi-specific glycoside hydrolase families [7, 10-12], covering a very large range of 5 activities, we applied a combination of methods spanning phylogeny, enzymology, crystallography 6 7 and molecular modeling to explore key enzyme-substrate interactions in  $ZgEngA_{GH5}$  4 that define its substrate specificity. The comparison to other enzymes within GH5 4 reveals how substrate 8 9 specificity is fine-tuned, even within the GH5 4 subfamily, and sheds further light on the roles of this 10 subfamily in glucan catabolism. Taking the occurrence of this gene in a PUL that possibly is involved 11 in the catabolism of hemicelluloses as starting point, we show that cellulose and soluble  $\beta$ -1,4-glucanderivates are not the preferred substrates. Instead, we demonstrate that  $ZgEngA_{GH5 4}$ , is a  $\beta$ -(1,3-1,4)-12 glucanase that preferably cleaves  $\beta$ -1,3 linkages flanked by  $\beta$ -1,4 linkages, but is also able to 13 14 hydrolyze  $\beta$ -(1,4)-linkages in glucomannan, or in short oligosaccharides, depending on the linkage positions. The ability to hydrolyze  $\beta$ -(1,4) linkages in various substrates is common to EngD from C. 15 16 *cellulovorans* (the closest structural relative of  $ZgEngA_{GH54}$ ), which has been described as a true 17 cellulase [38]. However, the relative activity of these two enzymes differs radically when using xyloglucan or CMC as substrates. In those cases, ZgEngA<sub>GH5 4</sub> is closer to other family GH5 4 18 members, such as PbGH5A from Prevotella bryantii and F32EG5 from Caldicellulosiruptor (Table 1). 19

Mapping the  $ZgEngA_{GH5_4}$  active site by the combination of crystallographic structure determination together with molecular modeling and product analyses using different substrate oligosaccharides, suggests the presence of six well defined binding subsites, evenly distributed with respect to the cleavage point, three negative and three positive subsites. The crystal structure of the inactivated mutant highlights the binding subsites on the non-reducing end to which the cellotriose molecule (GGG) is bound. The molecular dynamic simulations using  $\beta$ -(1,3-1,4)-hexasaccharides that differ by the position of the  $\beta$ -1,3-linkage corroborate this biochemically observed preference, since 1 GGG3GGG, spanning the positions from -3 to +3 displayed the most favorable affinity for the 2 catalytic cleft of  $ZgEngA_{GH5_4}$ . In this configuration, the  $\beta$ -1,3-linkage is positioned at the cleavage 3 site, in accordance with the preferred hydrolytic activity of the enzyme on polysaccharide.

4 The biochemical analyses also revealed that the smallest hydrolyzed substrates are 5 tetrasaccharides. More generally, the mode of hydrolysis of minimal substrates showed that activity is favored when oligosaccharides are spanning the cleft using the  $-2 \rightarrow +2$  subsites, but hydrolysis does 6 7 occur with modes spanning more subsites on the non-reducing end for GGG3G or on the reducing-end for G4. Notably, oligosaccharides containing β-1,4-linkages only, such as cellulo-oligosaccharides G4 8 9 to G6 are also hydrolyzed, however at a much slower rate than the preferred substrates. This is 10 supported by molecular dynamics showing that cellulo-oligosaccharides were indeed much less 11 stabilized in the active site cleft than the MLG oligosaccharides. In the case of G6, G4 is the first reaction product, meaning that for small oligosaccharides occupation of negative subsites 12 predominates over positive ones. The hydrolysis of the mixed linkage oligosaccharides GGG3G and 13 GG3GG also revealed the importance of the negative binding subsites in ZgEngA<sub>GH5</sub> 4. GGG3G is 14 15 mainly hydrolyzed according to the  $-3 \rightarrow +1$  binding mode, demonstrating therefore that binding in 16 subsite +2 is not essential for the hydrolysis of mixed linkage oligosaccharides. However, the absence of hydrolysis of GG3GG in the same mode suggests that  $ZgEngA_{GH5 4}$  only tolerates  $\beta$ -1,4 bonds in 17 the negative subsites, and that the presence of  $\beta$ -1,4 linkage in these positions is essential for 18 19 hydrolysis of the neighboring  $\beta$ -1,3 linkage. In this respect, ZgEngA<sub>GH5 4</sub> is closer to cellulases [9, 37, 38]. Indeed, eight residues (Figs. 5 and 6) present in the negative binding subsites (N77, H155, H156, 20 H275, Y277, W356 and N358) are well conserved throughout GH5 4 and typically bind to successive 21 22 β-1,4-linked glucose units. This binding mode is completely different to that of family GH16 enzymes that cleave MLG (the so-called "lichenases") that require a  $\beta$ -1,3 linkage in the negative subsites, a 23 24 feature common to the  $\beta$ -glucanases ZgLamA<sub>\_GH16</sub> and ZgLamC from Zobellia galactanivorans [39, 25 40]. Interestingly, these enzymes are also able to cleave both  $\beta$ -1,3 and  $\beta$ -1,4 linkages but, unlike  $ZgEngA_{GH5 4}$ ,  $ZgLamA_{GH16}$  tolerate  $\beta$ -1,3 bonds in its negative subsites, rather than in the positive 26 27 subsites.

1 The ability to cleave both  $\beta$ -1,3 and  $\beta$ -1,4 bonds has been previously described for GH5 4 2 enzymes [41] and it has been recently studied in light of 3D structures for PbGH5A [11], F32EG5 [10] and SdGluc5 26 [12]. Like ZgEngA<sub>GH5 4</sub>, these enzymes have  $\beta$ -(1,3-1,4) glucanase activities 3 to 7 3 4 times higher than on CMC or cellulose. All of these enzymes require  $\beta$ -1,4-linkages between the -1 5 and -2 subsites and tolerate  $\beta$ -1,3-linkages in positive binding subsites. Nevertheless, subtle differences in accommodating the MLG substrate in the active site cleft can be noted between these 6 7 enzymes. Although both ZgEngA<sub>GH5 4</sub> and F32EG5 [10] tolerate both  $\beta$ -1,3 and  $\beta$ -1,4 bonds at the +1 8 and +2 subsites, they differ from each other by the fact that  $ZgEngA_{GH5 4}$  is unable to hydrolyze 9 oligotrioses and has strict specificity for  $\beta$ -1,4-linkages between the -1 and -2 subsites, whereas 10 F32EG5 only needs the -1 subsite to be occupied for activity [10]. The only structural difference between these enzymes in the negative binding sites consists in a loop that carries N358 and E363 11 12 (N362 and E370 in F32EG5 PDB ID: 4X0V; N367 and E375 in [10]) (Fig. 7A). In F32EG5, E370 interacts with O6 of the glucose-unit bound in the -1 subsite, while the different loop conformation in 13 14 ZgEngA<sub>GH5 4</sub> positions this residue far too distant (more than 7 Å between E363-OE1 and O6 of the glucose unit bound in -1, making this interaction impossible (Fig. 7A). Indeed, the point mutant of 15 E363 in our study did not have any effect on the enzymatic activity. Contrarily, this additional 16 stabilization of a glucose unit bound to the -1 subsite in F32EG5 thus plausibly explains the major 17 difference between these two enzymes. The need to bind several  $\beta$ -1,4-linked glucose units at negative 18 19 subsites, in turn, is shared with PbGH5A and SdGluc5 26, although their sequence identities to ZgEngA<sub>GH5 4</sub> are lower (32% and 22% respectively) than to F32EG5 (41.5% sequence identity). 20 21 Notably, both in PbGH5A and SdGluc5 26 the binding cleft displays a more open space beyond binding subsite -1 towards the non-reducing end, although the corresponding loops and residues are 22 highly diverse in these three enzymes. Apparently less tight binding of the unit bound to -1 implies 23 24 that more sites need to be occupied for substrate stabilization prior to cleavage.

Differences in loop arrangements are also present at the positive end of the active site cleft, even within the GH5\_4 subfamily. In this respect,  $ZgEngA_{GH5_4}$  has a uniquely featured loop between  $\beta 6$ and  $\alpha 6$  (Fig. 7B) that influences the positioning of the substrate at the +1 and +2 binding sites. The

molecular dynamic simulations show that ZgEngA<sub>GH5 4</sub> seems to display a rather flexible binding 1 2 mode in these sites, in agreement with the fact that the mutation of Y280, to our surprise, did not affect 3 activity. Apparently the general difference of the loop structure in ZgEngA<sub>GH5 4</sub> is sufficient to shape the binding cleft such that a mixed linked chain with the  $\beta$ -1,3-linkage positioned at the -1 $\rightarrow$ +1 4 5 cleavage site is favored. In addition, the results of the product analyses of small oligosaccharides also 6 indicate that binding at the positive subsites +2 and +3 are not crucial for the enzymatic activity or 7 substrate specificity. In this context, it is interesting to note that activity at the level of the MLG 8 polysaccharide differs from that on small oligosaccharides, highlighting that although powerful and 9 useful for dissecting subtle substrate specificities, biochemical in vitro product analyses of 10 oligosaccharides artefactually show activities that might not be relevant under natural conditions. 11 Indeed MLG polysaccharides appear to be hydrolyzed by ZgEngA<sub>GH5 4</sub> almost exclusively at the β-1,3-linkages (Fig. 4C). ZgEngA<sub>GH5 4</sub> also shows substantial activity on glucomannan as compared to 12 CMC and no activity at all on laminarin-like substrates that only contain  $\beta$ -1,3-linkages. These results 13 14 on polysaccharides seem to point towards the fact that the overall 3D structural conformation of the polymeric chain also plays an important role for substrate specificity, and the kinked polysaccharide 15 chain of MLG (or a non-regular structure, as in glucomannan) is the preferred site of hydrolysis of this 16 enzyme. Interestingly, the bent or kinked active site cleft has also been described to be an important 17 feature of other GH5\_4 members. 18

19 In summary, *in vitro* ZgEngA<sub>GH5 4</sub> appears to be most active on plant hemicellulose substrates, 20 such as the polymers  $\beta$ -(1,3-1,4)-glucan and glucomannan, which raises the question of the functional 21 rational behind this activity in the context of its ecologic and marine occurrence in Z. galactanivorans. While its evolutionary origin clearly points towards acquisition through lateral gene transfer from 22 typical land-plant polysaccharide degrading bacteria, such as C. cellulovorans, the question remains 23 whether the enzyme in the context of the physiology of Zobellia galactanivorans has 'specialized' for 24 25 marine macro-algal cell wall components or if it remains specific of plant hemicelluloses. Arguments 26 can be found for both scenarios: several macroalgal species of the red lineage have been reported to contain glucomannan as cell wall component [42], and mixed linkage glucans are reported in red and 27

brown algal species [4, 42]. Moreover, engA is found in a PUL like genetic context, next to 1 2 hypothetical proteins that are indicative of a potential involvement in degradation of to date 3 undescribed polysaccharide components. On the other hand, hemicellulosic polysaccharides, which strongly resemble those of land plants, can also be found in the marine environment in seagrasses, 4 5 which could be the targeted natural substrate of this enzyme together with the adjacent PUL, for which the SusD-like protein was found to recognize xyloglucan. The elucidation of the biochemical activities 6 7 and substrate specificities of the adjacent other components of the PUL-like structure may be the key to unravel the precise natural cell wall substrates that are targeted by these proteins. 8

9

#### **10** ACCESSION NUMBERS

The atomic coordinates and the atomic factors of both ZgEngA<sub>GH5\_4</sub> and ZgEngA<sub>GH5\_4\_E323S</sub> have
 been deposited at the Protein Data Bank collection (http://wwwpdb.org/) as PDB ID: 6GL2 and PDB
 ID: 6GL0 respectively. The modeling coordinates can be accessed through the following link:
 <u>https://1drv.ms/f/s!ArX4zU6cjMUQnHQ9m5ScGJkyY\_Kr</u>

#### **1** ACKNOWLEDGMENTS

We are deeply grateful to Alexandra Jeudy for technical assistance especially in the crystallization 2 3 experiments of the wild-type enzyme. We thank the local contact support on the beamlines ID-14-4 and Proxima2 at the ESRF (Grenoble, France) and SOLEIL (Paris, France). JDo, SR, MG, AO, JDa 4 5 and MC are grateful to the EU for its support with regards to the CellulosomePlus Program (FP7-NMP, project 604530). GM acknowledges support from the Agence Nationale de la Recherche (ANR) 6 7 with regard to the "Blue Enzymes" project (Reference ANR-14-CE19-0020-01). GM and MC are also grateful to ANR for its support with regards to the investment expenditure program IDEALG 8 (http://www.idealg.ueb.eu/, grant agreement No. ANR-10-BTBR-04). DT thanks Science Foundation 9 Ireland (SFI) for support (Grant Number 15/CDA/3491) and for computing resources at the 10 SFI/Higher Education Authority Irish Center for High-End Computing (ICHEC). 11

12

#### **13 DECLARATION OF INTERESTS**

14 The authors declare that there are no competing interests associated with the manuscript.

15

#### **16 AUTHOR CONTRIBUTION STATEMENT**

17 GM, MC and SG conceived the study; AL performed the protein expression experiments of the wild type enzyme. SR crystallized the wild type enzyme with ligand molecule. GM performed the 18 19 bioinformatics and phylogenetic analysis. MCB performed some preliminary hydrolysis kinetic 20 analysis of the wild type enzyme. SG produced and characterized the wild type enzyme. MC and JDa solved the structure of the wild type enzyme. SR produced the mutants. SR also produced the ligand 21 22 she used for the crystallization of the mutant. JDo and SG performed the kinetic analysis of the 23 mutants. SG also performed the HPAEC and FACE experiments. JDo determined the X-Ray structure 24 of the mutants. MG, AO and DT performed the computer simulations. JDo, GM, MC and SG wrote

- 1 the manuscript with the help of AL and input from other co-authors. All authors approved the final
- 2 version of the manuscript.

3

#### **1 FIGURE LEGENDS**

Figure 1: Gene composition of the Polysaccharide Utilization Locus 4 (PUL\_4) from Zobellia *galactanivorans*. The gene encoding the ZgEngA<sub>GH5\_4</sub> is colored in green; the other genes are colored
in blue. Abbreviations: CBM4, family 4 of carbohydrate binding modules; TBDT, TonB-dependent
transporter.

**Figure 2**: **Phylogenetic tree of**  $ZgEngA_{GH5_4}$  **homologues.** The phylogenetic tree was derived using the maximum-likelihood approach with the program MEGA6 [19]. Numbers indicate the bootstrap values in the maximum likelihood analysis. The sequence marked by a brown diamond correspond to  $ZgEngA_{GH5_4}$ . The characterized enzymes are indicated by a black dot (biochemically characterized) or a black triangle (biochemically and structurally characterized). For these latter enzymes, the PDB code is indicated after the protein name. On the right, clades are delimited by brackets and their taxonomic affiliations are indicated. The sequences used are listed in supplementary Table S25.

Figure 3: Substrate specificity of  $ZgEngA_{GH5_4}$  studied by HPAEC. Hydrolysis of cellotetraose (A), cellopentaose (B), cellohexaose (C), tetraose B (GGG3G; G4B) (D) and tetraose C (GG3GG; G4C) (E) from the mixed-linked glucan lineage with  $0.5\mu M ZgEngA_{GH5_4}$ . Hydrolysis was performed as a function of time at 30°C. Aliquote of the reaction mixture were withdrawn periodically and analyzed by HPAEC-PAD on a CarboPAc-PA1 column. The oligosaccharides produced were identified and quantified via a standardization of the column performed with the different commercially available oligosaccharides used at different concentrations.

Figure 4: Terminal products of  $ZgEngA_{GH5_4}$  upon hydrolysis of standard oligocelluloses (A and B),  $\beta$ -D- Glucan (C) or its hydrolysis products (D) and schematic representation of the oligosaccharides accommodation in the active site (E and F). In these experiments, incubations were performed overnight at 30°C using 1µL of  $ZgEngA_{GH5_4}$  (100 nM) to hydrolyze 12.5 µg oligosaccharides (A, B and D) or 45 µg of  $\beta$ -D glucan from barley (C). Commercial lichenase was also used to completely hydrolyze  $\beta$ -D glucan from barley and to produce oligosaccharides that were then incubated for 10 minutes at 100°C prior to being labeled and further hydrolyzed overnight at 30°C with ZgEngA<sub>GH5\_4</sub> (D). Commercial cello- and MLG- oligosaccharides were used as references.
 The <sup>100</sup> denotes oligosaccharides incubated with inactive ZgEngA<sub>GH5\_4</sub> and the \* indicates that the
 oligosaccharides were labelled before the enzymatic incubation with ZgEngA<sub>GH5\_4</sub>. (A and D).

4 (E and F): Schematic representation of cello- (E) and MLG- (F) oligosaccharides accommodation in the active site of ZgEngA<sub>GH5 4</sub>. The proposed cleavage sites deduced from HPAEC and/or FACE 5 6 experiments are indicated by a grey arrow. The grey circles represent the reducing end of the oligosaccharides and the yellow circles represent the fluorophore used to label the reducing end sugar. 7 The modes of hydrolysis observed with the FACE experiments exclusively are depicted with yellow 8 circles and black outlines. When the mode of hydrolysis has been observed both by HPAEC and 9 10 FACE, the yellow circles are outlined in grey. The arrow between the cellohexaose (G6) and the cellotetraose (G4) means that the hydrolysis product from the cellohexaose is further hydrolyzed into 11 12 cellobiose (G2). Cellobiose and cellotriose are not represented as they are not hydrolyzed by ZgEngA<sub>GH5 4</sub> (G) Hydrolysis sites of MLG by ZgEngA<sub>GH5 4</sub> deduced from FACE experiments (see 13 14 above for details). The proposed cleavage sites are indicated by grey arrows. In a comparative purpose, the GH16 lichenase cleavage sites are indicated by dotted arrows. 15

16 Figure 5: Sequence alignment of ZgEngA<sub>GH5 4</sub> with structurally characterized GH5 4. The sequence 17 alignment has been performed using MAFFT [18] and has been manually edited in Bioedit (©Tom 18 Hall) based on the superimposition of the different crystal structures. The final figure has been created 19 with using ESPript [43]. The sequences used in this alignment were as follows: CcEngD: the endo  $\beta$ -1,4-glucanase/xylanase EngD from *Clostridium cellulovorans* (GenBank accession no. AAA23233.1; 20 21 residues 32-376; PDB ID: 3NDY); PbGH5A: the Mixed-linkage beta-Glucanase/Xyloglucanase from 22 Prevotella bryantii B14 (GenBank accession no. AAC97596.1, residues 584-924, PDB ID: 3VDH); F32EG5: the  $\beta$ -(1.3-1.4) glucanase from *Caldicellulosiruptor* sp. (GenBank accession no. 23 AGM71677.1, residues 38-401, PDB ID: 4XOV), BpCel5C: Cel5C from Butyvibrio proteoclasticus 24 25 (GenBank accession no. ADL34447.1, residues 32-399, PDB code: 4NF7) and CcCel5A: the cellulase Cel5A from Clostridum cellulolyticum (GenBank accession no. AAA23221.1; residues 40-403, PDB 26 ID: 1EDG). The  $\alpha$ - and 3<sub>10</sub> helices and the  $\beta$ -strands are represented as helices and arrows, 27

respectively, and β-turns are marked with TT. Dark shaded boxes enclose invariant positions, and light
 shaded boxes show positions with similar residues. The catalytic residues and the residues chosen for
 site-directed mutagenesis are marked by red triangles and blue dots, respectively.

Figure 6: Crystal structure of  $Z_{gEngA_{GH5} 4}$  and the relative MLG substrate locations after molecular 4 5 modeling in all-atom simulations. (A) Crystal structure of ZgEngA<sub>GH5</sub> 4. The central β-sheet 6 constituting the TIM barrel is shown in yellow, the additional  $\alpha$  helix  $\alpha 0$  in pale blue and the loop 7 between  $\beta$ -strand  $\beta \delta$  and  $\alpha$ -helix  $\delta$  in red. Both catalytic residues are shown in sticks. (B) View of the 8 active site of  $ZgEngA_{GH5 4}$  E3238. The cellotriose is shown in green and the position of the two catalytic 9 residues are shown in grey. The experimental electron density calculated as an 2Fo-Fc map and 10 contoured at a 2  $\sigma$  level is shown as grey mesh. The stereochemistry of the substrate molecule has been validated using Privateer and the details are given in Table S26. (C) Resulting view of molecular 11 12 dynamics with GGGG3GG. The active site of ZgEngA<sub>GH5 4 E3238</sub> in the last frame of the all-atom simulation and the relative position of the GGGG3GG (in orange) substrate molecule are represented. 13 The positions of the different sub-binding sites are indicated. The arrow indicates the  $\beta$ -1-3 linkage. 14 (D) Resulting view of molecular dynamics with GGG3GGG. The active site of  $ZgEngA_{GH5 4}$  E323S in 15 16 the last frame of the all-atom simulation and the relative position of the GGG3GGG (in orange) substrate molecule are represented. The arrow indicates the  $\beta$ -1-3 linkage. 17

Figure 7: Superimposition of GH5\_4 active sites. (A) Superimposition of the catalytic active sites of 18 ZgEngA<sub>GH5 4</sub> (in yellow) with those of F32EG5 (PDB ID:4XOV in dark blue), of CcEngD in complex 19 20 with cellotriose (PDB ID:3NDZ in cyan, and cellotriose in green) and that of PbGH5A (PDB 21 ID:3VDH in light grey). The highly conserved residues surrounding the -1 binding subsite are shown, 22 highlighting the two major features that are different in the sugar binding subsites of ZgEngA<sub>GH5</sub> 4, namely E363 and Y280. (B) Superimposition of the structure of ZgEngA<sub>GH5 4 E323S</sub> (in blue) and the 23 structure of F32EG5 from Caldicellulosiruptor sp. F32 (in purple) showing the conformation of the 24 loop harboring Y280 between  $\beta$ -strand  $\beta 6$  and  $\alpha$ -helix 6. The GGG cellotriose molecule in the crystal 25 26 structure of ZgEngA<sub>GH5 4 E323S</sub> is shown in green. The residue numbers for ZgEngA<sub>GH5 4 E323S</sub> are underlined. 27

#### 1 **References**

Popper, Z. A., Michel, G., Herve, C., Domozych, D. S., Willats, W. G., Tuohy, M. G., et al. (2011)
 Evolution and diversity of plant cell walls: from algae to flowering plants. *Annu. Rev. Plant Biol.* 62,
 567-590

Sørensen, I., Pettolino, F. A., Wilson, S. M., Doblin, M. S., Johansen, B., Bacic, A., et al. (2008)
Mixed-linkage (1-->3),(1-->4)-beta-D-glucan is not unique to the Poales and is an abundant
component of *Equisetum arvense* cell walls. *Plant J.* 54, 510-521

8 3 Eder, M., Tenhaken, R., Driouich, A. and Lutz-Meindl, U. (2008) Occurrence and 9 Characterization of Arabinogalactan-Like Proteins and Hemicelluloses in *Micrasterias* 10 (*Streptophyta*)(1). *J.Phycol.* **44**, 1221-1234

Salmean, A. A., Duffieux, D., Harholt, J., Qin, F., Michel, G., Czjzek, M., et al. (2017) Insoluble
(1 --> 3), (1 --> 4)-beta-D-glucan is a component of cell walls in brown algae (*Phaeophyceae*) and is
masked by alginates in tissues. *Sci. Rep.* 7, 2880

Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. and Henrissat, B. (2014) The
 carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic Acids Res.* 42, D490-495

Planas, A. (2000) Bacterial 1,3-1,4-beta-glucanases: structure, function and protein
engineering. *Biochim. Biophys. Acta*. **1543**, 361-382

Aspeborg, H., Coutinho, P. M., Wang, Y., Brumer, H., 3rd and Henrissat, B. (2012) Evolution,
substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). *BMC Evol. Biol.* 12, 186

21 8 Davies, G. J. and Henrissat, B. (1995) Structures and mechanisms of glycosyl hydrolases.
22 Structure. 3, 853-859

Ducros, V., Czjzek, M., Belaich, A., Gaudin, C., Fierobe, H. P., Belaich, J. P., et al. (1995) Crystal
 structure of the catalytic domain of a bacterial cellulase belonging to family 5. *Structure*. **3**, 939-949

Meng, D. D., Liu, X., Dong, S., Wang, Y. F., Ma, X. Q., Zhou, H., et al. (2017) Structural insights
 into the substrate specificity of a glycoside hydrolase family 5 lichenase from *Caldicellulosiruptor* sp.
 F32. *Biochem. J.* 474, 3373-3389

McGregor, N., Morar, M., Fenger, T. H., Stogios, P., Lenfant, N., Yin, V., et al. (2016) StructureFunction Analysis of a Mixed-linkage beta-Glucanase/Xyloglucanase from the Key Ruminal
Bacteroidetes *Prevotella bryantii* B(1)4. *J. Biol. Chem.* 291, 1175-1197

Lafond, M., Sulzenbacher, G., Freyd, T., Henrissat, B., Berrin, J. G. and Garron, M. L. (2016)
The Quaternary Structure of a Glycoside Hydrolase Dictates Specificity toward beta-Glucans. *J. Biol. Chem.* 291, 7183-7194

Barbeyron, T., Thomas, F., Barbe, V., Teeling, H., Schenowitz, C., Dossat, C., et al. (2016)
Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria:
example of the model algae-associated bacterium *Zobellia galactanivorans* DsijT. *Environ. Microbiol.* **18**, 4610-4627

Bernardet, J. F., Segers, P., Vancanneyt, M., Berthe, F., Kersters, K. and Vandamme, P. (1996)
Cutting a Gordian knot: emended classification and description of the genus *Flavobacterium*,
emended description of the family *Flavobacteriaceae*, and proposal of *Flavobacterium hydatis* nom.
nov. (basonym, *Cytophaga aquatilis* Strohl and Tait 1978). *Int. J. Syst. Bacteriol.* 46, 128-148

15 Thomas, F., Hehemann, J. H., Rebuffet, E., Czjzek, M. and Michel, G. (2011) Environmental
and gut bacteroidetes: the food connection. *Front. Microbiol.* 2, 93

Elifantz, H., Waidner, L. A., Michelou, V. K., Cottrell, M. T. and Kirchman, D. L. (2008) Diversity
and abundance of glycosyl hydrolase family 5 in the North Atlantic Ocean. *FEMS Microbiol. Ecol.* 63,
316-327

Foong, F. C. and Doi, R. H. (1992) Characterization and comparison of *Clostridium cellulovorans* endoglucanases-xylanases EngB and EngD hyperexpressed in *Escherichia coli*. *J. Bacteriol.* 174, 1403-1409
| 1  | 18      | Katoh, K. and Standley, D. M. (2013) MAFFT multiple sequence alignment software version 7:       |
|----|---------|--------------------------------------------------------------------------------------------------|
| 2  | improv  | vements in performance and usability. Mol. Biol. Evol. 30, 772-780                               |
| 3  | 19      | Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: Molecular        |
| 4  | Evolut  | ionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729                             |
| 5  | 20      | Juncker, A. S., Willenbrock, H., Von Heijne, G., Brunak, S., Nielsen, H. and Krogh, A. (2003)    |
| 6  | Predic  | tion of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 12, 1652-1662        |
| 7  | 21      | Gaboriaud, C., Bissery, V., Benchetrit, T. and Mornon, J. P. (1987) Hydrophobic cluster          |
| 8  | analys  | is: an efficient new way to compare and analyse amino acid sequences. FEBS Lett. 224, 149-       |
| 9  | 155     |                                                                                                  |
| 10 | 22      | Barbeyron, T., Kean, K. and Forterre, P. (1984) DNA adenine methylation of GATC sequences        |
| 11 | арреа   | red recently in the Escherichia coli lineage. J. Bacteriol. 160, 586-590                         |
| 12 | 23      | Groisillier, A., Herve, C., Jeudy, A., Rebuffet, E., Pluchon, P. F., Chevolot, Y., et al. (2010) |
| 13 | MARIN   | NE-EXPRESS: taking advantage of high throughput cloning and expression strategies for the        |
| 14 | post-g  | enomic analysis of marine organisms. Microb. Cell Fact. 9, 45                                    |
| 15 | 24      | Studier, F. W. (2005) Protein production by auto-induction in high density shaking cultures.     |
| 16 | Proteii | n. Expr. Purif. <b>41</b> , 207-234                                                              |
| 17 | 25      | Kidby, D. K. and Davidson, D. J. (1973) A convenient ferricyanide estimation of reducing         |
| 18 | sugars  | in the nanomole range. Anal. Biochem. 55, 321-325                                                |
| 19 | 26      | Ostling, S. and Virtama, P. (1946) A modified preparation of the universal buffer described by   |
| 20 | Teorel  | l and Stenhagen. Acta Phys. Scandinav. 11, 289- 293                                              |
| 21 | 27      | Kabsch, W. (2010) Xds. Acta Crystallogr. D. 66, 125-132                                          |
| 22 | 28      | Vagin, A. and Teplyakov, A. (1997) MOLREP: an Automated Program for Molecular                    |
| 23 | Replac  | cement. J. Appl. Crystallogr. <b>30</b> , 1022-1025                                              |
| 24 | 29      | Perrakis, A., Sixma, T. K., Wilson, K. S. and Lamzin, V. S. (1997) wARP: improvement and         |
| 25 | extens  | sion of crystallographic phases by weighted averaging of multiple-refined dummy atomic           |
| 26 | model   | s. Acta Crystallogr. D. <b>53</b> , 448-455                                                      |
|    |         |                                                                                                  |

Emsley, P., Lohkamp, B., Scott, W. G. and Cowtan, K. (2010) Features and development of
 Coot. Acta Crystallogr. D. 66, 486-501

3 31 Vagin, A. A., Steiner, R. A., Lebedev, A. A., Potterton, L., McNicholas, S., Long, F., et al. (2004)
4 REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. *Acta*5 *Crystallogr. D.* 60, 2184-2195

6 32 McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. and Read, R. J.

7 (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674

8 33 Thomas, F., Bordron, P., Eveillard, D. and Michel, G. (2017) Gene Expression Analysis of 9 *Zobellia galactanivorans* during the Degradation of Algal Polysaccharides Reveals both Substrate-10 Specific and Shared Transcriptome-Wide Responses. *Front. Microbiol.* **8**, 1808

11 34 Salmeán, A. A., Guillouzo, A., Duffieux, D., Jam, M., Matard-Mann, M., Larocque, R., et al.

12 (2018) Double blind microarray-based polysaccharide profiling enables parallel identification of

13 uncharacterized polysaccharides and carbohydrate-binding proteins with unknown specificities. *Sci.* 

14 Rep. 8, 2500

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., et al. (2005)
Protein identification and analysis tools on the ExPASy Server. In The Proteomics Protocols Handbook
(Walker, J. M., ed.). pp. 571-607, Totowa, New Jersey, USA

18 36 Holm, L. and Laakso, L. M. (2016) Dali server update. *Nucleic Acids Res.* 44, W351-355

Bortoli-German, I., Haiech, J., Chippaux, M. and Barras, F. (1995) Informational suppression
to investigate structural functional and evolutionary aspects of the *Erwinia chrysanthemi* cellulase
EGZ. J. Mol. Biol. 246, 82-94

Bianchetti, C. M., Brumm, P., Smith, R. W., Dyer, K., Hura, G. L., Rutkoski, T. J., et al. (2013)
Structure, dynamics, and specificity of endoglucanase D from *Clostridium cellulovorans*. *J. Mol. Biol.*425, 4267-4285

| 1 | 29 Labourel, A., Jam, M., Jeudy, A., Hehemann, J. H., Czjzek, M. and Michel, G. (2014) The $β$ |
|---|------------------------------------------------------------------------------------------------|
| 2 | glucanase ZgLamA from Zobellia galactanivorans evolved a bent active site Adapted for efficien |
| 3 | degradation of algal laminarin. J. Biol. Chem. 289, 2027–2042                                  |

4 40 Labourel, A., Jam, M., Legentil, L., Sylla, B., Hehemann, J. H., Ferrieres, V., et al. (2015)
5 Structural and biochemical characterization of the laminarinase *Zg*LamC<sub>GH16</sub> from *Zobellia*6 *galactanivorans* suggests preferred recognition of branched laminarin. *Acta Crystallogr. D.* **71**, 1737 184

8 41 lakiviak, M., Mackie, R. I. and Cann, I. K. (2011) Functional analyses of multiple lichenin9 degrading enzymes from the rumen bacterium *Ruminococcus albus* 8. *Appl. Environ. Microbiol.* 77,
10 7541-7550

Lechat, H., Amat, M., Mazoyer, J., Buléon, A. and Lahaye, M. (2000) Structure and distribution
of glucomannan and sulfated glucan in the cell walls of the red alga *Kappaphycus alvarezii*(*Gigartinales, Rhodophyta*). J.Phycol. **36**, 891-902

Robert, X. and Gouet, P. (2014) Deciphering key features in protein structures with the new
ENDscript server. *Nucleic Acids Res.* 42, W320-324

16













## (E)

| Substrate             | 3 -2 -1      |            |
|-----------------------|--------------|------------|
| Cellotetraose         | 0-0-         | 0-0<       |
| (0.)                  | 0-0<br>0     | -0-0-0-000 |
| Cellopentaose<br>(G5) | 0-0-0<br>0-0 | 000        |
| Cellohexaose<br>(G6)  | 0-0-0<br>0-0 | 0000       |



(F)

Substrate GGG3G



0-0-0-0

GG3GG

(G)

MLG









## Table 1. Activity of ZgEngA<sub>GH5\_4</sub> on different polysaccharides.

For comparative purpose, the relative activity of ZgEngA<sub>GH5 4</sub> is compared to the relative activity of the commercial lichenase (Megazyme) and 3 GH5\_4 enzymes characterized at the 3D structure level. Results for EngD C. cellulovorans [38], Caldicellulosiruptor sp. F32 [10] and PbGH5 from Prevotella bryantii [11] were calculated based on published enzymatic activities.

| Substrate     | ZgEngA                                                        | GH5_4                       | Lichenase<br>GH16           | EngD                        | F32EG5                      | PbGH5A                      |
|---------------|---------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|               | Specific<br>activity<br>(µkat mg <sup>-1</sup> ) <sup>1</sup> | Relative<br>activity<br>(%) | Relative<br>activity<br>(%) | Relative<br>activity<br>(%) | Relative<br>activity<br>(%) | Relative<br>activity<br>(%) |
| Mixed linkage | 5.1±0.3                                                       | 100                         | 100                         | 100                         | 100                         | 100                         |
| glucan        |                                                               |                             |                             |                             |                             |                             |
| Lichenan      | 1.5±0.1                                                       | 29.4                        | 37.3                        |                             | 52.2                        |                             |
| Glucomannan   | 3.1±0.0                                                       | 60.8                        | n.d.                        | 73.8                        |                             | 9.2                         |
| Xyloglucan    | 0.3±0.0                                                       | 5.9                         | n.d.                        | 85.7                        |                             | 19.5                        |
| СМС           | 0.2±0.0                                                       | 3.9                         | n.d.                        | 35.7                        | 17.3                        | 5.5                         |
| Avicel        | n.d.                                                          | n.d.                        | n.d.                        |                             | < 0.02                      |                             |
| Laminarin     | n.d.                                                          | n.d.                        | n.d.                        |                             | N.D. <sup>3</sup>           |                             |
| Curdlan       | n.d.                                                          | n.d.                        | n.d.                        |                             |                             |                             |

<sup>1</sup> Experiments were performed in triplicate. Results are expressed as average  $\pm$ S.D. <sup>2</sup> n.d., not determinable, less than the limit of detection i.e. 0.01 (µkat mg<sup>-1</sup>) <sup>3</sup> N.D., activity not detected according to mentioned reference

|                                    | ZgEngA <sub>GH5_4</sub> | ZgEngA <sub>GH5_4_E3238</sub> |
|------------------------------------|-------------------------|-------------------------------|
| Data collection                    |                         |                               |
| Space group                        | P2 <sub>1</sub>         | P3 <sub>2</sub>               |
| Cell dimensions                    |                         |                               |
| <i>a</i> , <i>b</i> , <i>c</i> (Å) | 55.49, 48.46, 59.26     | 84.57, 84.57, 117.66          |
| α, β, γ (°)                        | 90.00, 104.35, 90.00    | 90.00, 90.00, 120.00          |
| Resolution (Å)                     | 57.41-1.18 (1.24-1.18)* | 45.87-2.20 (2.70-2.20)*       |
| R <sub>merge</sub>                 | 0.07 (0.74)             | 0.06 (0.31)                   |
| Ι / σΙ                             | 10.4 (1.8)              | 12.9 (3.2)                    |
| CC(1/2)                            | 0.99 (0.43)             | 1.00 (0.91)                   |
| Completeness (%)                   | 98.0 (98.0)             | 99.3 (99.6)                   |
| Redundancy                         | 6.3 (6.3)               | 2.9 (2.9)                     |
| Refinement                         |                         |                               |
| Resolution (Å)                     | 57.41-1.18              | 45.87-2.20                    |
| No. reflections                    | 94103                   | 45421                         |
| $R_{\rm work}$ / $R_{\rm free}$    | 0.173 / 0.201           | 0.177 / 0.221                 |
| No. atoms                          |                         |                               |
| Protein                            | 2750                    | 8066                          |
| Water                              | 457                     | 453                           |
| B-factors                          |                         |                               |
| Protein                            | 13.67                   | 39.92                         |
| Water                              | 24.15                   | 34.79                         |
| R.m.s. deviations                  |                         |                               |
| Bond lengths (Å)                   | 0.023                   | 0.013                         |
| Bond angles (°)                    | 2.13                    | 1.49                          |
| PDB ID                             | 6GL2                    | 6GL0                          |

Table 2. Data collection and refinement statistics

\*Single crystal was used for each data set; \*Values in parentheses are for highest-resolution shell.

| Substrate         |                                                                                 | MLG (Barle                                              | y)                                                |                                                                                 | Glucomannar                                      | 1                                          |
|-------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|
| Mutants           | <b>Activity</b> <sup>1</sup><br><b>x 10<sup>3</sup></b><br>(min <sup>-1</sup> ) | <b>Specific</b><br>activity<br>(µkat mg <sup>-1</sup> ) | <b>Relative</b><br>activity<br>(% WT<br>activity) | <b>Activity</b> <sup>1</sup><br><b>x 10<sup>3</sup></b><br>(min <sup>-1</sup> ) | Specific<br>Activity<br>(µkat mg <sup>-1</sup> ) | Relative<br>activity<br>(% WT<br>activity) |
| Wild type<br>(WT) | $11.4 \pm 0.7$                                                                  | 5.1 ± 0.3                                               | 100                                               | 6.9 ± 0.1                                                                       | 3.1 ± 0.0                                        | 100                                        |
| N77A              | $0.2 \pm 0.0$                                                                   | $0.1 \pm 0.0$                                           | 1.8                                               | $0.1 \pm 0.0$                                                                   | $0.04 \pm 0.0$                                   | 1.4                                        |
| N77Q              | n.d. <sup>2</sup>                                                               | n.d. <sup>2</sup>                                       | -                                                 | n.d. <sup>2</sup>                                                               | n.d. <sup>2</sup>                                | -                                          |
| Y82A              | $14.5 \pm 0.5$                                                                  | $6.5 \pm 0.2$                                           | 127.2                                             | $7.6 \pm 0.1$                                                                   | $3.4 \pm 0.0$                                    | 110.1                                      |
| Y82L              | $15.6 \pm 0.2$                                                                  | 6.9 ± 0.1                                               | 136.8                                             | $6.7 \pm 0.2$                                                                   | $3.0 \pm 0.1$                                    | 97.1                                       |
| H156A             | $2.4 \pm 0.1$                                                                   | $1.1 \pm 0.1$                                           | 21                                                | $1.0 \pm 0.1$                                                                   | $0.4 \pm 0.0$                                    | 14.5                                       |
| H156I             | $0.4 \pm 0.0$                                                                   | $0.2 \pm 0.0$                                           | 3.5                                               | $0.1 \pm 0.0$                                                                   | $0.04 \pm 0.0$                                   | 1.4                                        |
| W210A             | $2.3 \pm 0.1$                                                                   | $1.0 \pm 0.1$                                           | 20.2                                              | $0.1 \pm 0.0$                                                                   | $0.04 \pm 0.0$                                   | 1.4                                        |
| W210F             | $3.6 \pm 0.4$                                                                   | $1.6 \pm 0.2$                                           | 31.6                                              | $3.3 \pm 0.2$                                                                   | $1.4 \pm 0.1$                                    | 47.8                                       |
| K211A             | $12.7 \pm 0.1$                                                                  | $5.7 \pm 0.0$                                           | 111.4                                             | 8.1 ± 0.3                                                                       | $3.6 \pm 0.1$                                    | 117.4                                      |
| Y280A             | $12.7 \pm 0.1$                                                                  | $5.6 \pm 0.0$                                           | 111.4                                             | $7.9 \pm 0.2$                                                                   | $3.5 \pm 0.1$                                    | 114.5                                      |
| Y280L             | $10.0 \pm 0.4$                                                                  | $4.4 \pm 0.2$                                           | 87.7                                              | $5.7 \pm 0.1$                                                                   | $2.5 \pm 0.1$                                    | 82.6                                       |
| E323S             | n.d. <sup>2</sup>                                                               | n.d. <sup>2</sup>                                       | -                                                 | n.d. <sup>2</sup>                                                               | n.d. <sup>2</sup>                                | -                                          |
| N358A             | $1.8 \pm 0.1$                                                                   | $0.8 \pm 0.0$                                           | 15.7                                              | $0.6 \pm 0.1$                                                                   | $0.2 \pm 0.1$                                    | 8.7                                        |
| N358L             | n.d. <sup>2</sup>                                                               | n.d. <sup>2</sup>                                       | -                                                 | n.d. <sup>2</sup>                                                               | n.d. <sup>2</sup>                                | -                                          |
| E363A             | $12.9 \pm 0.5$                                                                  | $5.7 \pm 0.2$                                           | 113.1                                             | $6.9 \pm 0.1$                                                                   | $3.1 \pm 0.1$                                    | 100                                        |
| E363S             | $10.1 \pm 1.2$                                                                  | $4.5 \pm 0.6$                                           | 88.6                                              | $7.7 \pm 0.3$                                                                   | $3.4 \pm 0.1$                                    | 111.6                                      |

Table 3. Comparison of the activity of ZgEngA<sub>GH5\_4</sub> and its mutants using MLG and glucomannan as substrates.

<sup>1</sup> Experiments were performed in triplicate. Results are expressed as average  $\pm$ S.D. <sup>2</sup> n.d., not determinable, less than the limit of detection i.e. 10 (min<sup>-1</sup>) or 0.01 (µkat mg<sup>-1</sup>))

#### SUPPLEMENTARY INFORMATION

#### Description of the simulated systems

The simulated systems were named after the position and type of linkage present in the sugar chain substrate in the simulation,  $(\beta-1,4)$  for  $\beta-1,4$  linkages between all units,  $-1/+1\beta-1,3$  for  $\beta-1,3$  linkage between units -1 and 1,  $+1/+2\beta-1,3$  for  $\beta-1,3$  linkage between units +1 and +2,  $+2/+3\beta-1,3$  for  $\beta-1,3$  linkage between units +2 and +3), so the full simulation name consists of two parts (protein name-linkage type and position) and an 'M' was added at the end in the case of the mutated structure. All the simulations and their lengths are listed in Tables S1-S2 and number of molecules and atoms in each simulation type is provided in Tables S3-S4.

#### **Atomistic Molecular Dynamics Simulations - protocols**

The CHARMM36 force field [1-3] was used to describe protein and glucan, with water simulated using the CHARMM36-compatible TIP3P model.[4] Periodic boundary conditions were employed in all three dimensions. The length of each covalent bond to hydrogen atom was preserved using the LINCS algorithm [5] which allowed a 2 fs time step. The simulations were carried out at constant pressure (1 bar) and temperature (310 K) using the Parrinello-Rahman and velocity-rescale methods, respectively [6,7]. For pressure, an isotropic scaling was employed, and the temperatures of the solute and the solvent were coupled separately. Lennard-Jones interactions were truncated at 1.0 nm and the particle mesh Ewald method [8] was used to compute all electrostatic interactions with a real space cut-off at 1.0 nm, 6<sup>th</sup> order beta spline interpolation, and a direct sum tolerance of 10<sup>-6</sup>. Simulations were run at physiological salt concentrations of 150 mM KCl and counter ions were introduced to neutralize the total charge of the system. The binding of each glucan chain was simulated eight times (three repeats for native and five repeats for mutated GH5). All simulations were performed using the GROMACS 5.1 simulation package [9]

#### **Binding energies - calculations**

The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method was used to estimate the binding energies  $\Delta G_{\text{bind}}$  between glucan and protein by decomposing into contributions from gas phase energy ( $\Delta E_{\text{gas}}$ ), solvation energy ( $\Delta G_{\text{solv}}$ ), and an entropy term (T $\Delta$ S) as represented in the following equation [10]:

$$\Delta G_{\text{bind}} = \Delta E_{\text{gas}} + \Delta G_{\text{solv}} - T\Delta S \tag{1}$$

 $\Delta E_{gas}$  is composed of bonded (bond, angle, torsion) and non-bonded interactions (van der Waals, electrostatic) and constitutes the MM part of MM-PBSA. The  $\Delta G_{sol}$  term contains polar solvation and non-polar solvation energies and is usually computed using the solvent-accessible surface area (SASA) model, where the SASA is linearly dependent on the non-polar term.

In this work we use the gromacs tool g\_mmpbsa [11] to calculate the MM-PBSA terms for the proteinglucan complex. Note the bonded contribution is by definition zero in the single-trajectory approach [11] and the entropy term is assumed negligible for similar ligands binding to the same pocket.(12) Therefore, binding energy is calculated as follows:

$$\Delta G_{\text{bind}} = \Delta E_{\text{MM}} + \Delta G_{\text{polar}} + \Delta G_{\text{nonpolar}}$$
(2)

 $\Delta E_{MM}$  denotes the gas-phase energy consisting of electrostatic and van der Waals interactions,  $\Delta G_{polar}$  represents polar solvation energy, and  $\Delta G_{nonpolar}$  is the nonpolar solvation energy. Subsequently, the energy components  $\Delta E_{MM}$ ,  $\Delta G_{polar}$  and  $\Delta G_{nonpolar}$  of each complex were calculated for 100ns of simulations when the glucan is stably bound to the protein. The vacuum and solvent dielectric constants were set at 1 and 80, respectively. The solute dielectric constant was set to 4.

#### Visualization

All the snapshots and movies presented in this work were prepared using the VMD package [13].

#### **Binding energies results**

The computed binding energies stem from favorable van der Waals energy, electrostatic energy, and SASA energy, which are offset by polar solvation energy which opposes binding. For  $\beta$ -1,4 systems (least favorable binding), the average van der Waals energy, electrostatic energy, polar solvation energy and SASA energy were -33.0, -30.0, 42.5 and -27.8 kcal/mol, respectively. The van der Waals energy contribution among the three different substrate chains that included a  $\beta$ -1,3 linkage varied from -34.0 to -46.8 kcal/mol, electrostatic energy varied more strongly from -42.1 to -76.3 kcal/mol with the corresponding polar solvation energy penalties varying from +44.6 to +88.9 kcal/mol. The highest magnitude values of van der Waals, electrostatic and polar solvation energy were recorded in systems with  $\beta$ -1,3 linkage between the -1 and +1, again supporting the hypothesis that -1/+1  $\beta$ -1,3 results in effective interactions between substrate and the GH5 binding pocket. The estimated free energies of binding are relatively high compared to studies carried out on similar proteins,[14,15] which may be due to force field effects and/or choice of dielectric constant for the buried protein pocket;[16] nevertheless the rank orderings of substrate binding should be predictive unless different substrate topologies cause large-scale resculpting of the binding pocket and/or diffuse to alternative binding sites at timescales beyond the sub-microsecond sampling of the simulations.

#### References

- Huang, J., and MacKerell, A. D. (2013) CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. *Journal of Computational Chemistry* 34, 2135-2145
- 2. Guvench, O., Greene, S. N., Kamath, G., Brady, J. W., Venable, R. M., Pastor, R. W., and Mackerell, A. D., Jr. (2008) Additive empirical force field for hexopyranose monosaccharides. *J Comput Chem* **29**, 2543-2564
- MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M. (1998) All-atom empirical potential

for molecular modeling and dynamics studies of proteins. *The journal of physical chemistry*. B 102, 3586-3616

- 4. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983) Comparison of simple potential functions for simulating liquid water. *The Journal of Chemical Physics* **79**, 926-935
- Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M. (1997) LINCS: A linear constraint solver for molecular simulations. *Journal of Computational Chemistry* 18, 1463-1472
- 6. Parrinello, M., and Rahman, A. (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. *Journal of Applied Physics* **52**, 7182-7190
- 7. Bussi, G., Donadio, D., and Parrinello, M. (2007) Canonical sampling through velocity rescaling. *The Journal of chemical physics* **126**, 014101
- 8. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G. (1995) A smooth particle mesh Ewald method. *The Journal of chemical physics* 103, 8577-8593
- 9. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E. (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. *SoftwareX* 1–2, 19-25
- 10. Zoete, V., Irving, M. B., and Michielin, O. (2010) MM-GBSA binding free energy decomposition and T cell receptor engineering. *J Mol Recognit* **23**, 142-152
- Kumari, R., Kumar, R., Open Source Drug Discovery, C., and Lynn, A. (2014) g\_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. *J Chem Inf Model* 54, 1951-1962
- 12. Xu, H. L., Wang, Z. J., Liang, X. M., Li, X., Shi, Z., Zhou, N., and Bao, J. K. (2014) In silico identification of novel kinase inhibitors targeting wild-type and T315I mutant ABL1 from FDA-approved drugs. *Mol Biosyst* **10**, 1524-1537
- 13. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: Visual molecular dynamics. *Journal of Molecular Graphics* 14, 33-38
- 14. Knott, B., Crowley, M., E Himmel, M., Ståhlberg, J., and Beckham, G. (2014) Carbohydrate-Protein Interactions That Drive Processive Polysaccharide Translocation in Enzymes Revealed from a Computational Study of Cellobiohydrolase Processivity, Journal of the American Chemical Society **2014**, 136 (24), 8810-8819.
- 15. Szefler, B., Diudea, M., Putz, M., and Grudzinski, I. (2016) Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase. *International Journal of Molecular Sciences* **17**, 1796
- 16. Aleksandrov, A., Thompson, D., and Simonson, T. (2010) Alchemical free energy simulations for biological complexes: powerful but temperamental. *Journal of molecular recognition : JMR* **23**, 117-127

#### **1** SUPPLEMENTARY FIGURE LEGENDS

2

3 Figure S1: Sequence of the gene  $ZGAL_{208}$  (A) encoding the amino acid sequence (B) of the protein ZgEngA<sub>GH5</sub> 4. (A) The sequence of the forward and reverse primers used for the amplification 4 of the catalytic module of ZgEngA<sub>GH5</sub> 4 is in bold and underlined. (B) The LipoP 1.0 software [20] was 5 used to delineate the signal peptide (amino acids 1 to 20 in red) of the protein which contain a large 6 7 GH5 module (residues 21 to 397). The precise boundaries of the catalytic module (residues 56 to 385 8 in green and bold) used for the biochemical and structural characterizations were delineated from 9 Hydrophobic Cluster Analysis plot [21]. The molecular weight of the recombinant protein (sequence 10 in green) has been calculated using the ProtParam tool [35].

11

Figure S2: Representative snapshots of the computed oligo-glucan- ZgEngA<sub>GH5</sub> 4 E323S 12 complexes (right) and an enlarged view of the oligosaccharide substrate alone (left): (A) Complex 13 with cellohexaose ( $\beta$ -1,4 linkages between all glucose units). (B) -1/+1  $\beta$ (1,3) oligoglucan. The  $\beta$ -1.3 14 15 linkage is marked by the blue dot in the lefthand panel and the orange sphere in the righthand panel). (C) +1/+2  $\beta(1,3)$ . (D) +2/+3  $\beta(1,3)$ . Protein (mutant ZgEngA<sub>GH5</sub> 4 E323S) is shown in cartoon 16 representation, colored according to secondary structure and overlaid with a space-filling cyan, 17 transparent surface; glucan is shown in as sticks and the  $\beta$ -1,3 linkage site is marked with an orange 18 19 van der Waals sphere. Water molecules are omitted for clarity.

20

Figure S3: Purity (A and B) and oligomerization state (C and D) analysis of ZgEngA<sub>GH5\_4</sub>.
(A and B) SDS- PAGE analysis (A) and DLS (B) were performed to check the purity of ZgEngA<sub>GH5\_4</sub>.
(A) in the SDS PAGE, the Precision Plus markers from BioRad (S) were used as standards. (B)
Dynamic light scattering (DLS) was carried out to estimate the size distribution of the molecules as a
function of their volume.

26 (C and D) Oligometrization state studies of  $Z_{g}EngA_{GH54}$  using size exclusion chromatography (C) and 27 size exclusion chromatography coupled to multiple angle laser light scattering (MALLS)(D). Size exclusion chromatography (C) was performed using a Superdex 75 HiLoad 16/60 column previously 28 29 equilibrated in 25 mM Tris HCl + 100 mM NaCl (pH 7.5) (Buffer B) and calibrated using the 30 following standard proteins: Conalbumin (C) (MW: 75 kDa); Ovalbumin (O) (MW: 43 kDa); 31 Carbonic anhydrase (CA) (MW: 29 kDa); Ribonuclease (R) (MW: 13.7 kDa) and Aprotinin (A) (MW: 32 6.5 kDa). Exclusion volume of the column was evaluated using a fresh solution of Dextran Blue 2000 (B) (MW > 2000 kDa). (D) Size exclusion chromatography coupled to MALLS was performed using a 33

Superdex 200 Increase 10/300GL previously equilibrated in Buffer B. Elution of ZgEngA<sub>GH5\_4</sub> was
 performed at a flow rate of 0.5 mL min<sup>-1</sup> and its calculated molar mass is shown (dotted line).

3

4 Figure S4: Thermostability of  $ZgEngA_{GH54}$  (A) and influence of pH (B) and temperature (C) on 5 its activity. All these experiments have been carried out in triplicate. The activity was measured using 6 the ferricyanide assay and the results are expressed as percentage of relative activity. (A) The thermostability of ZgEngA<sub>GH5</sub> 4 was studied by DLS in a temperature range of 5 to 65 ° C in steps of 1 7 8 ° C. The hydrodynamic gyration radius (Rg) was measured at each step and the values are the average 9 of triplicate experiments. (B) The pH optimum was determined using the Teorell and Stenhagen buffer 10 in a range of pH from pH 4.2 to pH 8.5. This buffer was used at a 100 mM concentration to prepare both enzyme (100 nM) and  $\beta$ -D-glucan (0.2%) solutions. pH optimum of the enzyme was further 11 12 checked using biological buffers (MES, MOPS, Tris and Phosphate) in similar conditions. Note that 13 these later experiments have only been performed in duplicate. (C) Optimal temperature of 14 ZgEngA<sub>GH5</sub> 4 was determined by incubating both enzyme and substrate at the appropriate temperature 15 before performing the hydrolysis reaction.

16

Figure S5. Secondary structure of the protein in time for β-1,4 during three repeats. Even if no
protein-glucan binding was observed for this complex, the protein shows relative structural stability in
all three trajectories as seen in panels A, B and C below.

20

Figure S6. Secondary structure of the protein in time for model -1/+1 β-1,3 during three repeats are shown in panels A, B and C below. Out of the three trajectories, protein-glucan binding was observed in only B. However, on comparing panels A, B and C it can be seen that the relative secondary structure (mainly α-helices and β-sheets) of the protein is not affected by glucan binding/dissociation.

26

Figure S7. Secondary structure of the protein in time for model +1/+2 β-1,3 during three repeats
are shown in panels A, B and C below. Out of the three trajectories, protein-glucan binding was
observed in only C. However, on comparing panels A, B and C it can be seen that the relative
secondary structure (mainly α-helices and β-sheets) of the protein is not affected by glucan binding/
dissociation.

32

Figure S8. Secondary structure of the protein in time for model +2/+3 β-1,3 during three repeats
are shown in panels A, B and C below. Out of the three trajectories, protein-glucan binding was
observed in only B. However, on comparing all three trajectories, panels A, B and C, it can be

observed that the relative secondary structure (mainly α-helices and β-sheets) of the protein, in this
 complex, is not affected by glucan binding/ dissociation.

3

Figure S9. Secondary structure of the protein in time for model β-1,4\_M during five repeats are
shown in panels A, B, C, D and E below. Out of the five trajectories, protein-glucan binding was
observed in C and E. However, on comparing all five panels it can be seen that the relative secondary
structure (mainly α-helices and β-sheets) of the protein is not affected by glucan binding/dissociation.

8

9 Figure S10. Secondary structure of the protein in time for model -1/+1 β-1,3\_M during five
10 repeats are shown in panels A, B, C, D and E below. Protein-glucan binding was observed in four (B,
11 C, D and E) of the five trajectories and all panels below show relative secondary structure stability
12 through the simulations.

13

Figure S11. Secondary structure of the protein in time for model +1/+2 β-1,3\_M during five repeats are shown in panels A, B, C, D and E below. Out of the five trajectories, protein-glucan binding was observed in A and C. However, on comparing all five panels it can be seen that the relative secondary structure (mainly  $\alpha$ -helices and  $\beta$ -sheets) of the protein is not affected by glucan binding/ dissociation.

19

Figure S12. Secondary structure of the protein in time for model +2/+3 β-1,3\_M during five
repeated simulations are shown in panels A, B, C, D and E below. Out of the five trajectories,
protein-glucan binding was observed in A and D. However, on comparing all five panels it can be seen
that the relative secondary structure (mainly α-helices and β-sheets) of the protein is not affected by
glucan binding/ dissociation.

25

Figure S13. Root mean square deviation plots of backbone non-hydrogen atoms in mutated  $ZgEngA_{GH5_4_E323S}$  simulations. A, B, C, D, E – -1/+1  $\beta$ -1,3\_M (repeats 1-5 respectively); F, G, H, I, J  $- +1/+2 \beta$ -1,3\_M; K, L, M, N, O – +2/+3  $\beta$ -1,3\_M; P, Q, R, S, T –  $\beta$ -1,4\_M are shown below. In panels I, J, P and S, simulations were not continued when the respective glucan chain was seen to dissociate from the protein binding cleft. The most stable RMSD (plateau) is observed in panels A-E, corresponding to mutated  $ZgEngA_{GH5_4_E323S}$  complex  $\beta$ -1,3\_M.

- Figure S14. Root mean square deviation graphs of backbone non-hydrogen atoms in wildtype *Zg*EngA<sub>GH5\_4</sub> simulations. A, B, C -1/+1 β-1,3 (repeats 1-3 respectively); D, E, F +1/+2 β-1,3; G,
- 35 H, I +2/+3  $\beta$ -1,3; J, K, L  $\beta$ -1,4 are shown below. Simulations were not continued when the glucan

1 chain was seen to dissociate from the protein binding cleft early on in the trajectory. These are panels

Figure S15. Root mean square fluctuations of Ca atoms in the mutant ZgEngAGH5 4 E323S

 $\mathbf{2} \qquad \mathbf{A}, \mathbf{E}, \mathbf{G} \text{ and } \mathbf{I}$ 

3

4

simulations. A, B, C, D,  $E - \frac{1}{+1} \beta - \frac{1}{3}$  M (repeats 1-5 respectively); F, G, H, I,  $J - \frac{1}{+2} \beta - \frac{1}{3}$  M; 5 K, L, M, N, O – +2/+3  $\beta$ -1,3 M; P, Q, R, S, T –  $\beta$ -1,4 M are shown below. From these, it can be 6 observed that the more flexible and loose parts of the crystal structure such as turns and loops are 7 along residue regions 85-90, 125-126, 162-164 and 207-211 8 9 10 Figure S16. Root mean square fluctuations of Ca atoms in the wildtype ZgEngA<sub>GH5\_4</sub> simulations. 11 A, B, C - -1/+1  $\beta$ -1,3 (repeats 1-3 respectively); D, E, F - +1/+2  $\beta$ -1,3; G, H, I - +2/+3  $\beta$ -1,3; J, K, L -12  $\beta$ -1,4. Similar to mutated ZgGH5, the more flexible and loose parts of the crystal structure such as turns and loops are along residue regions 85-90, 125-126, 162-164 and 207-211. 13 14 Figure S17. Root mean square deviation of glucan backbone structure atoms in mutated 15 ZgEngA<sub>GH5 4 E323S.</sub> A, B –  $\beta$ -1,4 M (repeats 3 and 5 respectively); C, D, E, F – -1/+1  $\beta$ -1,3 M 16 (repeats 2-5 respectively); G, H- +1/+2  $\beta$ -1,3 M (repeats 1 and 3 respectively); I - +2/+3  $\beta$ -1,3 M 17 (repeat 1). Trajectories where glucan dissociation is observed are not shown in the graphs below. 18 19 Panels C-F show highly stable binding of glucan  $-1/+1 \beta - 1,3$  with mutated ZgEngA<sub>GH5 4 E323S</sub>. 20 21 Figure S18. Root mean square deviation of glucan backbone structure atoms in native 22 ZgEngAGH5 4. A, B –  $\beta$ -1,4 (repeats 1 and 2 respectively); C – -1/+1  $\beta$ -1,3 (repeat 2); D – +1/+2  $\beta$ -1,3 (repeat 3);  $E - \frac{1}{2} + \frac{3}{3} - \frac{1}{3}$  (repeat 2). Stable glucan-protein binding is observed in panels C and E. 23 24 Figure S19. Timelines of hydrogen bonds for glucan binding to mutant ZgEngA<sub>GH5</sub> 4 E323S. A, B, 25 C, D, E – -1/+1  $\beta$ -1,3 M (repeats 1-5 respectively); F, G, H, I, J – +1/+2  $\beta$ -1,3 M; K, L, M, N, O – 26  $+2/+3 \beta$ -1,3 M; P, Q, R, S, T –  $\beta$ -1,4 M are shown below. Total loss of hydrogen bonding in panels I, 27 28 J, L, M, P, Q and S correspond to glucan dissociation from the protein. Most stable binding is 29 observed in panels B-E for  $-1/+1 \beta - 1,3$  M complex 30 Figure S20. Timelines of hydrogen bonds for glucan binding to wildtype ZgEngA<sub>GH5</sub> 4, A, B, C - -31 32  $1/+1 \beta - 1,3$  (repeats 1-3 respectively); D, E, F - +1/+2 \beta - 1,3; G, H, I - +2/+3 \beta - 1,3; J, K, L - \beta - 1,4. Glucan dissociates from the protein in trajectories A, E, G, I and L, hence the number of hydrogen 33 34 bonds between glucan-protein goes down to zero in these cases.

Figure S21. Percentage of occurrence of interatomic contacts < 0.35 nm in the last 200 ns of the</li>
simulations of mutant ZgEngA<sub>GH5\_4\_E323S</sub>. A - -1/+1 β-1,3\_M repeat 2, B - -1/+1 β-1,3\_M repeat 3,
C - +1/+2 β-1,3\_M repeat 1, D - +1/+2 β-1,3\_M repeat 3, E - +2/+3 β-1,3 repeat 1, F - β-1,4 repeat 3
are shown below. Main residues involved in ZgEngA<sub>GH5\_4\_E323S</sub> and glucan binding involve H155,
E200, E209, W210, T253 H275, Y277, Y280, W356, N358 and F364
Figure S22: Conformation of the loop harboring Y280, between β-strand β6 and α-helix 6. (A)
Surface representation of the structure of the active site of ZgEngA<sub>GH5\_4\_E323S</sub>. (B) Surface

9 representation of the ZgEngA<sub>GH5\_4\_E323S</sub> Y280A model. (C) Surface representation of the structure of
10 the active site of F32EG5. The surface of the active site of F32EG5 is quite identical to that of Y280A
11 mutant.

## ¢

| yaaaaa         | cagttctaat | tttatggtg   | cttagtgtaa | acttcagtct         | tttacgtct          |
|----------------|------------|-------------|------------|--------------------|--------------------|
| ycgaaa         | aggagcattc | agatggggct  | catgtctcgg | gtgatcctga         | catacgcgaa         |
| caaaag         | aagaagggaa | tgaagaagat  | ggggaggatg | acggc <b>aatat</b> | gagggagata         |
| <b>ctaag</b> g | aattcgttct | tgacatgggg  | gccggttgga | acttgggcaa         | tgcaatggat         |
| ataaca         | gtgacgagac | ggcttgggga  | aaccccttga | ccactaaggc         | catgatcgat         |
| ttgcca         | aaatgggatt | taaaacctta  | cgtttaccgg | ttacttggaa         | gtttcatata         |
| agggcc         | cagactatct | tattgaagca  | aattggttgg | ataaggtcga         | ggccattgcc         |
| ttgccc         | tcgaaaatga | gatgtatgtg  | atcataaata | tacaccatga         | tgaaacatgg         |
| ttccta         | cctatgaaaa | ggccgatgaa  | gtaaaagatg | aactttcgaa         | ggtatggacg         |
| tagcca         | ataggttcaa | gacttacggc  | gattacctta | ttttgaaac          | cctaaatgaa         |
| gacata         | agggtacgcc | cgaggaatgg  | aaaggaggta | cacaagaagg         | ccgtgatgcc         |
| atcaat         | atcaccaggt | cagtgtcgat  | gccattcggg | ccacggggggg        | caataatgca         |
| gaaaaa         | taatggtgtc | tacctatgct  | gcaagtaccg | cttcaaatgc         | tttgaacgac         |
| ttgtac         | ccaatgggga | taaaaatgtt  | attgtatcgg | tgcatagcta         | tttcccttat         |
| tttgtt         | tggatggaac | ggactccact  | tggggaaccg | aagccgacaa         | aaccgcctta         |
| cggagt         | tggataaaat | ccgtgataaa  | ttcatcgtcg | aagataatag         | ggccgtggtc         |
| gggagt         | ggggctcaac | cttcagtgat  | aatcccgaag | accgcttggc         | ccatgccgaa         |
| atgcca         | gggcctgcgc | cgaaagggggc | attgtccca  | tttggtggga         | taacgggaat         |
| atgagt         | tcggtatttt | taatagaaat  | acccttgagt | ggaattaccc         | t <b>gaaattgcc</b> |
| ccattg         | ttaaggaaac | gactgaggcc  | cgttcaaagg | caaaaacgga         | atag               |
|                |            | 1           | 1          |                    | 1                  |

### В

| 120 |             |                   | RONANIE    | YUL LUN LAN       | ALDE NN ALZ A | VDEFGIENKN |
|-----|-------------|-------------------|------------|-------------------|---------------|------------|
|     |             |                   |            |                   |               |            |
| 360 | ICPIWWDNGN  | FYARACAERG        | NPEDRLAHAE | MGEWGSTFSD        | FIVEDNRAVV    | LAELDKIRDK |
| 300 | WGTEADKTAL  | QFCLDGTDST        | IVSVHSYFPY | <b>YLVPNGDKNV</b> | ASTASNALND    | KRKIMVSTYA |
| 240 | AIRATGGNNA  | <b>UNSVQHYQVN</b> | KGGTQEGRDA | PRHKGTPEEW        | DYLIFETLNE    | QIANREKTYG |
| 180 | VKDELSKVWT  | ILPTYEKADE        | IINIHHDETW | NFALENEMYV        | NWLDKVEAIA    | GEGPDYLIEA |
| 120 | RLPVTWKFHI  | EIAKMGFKTL        | NPLTTKAMID | TYNSDETAWG        | AGWNLGNAMD    | APKEFVLDMG |
| 60  | GEDDGNMRE I | MSKEEGNEED        | HVSGDPDIRE | CGEKEHSDGA        | LSVNFSLFTS    | MRKTVLIFMV |

Characteristics of the recombinant protein (sequence in green): 330 amino acids; molecular weight: 37514 Da

Figure S2





















Figure S9\_Page1













#### Figure S10\_Page2

Figure S11\_Page1



## Figure S11\_Page2



Figure S12\_page1






















Figure S19.



Figure S20.









**Table S1: Oligonucleotides used for the site-directed mutagenesis**. The mutated codons for the punctual mutations are underlined. Mutations were performed suing the QuickChange II<sup>®</sup>XL site-directed mutagenesis kit according to the manufacturer's instructions.

| Primer name   | Oligonucleotide sequence (5'-> 3')                             |
|---------------|----------------------------------------------------------------|
| N77A Forward  | GGCCGGTTGGAACTTGGGC <u>GCC</u> GCAATGGATACCTATAACAG            |
| N77A Reverse  | CTGTTATAGGTATCCATTGCCCCCCCCCCCCCCCCCCCC                        |
| N77Q Forward  | GCCGGTTGGAACTTGGGC <u>CAG</u> GCAATGGATACCTATAACA              |
| N77Q_Reverse  | TGTTATAGGTATCCATTGCCTGGCCCAAGTTCCAACCGGC                       |
| Y82A_Forward  | GGCAATGCAATGGATACC <u>GCT</u> AACAGTGACGAGACGGC                |
| Y82A_Reverse  | GCCGTCTCGTCACTGTTAGCGGTATCCATTGCATTGCC                         |
| Y82L_Forward  | GGCAATGCAATGGATACC <u>TTA</u> AACAGTGACGAGACGGCTT              |
| Y82L_Reverse  | AAGCCGTCTCGTCACTGTT <u>TAA</u> GGTATCCATTGCATTGCC              |
| H156A_Forward | GATGTATGTGATCATAAATATACACGCTGATGAAACATGGATCCTTCCT              |
| H156A_Reverse | GGTAGGAAGGATCCATGTTTCATCACAGGTGTATATTTATGATCACATACAT           |
| H156I_Forward | GATGTATGTGATCATAAATATACACATTGAAAACATGGATCCTTCCT                |
| H156I_Reverse | GGTAGGAAGGATCCATGTTTCATC <u>AAT</u> GTGTATATTTATGATCACATACATC  |
| W210A Forward | GGGTACGCCCGAGGAAGCAAAGGAGGTACACAA                              |
| W210A_Reverse | TTGTGTACCTCCTTTCCTCGGGCGTACCC                                  |
| W210F_Forward | AGGGTACGCCCGAGGAATTCAAAAGGAGGTACACAAG                          |
| W210F_Reverse | CTTGTGTACCTCCTTT <u>GAA</u> TTCCTCGGGCGTACCCT                  |
| K211A Forward | GGTACGCCCGAGGAATGG <u>GCCG</u> GGAGGTACACAAGAAGGC              |
| K211A_Reverse | GCCTTCTTGTGTACCTCCCCGCCCATTCCTCGGGCGTACC                       |
| Y280A Forward | ATCGGTGCATAGCTATTTCCCT <u>GCG</u> CAGTTTTGTTTGGATGGAACG        |
| Y280A Reverse | CCGTTCCATCCAAACAAAACTG <mark>CGC</mark> AGGGAAATAGCTATGCACCGAT |
| Y280L_Forward | ATCGGTGCATAGCTATTTCCCT <u>CTG</u> CAGTTTTGTTTGGATGGAACGG       |
| Y280L_Reverse | CCGTTCCATCCAAACAAAACTG <u>CAG</u> AGGGAAATAGCTATGCACCGAT       |
| E323S Forward | CCGTGGTCATGGGGG <u>TCG</u> TGGGGGCTCAACCT                      |
| E323S_Reverse | AGGTTGAGCCCCACGACCCATGACCACGG                                  |
| N358A Forward | CATTTGTCCCATTTGGTGGGAT <u>GCC</u> GGGAATGTTGATGAG              |
| N358A Reverse | CTCATCAACATTCCCCCCACCAAATGGGACAAATG                            |
| N358L Forward | GGCATTTGTCCCATTTGGTGGGAT <u>CTA</u> GGGAATGTTGATGAGTTCG        |
| N358L_Reverse | CGAACTCATCAACATTCCC <b>TAG</b> ATCCCACCAAATGGGACAAATGCC        |
| E363A Forward | GGTGGGATAACGGGAATGTTGAT <u>GCG</u> TTCGGTATTTTTAATAG           |
| E363A Reverse | CTATTAAAAATACCGAACGCATCAACATTCCCGTTATCCCACC                    |
| E363S Forward | TGGTGGGATAACGGGAATGTTGAT <u>TCG</u> TTCGGTATTTTTAATAGAAATACC   |
| E363S_Reverse | GGTATTTCTATTAAAAATACCGAACGAACATTCCCGTTATCCCACCA                |
|               |                                                                |

Table S2. List of the simulated systems with the number of simulations and sampling lengths (in ns) for mutated protein  $ZgEngA_{GH5\_4\_E323S}$ . Bound structures were sampled for approx. 500 ns (0.5 µs); simulations in which the substrate completely unbound were terminated early.

| No | Name             | Description                                                                                                                   | Number of<br>simulations with<br>stable bound<br>glucan | Number of<br>simulations | Lengths (ns)               |
|----|------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|----------------------------|
| 1  | β-1,4_M          | Mutated protein<br>ZgEngA <sub>GH5_4_E323S</sub><br>with 6 glucose units<br>substrate with 1,4<br>linkages                    | 2                                                       | 5                        | 232, 336, 500,<br>250, 521 |
| 2  | -1/+1<br>β-1,3_M | Mutated protein<br>$ZgEngA_{GH5_4_E323S}$<br>with 6 glucose units<br>substrate with 1,3 link<br>between -1 and +1<br>subsites | 4                                                       | 5                        | 500, 500, 500,<br>515, 521 |
| 3  | +1/+2<br>β-1,3_M | Mutated protein<br>$ZgEngA_{GH5_4_E323S}$<br>with 6 glucose units<br>substrate with 1,3 link<br>between +1 and +2<br>subsites | 2                                                       | 5                        | 500, 500, 500,<br>350, 200 |
| 4  | +2/+3<br>β-1,3_M | Mutated protein<br>$ZgEngA_{GH5_4_E323S}$<br>with 6 glucose units<br>substrate with 1,3 link<br>between +2 and +3<br>subsites | 1                                                       | 5                        | 500, 500, 415,<br>510, 522 |

Table S3. List of the simulated systems with the number of simulations and lengths (in ns) for native protein  $ZgEngA_{GH5_4}$ .

| No | Name        | Description                                                                                          | Number of<br>simulations with<br>stable bound<br>glucan | Number of simulations | Lengths (ns)  |
|----|-------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------|---------------|
| 1  | β-1,4       | Protein with 6 glucose<br>units substrate with 1,4<br>linkages                                       | 0                                                       | 3                     | 520, 520, 520 |
| 2  | -1/+1 β-1,3 | Protein with 6 glucose<br>units substrate with 1,3<br>link between -1 and +1<br>subsites             | 1                                                       | 3                     | 250, 509, 535 |
| 3  | +1/+2 β-1,3 | Protein with 6 glucose<br>units substrate with 1,3<br>link at position between<br>+1 and +2 subsites | 1                                                       | 3                     | 500, 242, 528 |
| 4  | +2/+3 β-1,3 | Protein with 6 glucose<br>units substrate with 1,3<br>link between +2 and +3<br>subsites             | 1                                                       | 3                     | 355, 503, 223 |

| No | Name          | Protein<br>molecules | Substrate | K+ | Cl- | Water<br>molecules | Total<br>number of<br>atoms |
|----|---------------|----------------------|-----------|----|-----|--------------------|-----------------------------|
| 1  | β-1,4_M       | 1                    | 1         | 68 | 48  | 15 660             | 52 391                      |
| 2  | -1/+1 β-1,3_M | 1                    | 1         | 68 | 48  | 15 664             | 52 403                      |
| 3  | +1/+2 β-1,3_Μ | 1                    | 1         | 66 | 46  | 15 189             | 50 974                      |
| 4  | +2/+3 β-1,3_M | 1                    | 1         | 66 | 46  | 15 193             | 50 986                      |

Table S4. Composition of the simulated systems – mutated protein  $ZgEngA_{GH5_4_E323S}$ .

| No | Name        | Protein<br>molecules | Substrate | K+ | Cl- | Water<br>molecules | Total<br>number of<br>atoms |
|----|-------------|----------------------|-----------|----|-----|--------------------|-----------------------------|
| 1  | β-1,4       | 1                    | 1         | 68 | 48  | 15 660             | 52 420                      |
| 2  | -1/+1 β-1,3 | 1                    | 1         | 69 | 48  | 15 666             | 52 414                      |
| 3  | +1/+2 β-1,3 | 1                    | 1         | 69 | 48  | 15 669             | 52 423                      |
| 4  | +2/+3 β-1,3 | 1                    | 1         | 69 | 48  | 15 193             | 52 438                      |

 Table S5. Composition of the simulated systems – native protein.

Table S6. Percentage of hydrogen bond occurrence during the last 200 ns of the simulation  $\beta$ -1,4 repeat 1. BGLC stands for the glucose unit (numbering 1 to 6 corresponds to +3 to -3 range). Values below 5% are not shown in the table.

| Residue-atom | Glucan-atom | Occupancy [%] |
|--------------|-------------|---------------|
| TYR277-HN    | BGLC1-O6    | 51.02         |
| GLU303-OE2   | BGLC1-HO1   | 46.84         |
| LYS211-HZ1   | BGLC1-O3    | 45.30         |
| GLU303-OE1   | BGLC1-HO1   | 31.82         |
| SER276-OG    | BGLC1-HO6   | 14.05         |
| GLU303-OE2   | BGLC1-HO1   | 13.48         |
| TYR277-HN    | BGLC2-O3    | 8.31          |
| THR253-OG1   | BGLC1-O6    | 7.48          |
| TYR277-CD1   | BGLC2-O2    | 5.61          |
| TYR280-OH    | BGLC1-HO6   | 5.14          |

| Residue-atom     | Glucan-atom | Occupancy [%] |
|------------------|-------------|---------------|
| THR253-HN        | BGLC1-O6    | 30.91         |
| ASN77-HD22       | BGLC5-O3    | 17.58         |
| TRP356-HE1       | BGLC5-O2    | 11.04         |
| ALA251-O         | BGLC2-HO2   | 10.46         |
| ASN358-HD22      | BGLC5-O3    | 10.24         |
| GLU363-OE1       | BGLC5-HO2   | 9.86          |
| GLU363-OE2       | BGLC5-HO2   | 9.22          |
| GLU363-CD        | BGLC5-HO3   | 8.95          |
| ASP80-OD2        | BGLC5-HO2   | 7.72          |
| GLU200-OE1       | BGLC4-HO2   | 7.58          |
| <b>TYR280-OH</b> | BGLC1-H62   | 7.35          |
| GLU363-OE2       | BGLC5-HO3   | 7.05          |
| GLU363-OE1       | BGLC5-HO3   | 7.05          |
| ASP80-OD1        | BGLC5-HO3   | 6.96          |
| TYR82-HN         | BGLC6-O3    | 6.09          |
| TRP210-O         | BGLC1-H5    | 6.08          |
| GLU363-CD        | BGLC5-HO2   | 5.32          |

Table S7. Percentage hydrogen bond occurrence during the last 200 ns of simulation  $\beta$ -1,4 repeat 2.

Table S8. Percentage of hydrogen bond occurrence during the last 200 ns of the simulation  $-1/+1 \beta$ -1,3 repeat 2.

| Residue-atom | Glucan-atom | Occupancy [%] |
|--------------|-------------|---------------|
| GLU323-OE1   | BGLC4-HO2   | 90.97         |
| ASN358-HD22  | BGLC5-O3    | 50.58         |
| ASN77-HD22   | BGLC5-O3    | 49.49         |
| TRP210-O     | BGLC2-HO2   | 38.43         |
| TRP356- HE1  | BGLC5-O2    | 38.24         |
| THR253- OG1  | BGLC1-HO2   | 30.87         |
| GLU303- OE2  | BGLC1-HO2   | 26.30         |
| GLU303- OE1  | BGLC1-HO2   | 19.43         |
| GLU303-OE2   | BGLC1-HO1   | 18.91         |
| GLU303- OE1  | BGLC1-HO1   | 17.12         |
| TYR277- HN   | BGLC2-O6    | 16.10         |
| ASN360- HD22 | BGLC6-O6    | 12.17         |
| THR253- HN   | BGLC1-O3    | 11.79         |
| ASN83- HD22  | BGLC6-O4    | 5.06          |

| Residue-atom | Glucan-atom | Occupancy [%] |
|--------------|-------------|---------------|
| TYR277-HN    | BGLC1-O6    | 86.68         |
| LYS211-HZ3   | BGLC1-O3    | 29.77         |
| THR253-OG1   | BGLC1-HO1   | 22.61         |
| GLU200-OE1   | BGLC3-HO2   | 17.32         |
| TRP356-HE1   | BGLC4-O2    | 16.67         |
| TYR82-0      | BGLC6-HO3   | 13.27         |
| ASN358-HD22  | BGLC4-O3    | 11.49         |
| GLU303-OE2   | BGLC1-HO1   | 9.85          |
| GLU200-OE2   | BGLC3-HO2   | 8.76          |
| GLU303-OE1   | BGLC1-HO1   | 8.52          |
| SER252-OG    | BGLC1-H1    | 7.17          |
| TRP210-O     | BGLC1-H3    | 7.15          |
| ASN77-HD22   | BGLC6-O2    | 7.00          |
| TRP210-CZ3   | BGLC3-HO2   | 6.36          |
| TYR277-HD2   | BGLC2-O2    | 6.05          |
| LYS211-HZ3   | BGLC1-O2    | 5.91          |
| THR81-OG1    | BGLC6-HO2   | 5.84          |
| TYR280-OH    | BGLC1-H2    | 5.72          |
| ASP80-OD1    | BGLC5-HO6   | 5.36          |
| SER276-HA    | BGLC1-O6    | 5.01          |

Table S9. Percentage of hydrogen bond occurrence during the last 200 ns of the simulation  $+1/+2 \beta$ -1,3 repeat 3.

\_\_\_\_\_

| Residue-atom | Glucan-atom | Occupancy [%] |
|--------------|-------------|---------------|
| ASN77-HD22   | BGLC5-O3    | 64.45         |
| ASN358-HD22  | BGLC5-O3    | 53.55         |
| TRP356-HE1   | BGLC5-O2    | 51.59         |
| ASN360-HD22  | BGLC6-O6    | 19.62         |
| GLU323-OE1   | BGLC4-HO2   | 19.47         |
| THR253-OG1   | BGLC1-HO1   | 12.27         |
| GLU200-OE1   | BGLC4-HO2   | 11.93         |
| THR253-HN    | BGLC1-O2    | 10.36         |
| GLU200-OE2   | BGLC4-HO2   | 9.29          |
| ASN358-HD22  | BGLC5-O2    | 8.91          |
| SER252-OG    | BGLC1-HO2   | 8.30          |
| HSD155-HE2   | BGLC5-O6    | 6.51          |
| TRP356-HE1   | BGLC5-C2    | 6.40          |
| TRP356-HE1   | BGLC4-O4    | 6.32          |
| THR253-HN    | BGLC2-O2    | 5.58          |
| ASN77-OD1    | BGLC5-HO3   | 5.04          |

Table S10. Percentage of hydrogen bond occurrence during the last 200 ns of the simulation +2/+3 $\beta$ -1,3 repeat 2.

| Residue-atom     | Glucan-atom | Occupancy [%] |
|------------------|-------------|---------------|
| GLU363-CD        | BGLC5-HO3   | 32.13         |
| GLU363-OE1       | BGLC5-HO3   | 27.65         |
| GLU363-OE2       | BGLC5-HO3   | 29.36         |
| GLU363-OE1       | BGLC5-HO2   | 28.31         |
| GLU363-OE2       | BGLC5-HO2   | 26.19         |
| ASP285-OD2       | BGLC3-HO3   | 26.09         |
| ASP285-CG        | BGLC3-O2    | 23.03         |
| ASP285-OD1       | BGLC3-HO2   | 21.32         |
| ASN77-HD22       | BGLC5-O3    | 19.86         |
| ASP285-OD1       | BGLC3-HO3   | 19.16         |
| ASP285-OD2       | BGLC3-HO2   | 18.50         |
| GLU363-CD        | BGLC5-HO2   | 14.48         |
| ASN358-HD22      | BGLC5-O3    | 13.22         |
| ASN360-HD22      | BGLC6-O6    | 12.22         |
| GLU363-OE1       | BGLC6-HO6   | 10.86         |
| TRP356-HE1       | BGLC5-O2    | 9.10          |
| GLU363-OE2       | BGLC6-HO6   | 8.65          |
| THR253-HN        | BGLC1-O6    | 7.34          |
| GLU200-OE1       | BGLC4-HO2   | 7.04          |
| <b>TYR280-OH</b> | BGLC1-HO6   | 6.39          |
| GLU200-OE2       | BGLC4-HO2   | 6.33          |
| SER252-OG        | BGLC1-HO6   | 6.03          |
| GLU200-OE1       | BGLC3-HO6   | 5.03          |

Table S11. Percentage of hydrogen bond occurrence during the last 200 ns of the simulation  $\beta$ -1,4\_M repeat 3.

\_\_\_\_\_

| Residue-atom     | Glucan-atom | Occupancy [%] |
|------------------|-------------|---------------|
| TRP356-HE1       | BGLC5-O2    | 49.76         |
| ASN358-HD22      | BGLC5-O3    | 40.01         |
| GLU200-OE1       | BGLC4-HO2   | 34.02         |
| ASN77-OD1        | BGLC5-HO3   | 33.72         |
| GLU200-OE2       | BGLC3-HO6   | 33.16         |
| GLU200-CD        | BGLC4-HO2   | 30.23         |
| GLU200-OE1       | BGLC3-HO6   | 21.25         |
| GLU200-OE2       | BGLC4-HO2   | 21.00         |
| SER252-OG        | BGLC2-HO2   | 19.32         |
| TRP210-O         | BGLC2-HO6   | 16.89         |
| THR253-HN        | BGLC2-O2    | 15.32         |
| GLU363-OE2       | BGLC5-HO2   | 12.69         |
| <b>TYR280-OH</b> | BGLC1-HO6   | 10.67         |
| GLU363-OE1       | BGLC5-HO3   | 10.36         |
| ASN77-HD22       | BGLC5-O3    | 10.06         |
| GLU200-CD        | BGLC3-HO6   | 9.39          |
| ASP285-CG        | BGLC3-HO2   | 9.11          |
| GLU363-CD        | BGLC5-HO3   | 9.10          |
| ASP285-OD2       | BGLC3-HO2   | 8.83          |
| <b>SER252-OG</b> | BGLC1-HO6   | 8.29          |
| TRP210-O         | BGLC1-HO3   | 8.19          |
| ASP285-OD2       | BGLC3-HO3   | 8.10          |
| THR253-HN        | BGLC1-O6    | 7.59          |
| ASP285-OD1       | BGLC3-HO2   | 7.42          |
| LEU284-CD1       | BGLC3-HO2   | 7.40          |
| ASN360-HD22      | BGLC6-O6    | 6.39          |
| GLU363-OE1       | BGLC5-HO2   | 6.29          |
| GLU363-OE2       | BGLC5-HO3   | 6.10          |
| ASP285-OD1       | BGLC3-HO3   | 6.05          |
| GLU363-CD        | BGLC5-HO2   | 5.83          |

Table S12. Percentage of hydrogen bond occurrence during the last 200 ns of the simulation  $\beta$ -1,4\_M repeat 5.

| Residue-atom     | Glucan-atom | Occupancy [%] |
|------------------|-------------|---------------|
| TRP356-HE1       | BGLC5-O2    | 80.15         |
| ASN358-HD22      | BGLC5-O3    | 57.75         |
| ASN77-HD22       | BGLC5-O3    | 54.85         |
| TRP210-O         | BGLC2-HO2   | 49.80         |
| TYR277-HN        | BGLC2-O6    | 43.20         |
| THR253-HN        | BGLC1-O1    | 37.20         |
| THR253-OG1       | BGLC1-HO2   | 28.05         |
| SER252-OG        | BGLC1-HO5   | 18.00         |
| GLU303-OE1       | BGLC1-HO2   | 17.65         |
| ASN360-HD22      | BGLC6-O6    | 14.85         |
| TRP356-CZ2       | BGLC4-HO3   | 14.00         |
| LYS211-O         | BGLC1-HO6   | 13.75         |
| HSD275-HD1       | BGLC3-O2    | 12.50         |
| GLU303-OE2       | BGLC1-HO2   | 12.45         |
| TRP356-HE1       | BGLC5-C2    | 10.40         |
| THR253-HN        | BGLC1-O3    | 10.30         |
| TRP356-CH2       | BGLC4-HO3   | 8.45          |
| ALA250-O         | BGLC2-H1    | 7.95          |
| HSD275-O         | BGLC2-HO6   | 7.45          |
| <b>TYR280-OH</b> | BGLC1-HO3   | 7.15          |
| ASN77-OD1        | BGLC5-HO3   | 7.10          |
| THR253-OG1       | BGLC1-HO2   | 7.10          |
| ASN358-HD22      | BGLC5-O2    | 7.10          |
| GLU303-CD        | BGLC1-HO2   | 6.65          |
| ASN77-HD22       | BGLC5-O6    | 6.65          |
| SER252-HA        | BGLC1-O5    | 6.40          |
| SER323-OG        | BGLC4-HO2   | 6.15          |
| SER252-OG        | BGLC1-HO1   | 5.80          |
| SER252-OG        | BGLC1-H1    | 5.20          |

Table S13. Percentage of hydrogen bond occurrence during the last 200 ns of the simulation -1/+1  $\beta$ -1,3\_M repeat 2.

| Residue-atom       | Glucan-atom | Occupancy [%] |
|--------------------|-------------|---------------|
| TYR277-HN          | BGLC2-O6    | 73.12         |
| TRP356-HE1         | BGLC5-O2    | 70.77         |
| ASN358-HD22        | BGLC5-O3    | 59.48         |
| ASN77-OD1          | BGLC5-HO3   | 38.27         |
| GLU303-OE1         | BGLC1-HO2   | 31.12         |
| GLU303-OE2         | BGLC1-HO2   | 27.49         |
| <b>TYR280-OH</b>   | BGLC3-HO6   | 24.32         |
| ASN77-HD22         | BGLC5-O3    | 24.17         |
| ASN360-HD22        | BGLC6-O6    | 22.07         |
| GLU200-OE1         | BGLC4-HO2   | 21.61         |
| ТҮ <b>R280-О</b> Н | BGLC3-HO6   | 21.72         |
| GLU200-OE2         | BGLC4-HO2   | 17.88         |
| GLU303-CD          | BGLC1-HO2   | 16.45         |
| TYR277-HN          | BGLC2-C6    | 8.38          |
| ASN77-HD22         | BGLC5-O6    | 7.41          |
| SER276-HA          | BGLC2-O6    | 6.39          |
| TRP356-CZ2         | BGLC4-HO3   | 5.88          |
| ТҮ <b>R277-O</b> H | BGLC4-HO2   | 5.67          |
| ASN358-HD22        | BGLC5-O2    | 5.52          |
| TRP356-HE1         | BGLC5-C2    | 5.01          |
|                    |             |               |

Table S14. Percentage of hydrogen bond occurrence during the last 200 ns of the simulation -1/+1  $\beta$ -1,3\_M repeat 3.

| Residue-atom | Glucan-atom | Occupancy [%] |
|--------------|-------------|---------------|
| TRP356-HE1   | BGLC5-O2    | 82.28         |
| HSD275-HD1   | BGLC3-O2    | 68.94         |
| ASN77-HD22   | BGLC5-O3    | 68.20         |
| ASN358-HD22  | BGLC5-O3    | 63.49         |
| THR253-HN    | BGLC1-O3    | 56.09         |
| GLU303-OE2   | BGLC1-HO2   | 29.71         |
| GLU303-OE1   | BGLC1-HO2   | 25.70         |
| THR253-OG1   | BGLC1-HO2   | 23.33         |
| ASN360-HD22  | BGLC6-O6    | 22.68         |
| TRP356-CZ2   | BGLC4-HO3   | 18.78         |
| GLU209-OE1   | BGLC2-HO2   | 17.47         |
| GLU209-OE2   | BGLC2-HO2   | 15.20         |
| TRP356-CH2   | BGLC4-HO3   | 12.33         |
| SER252-OG    | BGLC1-H4    | 10.60         |
| TYR277-HN    | BGLC2-O6    | 10.15         |
| ASN77-OD1    | BGLC5-HO3   | 8.55          |
| GLU209-O     | BGLC1-HO6   | 7.90          |
| GLU303-CD    | BGLC1-HO2   | 7.34          |
| TRP356-HE1   | BGLC5-C2    | 6.70          |
| GLU209-CD    | BGLC2-HO2   | 6.11          |
| HSD155-CE1   | BGLC5-HO6   | 6.03          |
| GLU303-OE1   | BGLC1-HO1   | 5.95          |
| ASN77-OD1    | BGLC5-H4    | 5.28          |
| ASN358-HD22  | BGLC5-O2    | 5.00          |
|              |             |               |

Table S15. Percentage of hydrogen bond occurrence during the last 200 ns of the simulation -1/+1  $\beta$ -1,3\_M repeat 4.

| Residue-atom            | Glucan-atom          | Occupancy [%] |
|-------------------------|----------------------|---------------|
| THR253-HN               | BGLC1-O1             | 80.93         |
| ASN358-HD22             | BGLC5-O3             | 66.32         |
| TRP356-HE1              | BGLC5-O2             | 56.88         |
| THR253-OG1              | BGLC1-HO2            | 55.36         |
| TYR82-H                 | BGLC5-O6             | 50.22         |
| GLU200-OE2              | BGLC4-HO2            | 47.34         |
| TYR277-HN               | BGLC2-O6             | 46.11         |
| GLU200-OE1              | BGLC4-HO2            | 39.85         |
| GLU200-CD               | BGLC4-HO2            | 24.73         |
| SER252-C1               | BGLC1-HG1            | 22.07         |
| GLU200-OE2              | BGLC3-HO2            | 12.51         |
| ASN83-ND2               | BGLC6-O3             | 12.16         |
| GLU200-OE1              | BGLC3-HO2            | 11.24         |
| ASN360-ND2              | BGLC6-O6             | 10.72         |
| SER252-HG1              | BGLC1-O5             | 10.39         |
| TRP210-O                | BGLC1-HO6            | 9.69          |
| TYR82-H                 | BGLC5-O6             | 8.71          |
| ALA250-O                | BGLC2-H1             | 8.41          |
| ТҮ <b>R280-</b> Н       | BGLC1-O3             | 7.97          |
| TRP356-HE1              | BGLC5-C2             | 7.38          |
| ASN358-0                | BGLC6-HO6            | 6.68          |
| <b>TYR280-OH</b>        | BGLC1-HO3            | 6.49          |
| ALA250-O                | BGLC1-HO6            | 6.33          |
| ASN83-HD22              | BGLC6-O3             | 6.25          |
| ASN77-HD21              | BGLC5-O3             | 6.14          |
| TRP356-CZ2              | BGLC4-HO3            | 5.91          |
| TRP356-HE1              | BGLC4-O4             | 5.63          |
| HSD155-NE2              | BGLC5-HO6            | 5.59          |
| ALA254-HN<br>TYR280-HE2 | BGLC1-O1<br>BGLC2-O6 | 5.38<br>5.37  |

Table S16. Percentage of hydrogen bond occurrence during the last 200 ns of the simulation -1/+1  $\beta$ -1,3\_M repeat 5.

| Residue-atom       | Glucan-atom | Occupancy [%] |
|--------------------|-------------|---------------|
| ASN358-HD2         | BGLC5-O3    | 50.17         |
| TRP356-HE1         | BGLC5-O2    | 46.00         |
| GLU200-OE1         | BGLC4-HO2   | 38.06         |
| GLU200-CD          | BGLC4-HO2   | 31.07         |
| GLU200-OE2         | BGLC4-O2    | 29.43         |
| ASN77-HD22         | BGLC5-O3    | 27.94         |
| TRP356-CZ2         | BGLC4-HO3   | 21.49         |
| SER252-OG          | BGLC1-HO6   | 16.87         |
| TRP356-CE2         | BGLC4-HO3   | 12.16         |
| ASP80-OD2          | BGLC6-HO2   | 11.17         |
| ASN358-HD22        | BGLC5-O2    | 10.07         |
| HSD155-HE2         | BGLC5-O6    | 9.78          |
| TRP356-HE1         | BGLC5-C2    | 8.39          |
| ASP80-OD1          | BGLC6-HO2   | 8.29          |
| GLU363-OE2         | BGLC6-HO6   | 8.24          |
| TRP356-HE1         | BGLC4-O4    | 7.79          |
| GLU363-CD          | BGLC6-HO6   | 7.69          |
| ASN77-OD1          | BGLC5-HO3   | 7.59          |
| ASP80-OD1          | BGLC6-HO3   | 7.54          |
| GLU363-OE1         | BGLC6-HO6   | 7.39          |
| ASP80-OD2          | BGLC6-HO3   | 7.00          |
| ASP80-CG           | BGLC6-HO3   | 6.85          |
| TRP356-CH2         | BGLC4-HO3   | 6.15          |
| ТҮ <b>R277-O</b> H | BGLC4-HO2   | 5.51          |
| ASN360-HD22        | BGLC6-O6    | 5.31          |

Table S17. Percentage of hydrogen bond occurrence during the last 200 ns of the simulation +1/+2  $\beta$ -1,3\_M repeat 1.

| Residue-atom | Glucan-atom | Occupancy [%] |
|--------------|-------------|---------------|
| ASN77-HD22   | BGLC5-O3    | 77.45         |
| TRP356-HE1   | BGLC5-O2    | 74.30         |
| ASN358-HD22  | BGLC5-O3    | 60.35         |
| HSD275-HD1   | BGLC3-O3    | 22.65         |
| GLU200-OE1   | BGLC3-HO3   | 22.35         |
| HSD275-HD1   | BGLC3-O6    | 21.55         |
| GLU200-OE2   | BGLC3-HO3   | 19.25         |
| THR87-OG1    | BGLC6-HO4   | 18.50         |
| GLU200-CD    | BGLC3-HO3   | 16.85         |
| SER252-OG    | BGLC1-HO6   | 13.20         |
| SER252-OG    | BGLC2-HO6   | 11.75         |
| GLU200-CD    | BGLC3-HO2   | 9.75          |
| GLU200-OE2   | BGLC3-HO2   | 9.00          |
| THR87-OG1    | BGLC6-HO4   | 8.30          |
| TRP356-CZ2   | BGLC4-HO3   | 8.15          |
| GLU200-OE1   | BGLC3-HO2   | 8.05          |
| GLU200-OE1   | BGLC3-HO6   | 6.05          |
| GLU200-OE2   | BGLC3-HO6   | 5.80          |
| THR253-HN    | BGLC2-O6    | 5.35          |
|              |             |               |

Table S18. Percentage of hydrogen bond occurrence during the last 200 ns of the simulation +1/+2  $\beta$ -1,3\_M repeat 3.

| Residue-atom | Glucan-atom | Occupancy [%] |
|--------------|-------------|---------------|
| ASN77-HD22   | BGLC5-O3    | 70.81         |
| TRP356-HE1   | BGLC5-O2    | 58.92         |
| ASN358-HD22  | BGLC5-O3    | 53.77         |
| HSD275-HD1   | BGLC3-O6    | 48.73         |
| HSD275-O     | BGLC2-HO2   | 29.99         |
| GLU303-CD    | BGLC1-HO1   | 17.54         |
| THR253-OG1   | BGLC1-HO2   | 17.19         |
| HSD275-HD1   | BGLC3-C6    | 14.99         |
| GLU303-OE1   | BGLC1-HO1   | 12.74         |
| GLU303-OE2   | BGLC1-HO1   | 12.24         |
| ASN77-OD1    | BGLC5-H4    | 9.20          |
| SER276-HA    | BGLC2-O2    | 8.85          |
| TYR277-HN    | BGLC2-C3    | 8.45          |
| ASN360-HD22  | BGLC6-O6    | 7.90          |
| GLU363-OE2   | BGLC6-HO6   | 6.45          |
| ASN358-HD22  | BGLC5-O2    | 6.15          |
| TRP210-O     | BGLC1-HO4   | 5.90          |
| GLU363-OE1   | BGLC6-HO6   | 5.65          |
| TYR277-HN    | BGLC2-O3    | 5.15          |
| ASP80-OD2    | BGLC6-HO4   | 5.05          |
|              |             |               |

Table S19. Percentage of hydrogen bond occurrence during the last 200 ns of the simulation +2/+3  $\beta$ -1,3\_M repeat 1.

| system E323S. |  |  |  |
|---------------|--|--|--|
|               |  |  |  |

Table S20. Average number of hydrogen bonds between glucose chain and protein - mutated

| Simulation Name             | Average number of hydrogen bonds and standard deviation                           | Time used in<br>analyses (ns) |
|-----------------------------|-----------------------------------------------------------------------------------|-------------------------------|
| β-1,4_M (3, 5)              | <b>4.44</b> ± 1.69; <b>5.97</b> ± 2.34                                            | 300 - 500                     |
| -1/+1 β-1,3_M (2, 5)        | <b>7.90</b> ± 1.89; <b>6.32</b> ± 1.64; <b>6.69</b> ± 1.99;<br><b>7.63</b> ± 2.05 | 300 - 500                     |
| +1/+2 $\beta$ -1,3_M (1, 3) | <b>4.85</b> ± 1.48; <b>6.05</b> ± 1.56                                            | 300 - 500                     |
| +2/+3 β-1,3_M (1)           | <b>5.53</b> ± 2.22                                                                | 300 - 500                     |

| Simulation Name | Average number of hydrogen bonds and standard deviation | Time used in<br>analyses (ns) |  |  |
|-----------------|---------------------------------------------------------|-------------------------------|--|--|
| β-1,4 (1, 2)    | $3.07 \pm 1.43$ ; $2.70 \pm 1.71$                       | 300 - 500                     |  |  |
| -1/+1 β-1,3 (2) | <b>7.31</b> ± 1.96                                      | 300 - 500                     |  |  |
| +1/+2 β-1,3 (3) | $4.00 \pm 1.84$                                         | 300 - 500                     |  |  |
| +2/+3 β-1,3 (2) | <b>4.26</b> ± 1.85                                      | 300 - 500                     |  |  |

Table S21. Average number of hydrogen bonds between glucose chain and protein – native system.

| Desidue                   |          |                      | -1/+1                 | +1/+2     | +2/+3                |          |
|---------------------------|----------|----------------------|-----------------------|-----------|----------------------|----------|
| number                    | β-1,4_I  | β-1,4_II             | 6-1.3 II              | в-1.3 III | в-1.3 II             | Average  |
|                           |          |                      | F )= _                |           | <b>F F –</b>         |          |
| ASN77                     | 14       | 47                   | 97                    | 7/I<br>12 | 100                  | 66       |
| АЗГО<br>ТПD01             | 0        | 19                   | 5                     | 12        | 0<br>27              | 9<br>25  |
| 1 ПК01<br>ТVD92           | 2        | 34                   | 14<br>8               | 80<br>41  | 0                    | 18       |
| Т <u>т</u> ко2<br>тир97   | 2        | 30                   | 8<br>0                | 41        | 0                    | 10       |
| 1 ПК0 /<br>Тррол          | 0        | 1                    | 0                     | 0         | 14                   | 5        |
| 1 NF 09<br>USD155         | 5        | 1                    | 10                    | 0         | 0                    | 0        |
| HSD155<br>HSD156          | 3        | 17                   | 3                     | 49        | 93<br>27             | 34<br>20 |
| H5D150                    | 20       | 10                   | 0                     | 49        | 27<br>53             | 20       |
|                           | 0        | 10                   | 2                     | 08        | 35                   | 20       |
| AKG202<br>DDO207          | 2        | 3                    | 0                     | 9         | 4                    | 4        |
| PRO207                    | 0        | 0                    | 0                     | 0         | 0                    | 0.<br>5  |
| GLU209<br>TDD210          | 100      | 100                  | 0                     | 0         | 24                   | J<br>100 |
| I KF 210<br>I V6211       | 100      | 100                  | 99                    | 100       | 100                  | 100      |
| LY 5211<br>CL V212        | 99       | 98                   | 99                    | 95        | 10                   | 80       |
| GLY212<br>TVD240          | 0        | 0                    | 1                     | 0         | 0                    | 0        |
| I Y K249                  | 0        | 0                    | 0                     | 0         | 0                    | 0        |
| ALA250                    | 0        | 9                    | 90<br>71              | 0         | 1                    | 21       |
| ALA251<br>SED252          | 1        | 20                   | /1                    | 0         | 47                   | 29       |
| SEK252<br>THD252          | 100      | 90                   | 100                   | 90        | 30                   | 00<br>95 |
| 1 HK255                   | 99       | 90                   | 100                   | 89<br>80  | 47                   | 83<br>86 |
| ALA254                    | 99       | 92                   | 100                   | 89        | 49                   | 80       |
| H5D275<br>SED276          | 0        | 12                   | 100                   | 00        | 51                   | 40<br>50 |
| SEK270<br>TVD277          | 94       | 4                    | 98                    | 98        | 1                    | 39<br>05 |
| 1 Y K2 / /<br>DHE 279     | 100      | /4                   | 100                   | 100       | 100                  | 93       |
| PHE278<br>TVD290          | 94       | 0                    | 9                     | 87        | 2                    | 40       |
| I Y K200<br>I E11294      | 100      | 100                  | 100                   | 99<br>100 | 99<br>100            | 100      |
| LEU284                    | 100<br>8 | 99<br>7              | 100                   | 100       | 100                  | 100      |
| ASF 205                   | 02       | 7                    | 0                     | 0         | 0                    | 5        |
| GLU303                    | 92       | /                    | 99<br>41              | 35<br>1   | 1                    | 12       |
| L I 5500<br>SED 222       | 12       | 1                    | 41                    | 1         | 3<br>74              | 12       |
| SEK323<br>TDD <b>35</b> 6 | 1        | 3                    | 99<br>100             | 14        | /4                   | 50<br>19 |
| 1 NF 330<br>A SN 250      | 3        | 0<br>35              | 100                   | 32        | 100                  | +0<br>55 |
| ASINJJO<br>Asinjjo        | 5<br>Q   | 33<br>24             | 100<br>72             | צכ<br>ד   | 100<br>84            | 33       |
| ASINJOU<br>CL 11262       | 0<br>11  | 2 <del>4</del><br>37 | 72<br>24              | ,<br>5    | 0 <del>4</del><br>17 | 37<br>10 |
| GLU303<br>DHE244          | 11       | 37<br>22             | ∠ <del>4</del><br>100 | 5<br>12   | 1/                   | 17       |
| ГПЕЗ04                    | 4        | 23                   | 100                   | 4∠        | 100                  | 34       |

Table S22. Percentage of occurrence of interatomic contacts < 0.35 nm in the last 100 ns of the simulations.

| Residue<br>number     | β-1,4<br>III_M | β-1,4<br>V M      | -1/+1<br>β-1,3 | -1/+1<br>β-1,3 | -1/+1<br>β-1,3 | -1/+1<br>β-1,3 | +1/+2<br>β-1,3 | +1/+2<br>β-1,3 | +2/+3<br>β-1,3 | Average  |
|-----------------------|----------------|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------|
|                       |                | , <sup>1</sup> .1 | II_M           | III_M          | IV_M           | V_M            | _I_M           | III_M          | I_M            |          |
| ASN77                 | 83             | 83                | 100            | 95             | 98             | 93             | 100            | 100            | 98             | 94       |
| ASP80                 | 1              | 2                 | 22             | 12             | 8              | 9              | 48             | 3              | 15             | 13       |
| THR81                 | 12             | 39                | 0              | 12             | 28             | 62             | 14             | 43             | 16             | 2        |
| <b>TYR82</b>          | 0              | 4                 | 19             | 14             | 0              | 97             | 0              | 0              | 58             | 21       |
| <b>THR87</b>          | 0              | 0                 | 3              | 0              | 0              | 2              | 0              | 68             | 0              | 8        |
| TRP89                 | 52             | 0                 | 3              | 0              | 9              | 0              | 0              | 84             | 0              | 16       |
| HSD155                | 1              | 8                 | 65             | 25             | 75             | 88             | 83             | 47             | 39             | 48       |
| HSD156                | 1              | 7                 | 6              | 9              | 37             | 2              | 0              | 23             | 34             | 13       |
| GLU200                | 35             | 64                | 6              | 58             | 46             | 99             | 93             | 82             | 18             | 56       |
| ARG202                | 21             | 3                 | 0              | 2              | 3              | 0              | 0              | 23             | 0              | 6        |
| PRO207                | 1              | 0                 | 0              | 0              | 7              | 0              | 20             | 15             | 6              | 5        |
| GLU209                | 0              | 1                 | 0              | 0              | 45             | 0              | 26             | 26             | 0              | 11       |
| <b>TRP210</b>         | 100            | 100               | 100            | 100            | 42             | 100            | 100            | 34             | 100            | 86       |
| LYS211                | 78             | 93                | 96             | 91             | 12             | 36             | 90             | 0              | 96             | 66       |
| GLY212                | 5              | 6                 | 43             | 0              | 22             | 0              | 0              | 0              | 0              | 8        |
| TYR249                | 1              | 0                 | 5              | 0              | 0              | 0              | 0              | 15             | 0              | 2        |
| ALA250                | 4              | 54                | 69             | 1              | 63             | 100            | 1              | 70             | 37             | 44       |
| ALA251                | 0              | 44                | 85             | 4              | 70             | 100            | 1              | 68             | 63             | 48       |
| SER252                | 46             | 83                | 96             | 55<br>70       | 98             | 100            | 37             | 82             | /1             | 74       |
| THR253                | 25             | 84                | 99             | /9             | 99             | 100            | 15             | 36             | 60             | 66<br>75 |
| ALA254                | 49             | 90<br>50          | 98             | 83             | 100            | 99             | 32             | 5/<br>96       | 65             | /5<br>75 |
| H5D2/5<br>SED276      | 18             | 39                | 99             | 42             | 97             | 97             | 80             | 80<br>17       | 94<br>55       | 73<br>51 |
| SEK270<br>TVD277      | 0              | 0                 | 99<br>100      | 94             | 90             | 99<br>100      | 100            | 1/             | 100            | 01       |
| 1 1 K2 / /<br>PHF 278 | 40             | 2                 | 27             | 99<br>75       | 8              | 28             | 100            | 9              | 25             | 10       |
| TVR280                | 100            | 99                | 100            | 99             | 100            | 100            | 100            | 91             | 100            | 99       |
| LEU284                | 100            | 100               | 100            | 100            | 100            | 100            | 100            | 100            | 100            | 100      |
| ASP285                | 54             | 25                | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 9        |
| GLU303                | 1              | 23                | 91             | 87             | 91             | 95             | Ő              | 1              | 52             | 47       |
| LYS306                | 0              | 3                 | 29             | 6              | 34             | 1              | Ő              | 0              | 18             | 10       |
| SER323                | 4              | 0                 | 40             | 13             | 35             | 11             | 40             | 72             | 31             | 27       |
| <b>TRP356</b>         | 26             | 61                | 100            | 99             | 100            | 100            | 100            | 100            | 98             | 87       |
| <b>ASN358</b>         | 96             | 84                | 100            | 99             | 100            | 100            | 100            | 100            | 94             | 97       |
| ASN360                | 64             | 48                | 70             | 74             | 79             | 32             | 56             | 13             | 44             | 53       |
| GLU363                | 79             | 35                | 19             | 12             | 19             | 17             | 31             | 18             | 24             | 28       |
| PHE364                | 97             | 82                | 99             | 99             | 99             | 100            | 100            | 99             | 89             | 96       |

Table S23. Percentage of occurrence of interatomic contacts < 0.35 nm in the last 100 ns of the mutated  $ZgEngA_{GH5_4_E3238}$  simulations.

|                                                                                             | System                   | Components <sup>a</sup>           |                                    |                    |                                         |                                   |  |
|---------------------------------------------------------------------------------------------|--------------------------|-----------------------------------|------------------------------------|--------------------|-----------------------------------------|-----------------------------------|--|
|                                                                                             | _                        | $\Delta E_{vdw}$                  | $\Delta E_{ele}$                   | $\Delta G_{polar}$ | $\Delta \mathbf{G}_{\mathbf{nonpolar}}$ | $\Delta \mathbf{G}_{bind}$        |  |
| Native<br>ZgEngA <sub>GH5_4</sub>                                                           | -1/+1 β-1,3_II           | $\textbf{-44.2} \pm \textbf{3.4}$ | $-48.5 \pm 11.7$                   | $72.3\pm7.6$       | $\textbf{-6.9}\pm0.3$                   | $-27.3\pm8.5$                     |  |
|                                                                                             | +1/+2 β-1,3_III          | $\textbf{-38.5} \pm \textbf{4.2}$ | $-32.1\pm10.5$                     | $59.7 \pm 10.2$    | $\textbf{-6.5}\pm0.6$                   | $\textbf{-17.4} \pm \textbf{8.4}$ |  |
|                                                                                             | +2/+3 β-1,3_II           | $\textbf{-38.8}\pm\textbf{3.9}$   | $-39.4\pm11.3$                     | $61.7\pm9.5$       | $\textbf{-6.4} \pm 0.5$                 | $\textbf{-22.9}\pm8.6$            |  |
| $\begin{array}{c} \text{Mutant} \\ \text{ZgEngA}_{\text{GH5}\_4\_\text{E323S}} \end{array}$ | β-1,4_III_M              | $-32.9\pm6.8$                     | $-29.4\pm15.6$                     | $41.8\pm12.2$      | $\textbf{-6.7} \pm 0.9$                 | $-27.3 \pm 12.8$                  |  |
|                                                                                             | β-1,4_V_M                | $\textbf{-33.1}\pm6.4$            | $\textbf{-32.5} \pm 10.5$          | $43.2\pm11.4$      | $\textbf{-5.9}\pm0.9$                   | $\textbf{-28.3} \pm 11.8$         |  |
|                                                                                             | -1/+1 β-1,3_II_M         | $\textbf{-41.0} \pm \textbf{4.2}$ | $\textbf{-42.1} \pm \textbf{14.6}$ | $44.6\pm9.1$       | $-3.3 \pm 1.7$                          | $\textbf{-41.8} \pm \textbf{9.2}$ |  |
|                                                                                             | -1/+1 β-1,3_III_M        | $\textbf{-40.3} \pm \textbf{4.7}$ | $\textbf{-55.0} \pm 13.7$          | $57.5\pm8.9$       | $\textbf{-6.9}\pm0.5$                   | $\textbf{-44.6} \pm \textbf{9.2}$ |  |
|                                                                                             | -1/+1 β-1,3_IV_M         | $\textbf{-43.4} \pm \textbf{3.5}$ | $\textbf{-49.5} \pm 11.0$          | $56.8\pm7.3$       | $\textbf{-6.8} \pm \textbf{0.4}$        | $\textbf{-42.9} \pm 8.2$          |  |
|                                                                                             | -1/+1 β-1,3_V_M          | $\textbf{-46.8} \pm \textbf{3.8}$ | $\textbf{-76.3} \pm 13.6$          | $88.9 \pm 8.3$     | $\textbf{-7.3}\pm0.4$                   | $\textbf{-41.5} \pm 9.3$          |  |
|                                                                                             | $+1/+2 \beta-1,3_I_M$    | $\textbf{-38.7} \pm \textbf{4.0}$ | $\textbf{-46.5} \pm 12.8$          | $54.0\pm8.5$       | $\textbf{-6.4} \pm \textbf{0.6}$        | $\textbf{-37.6} \pm \textbf{9.8}$ |  |
|                                                                                             | $+1/+2 \beta$ -1,3_III_M | $\textbf{-34.0}\pm6.7$            | $\textbf{-46.1} \pm 12.8$          | $48.1\pm11.6$      | $\textbf{-5.7}\pm0.9$                   | $\textbf{-37.6} \pm 12.7$         |  |
|                                                                                             | +2/+3 β-1,3_I_M          | $\textbf{-41.2} \pm 7.5$          | $-44.8\pm13.2$                     | $50.2\pm12.1$      | $\textbf{-6.4} \pm 0.8$                 | $-42.3\pm12.6$                    |  |

**Notes:**  ${}^{a}\Delta E_{vdw}$  van der Waals contribution;  $\Delta E_{ele}$ , electrostatic contribution; the sum of  $\Delta E_{vdw}$  and  $\Delta E_{ele}$  represent gas-phase energy;  $\Delta G_{polar}$ , polar solvation energy;  $\Delta G_{nonpolar}$ , non-polar solar energy; the sum of  $\Delta G_{polar}$  and  $\Delta G_{nonpolar}$  is the solvation free energy;  $\Delta G_{bind} = \Delta E_{ele} + \Delta E_{vdw} + \Delta G_{polar} + \Delta G_{nonpolar}$ . Error values were obtained by calculating standard deviation.

Table S25: List of the sequences used in the phylogenetic analysis (Figure 2).

| Label                                        | Organism                                          | Accession numbers | PDB code   | References                                                                                          |
|----------------------------------------------|---------------------------------------------------|-------------------|------------|-----------------------------------------------------------------------------------------------------|
| ZgEngA-GH5_4                                 | Zobellia galactanivorans Dsij                     | CAZ94281.1        | 6GL2; 6GL0 | This work                                                                                           |
| GH5 4 Zobellia uliginosa                     | Zobellia uliginosa                                | SIT07898.1        |            |                                                                                                     |
| GH5 4 Pseudozobellia thermophila             | Pseudozobellia thermophila                        | WP 072991460.1    |            |                                                                                                     |
| GH5 4 Maribacter dokdonensis                 | Maribacter dokdonensis                            | WP 074674385.1    |            |                                                                                                     |
| GH5 4 Maribacter forsetii                    | Maribacter forsetii                               | WP 051941839.1    |            |                                                                                                     |
| GH5 4 Maribacter aquivivus                   | Maribacter aquivivus                              | WP_0732454461     |            |                                                                                                     |
| GH5 4 Hyunsoonleella jejuensis               | Hyunsoonleella jejuensis                          | SE004964 1        |            |                                                                                                     |
| GH5 4 Flagellimonas DK169                    | Flagellimonas DK169                               | WP 0553934101     |            |                                                                                                     |
| GH5 4 Croceitalea dokdonensis                | Croceitalea dokdonensis                           | WP_054560255.1    |            |                                                                                                     |
| GH5 / Saccharicrinis formentans              | Saccharicrinis fermentans                         | GAE03776 1        |            |                                                                                                     |
| GH5 4 Labilibacter marinus                   |                                                   | W/R 075590947 1   |            |                                                                                                     |
| GH5 4 Dokdonia MED134                        | Dokdonia sp. MED134                               | WP_071778202.1    |            |                                                                                                     |
| CHE 4 Dekdonia McD134                        | Dokdonia sp. MEDIS4                               | WP_021778202.1    |            |                                                                                                     |
| GH5 4 Dokuonia donghaensis                   |                                                   | WP_032111791.1    |            |                                                                                                     |
| GH5 4 Flexithrix dorotheae                   |                                                   | WP_020529897.1    |            |                                                                                                     |
|                                              |                                                   | WP_068475339.1    |            |                                                                                                     |
| GH5 4 Algibacter SK-16                       | Algibacter sp. SK-16                              | WP_069830916.1    |            |                                                                                                     |
| GH5 4 Duganella CF402                        | Duganella sp. CF402                               | SEM/1636.1        |            |                                                                                                     |
| CICEIA                                       | Clostridium Iongisporum                           | P54937.1          |            | Mittendorf and Thomson (1993) J. Gen. Microbiol. 139: 3233-3242                                     |
| GH5 4 Clostrialum KNHS205                    | Clostridium sp. KNHS205                           | WP_051685496.1    | 415.44     | Walker at al. (2015) Biotechnol Biofuels 8: 220                                                     |
| RtCelsC_pdb-4livi4                           | Ruminiciostriatum thermocellum                    | AAA23224.1        | 4111/14    | Walkel et al (2015) Biotecinioi Biotueis 8. 220                                                     |
| GH5 4 Pseudobacteroides cellulosolvens       | Pseudobacteroides cellulosolveris                 | KNY25403.1        |            |                                                                                                     |
| GH5 4 Acetivibrio cellulolyticus             | Acetivibrio cellulolyticus                        | WP_010248927.1    |            |                                                                                                     |
| GH5 4 Clostridium pasteurianum               | Clostridium pasteurianum                          | WP_066020423.1    |            |                                                                                                     |
| GH5 4 Clostridium acetobutylicum             | Clostridium acetobutylicum                        | WP_010964144.1    |            |                                                                                                     |
| GH5 4 Clostridium roseum                     | Clostridium roseum                                | WP_077832505.1    |            |                                                                                                     |
| GH5 4 Clostridium cellulovorans              | Clostridium cellulovorans                         | WP_010076241.1    |            |                                                                                                     |
| CcEngD_pdb-3NDY                              | Clostridium cellulovorans                         | AAA23233.1        | 3NDY       | Bianchetti et al (2013) J. Mol. Biol. 425: 4267-4285                                                |
| GH5 4 Clostridium saccharoperbutylacetonicum | Clostridium saccharoperbutylacetonicum            | WP_015391601.1    |            |                                                                                                     |
| GH5 4 Clostridium puniceum                   | Clostridium puniceum                              | WP_077846784.1    |            |                                                                                                     |
| GH5 4 Ruminococcus champanellensis           | Ruminococcus champanellensis                      | WP_054683931.1    |            |                                                                                                     |
| BpCel5C_pdb-4NF7                             | Butyrivibrio proteoclasticus B316                 | ADL34447.1        | 4NF7       | No reference                                                                                        |
| CcCel5A_pdb-1EDG                             | Clostridium cellulolyticum                        | AAA23221.1        | 1EDG       | Ducros et al (1995) Structure 3: 939-949                                                            |
| GH5 4 Ruminococcus CAG:353                   | Ruminococcus sp. CAG:353                          | CDE80894.1        |            |                                                                                                     |
| GH5 4 Lachnoclostridium phytofermentans      | Lachnoclostridium phytofermentans                 | CDE80894.1        |            |                                                                                                     |
| F32EG5_pdb-4XUV                              | Caldicellulosiruptor sp. F32                      | AGM/16//.1        | 4X0V       | Meng et al (2017) Biochem. J. 474(20): 3373-3389                                                    |
| GH5 4 Herbinix hemicellulosilytica           | Herbinix hemicellulosilytica                      | CR235/1/.1        |            |                                                                                                     |
| GH5 4 Ruminococcus albus                     | Ruminococcus albus KH216                          | AUAIH/KSB4,1      |            |                                                                                                     |
| GH5 4 Butyrivibrio Inila18                   | Butyrivibrio sp. Inila18                          | AUAIGSWIJ8        |            |                                                                                                     |
| GH5 4 Butyrivibrio nungatei                  | Butyrivibrio nungatei                             | WP_0/11/5012.1    |            |                                                                                                     |
| GH5 4 Bacillus agaradnaerens                 | Bacilius agaradinaerens                           | CAD01244.1        | 41/21/     | Vanditta at al (2015)   Biol Cham 200: 10572 86                                                     |
|                                              | Bacilius Italouurans                              | BABU4322.1        | 4V2X       | Venullio et al. (2015) 3 Biol Chem 5: 23473                                                         |
| Succiss_pub-412P                             | Bacinus increministrals DSIVI 13                  | AA040777.1        | 4128       | $\frac{1}{10000000000000000000000000000000000$                                                      |
|                                              |                                                   | AACO7E06 1        | 21/04      | Withereau (1995) Curt. With Obiol. 27: 27-33<br>McGrogor et al. (2016)   Biol. Chom. 201: 1175-1107 |
| PDGH5A_pdb-3VDH                              | Fibrobactor cussinggonos                          | AAC97596.1        | 3VDH       | McGregol et al (2010) J. Blol. Chem. 291. 1175-1197                                                 |
| GHE 4 Pactoroidatos AC2a                     | Pactoroidatos bactorium AC2a                      | AU10564 1         |            |                                                                                                     |
| GHE 4 Bacteroides ovature                    | Pactoroidos ovatus                                | AU17590 1         |            |                                                                                                     |
| GHE 4 Daonibacillus barsingnonsis            | Dacterordes Ovalus<br>Paonibacillus barcinemensis | AU4/080.1         |            |                                                                                                     |
| Social a raempatinus partinonensis           |                                                   | CAR/3113.1        |            |                                                                                                     |
| AccolEA add 1000 GHE 1                       | n.a.<br>Acidothormus collulohticus                | AAA75477 1        | 1000       | Raker et al. (2005) Appl Riochem Riotechnol. 121-124. 120. 149                                      |
| ACCEISA_pdb-1COD_GH5_1                       | Acidothermus cellulolyticus                       | AAA/54//.1        | 1000       | Daker et ur (2005) Appi.Biochem.Biotechnol. 121-124: 129-148                                        |
| Name | Chain | $Q^1$ | Phi     | Theta   | Anomer | $D/L^2$ | Conformation  | RSCC <sup>3</sup> | <bfactor></bfactor> | Diagnostic |
|------|-------|-------|---------|---------|--------|---------|---------------|-------------------|---------------------|------------|
| GLC  | А     | 0.578 | 257.993 | 10.875  | alpha  | D       | ${}^{4}C_{1}$ | 0.92              | 28.3567             | Ok         |
| BGC  | А     | 0.553 | 97.5923 | 5.88636 | beta   | D       | ${}^{4}C_{1}$ | 0.92              | 24.6409             | Ok         |
| BGC  | А     | 0.550 | 252.561 | 5.42196 | beta   | D       | ${}^{4}C_{1}$ | 0.90              | 28.8627             | Ok         |
| GLC  | В     | 0.541 | 270.446 | 11.5406 | alpha  | D       | ${}^{4}C_{1}$ | 0.91              | 30.2825             | Ok         |
| BGC  | В     | 0.586 | 71.133  | 3.22921 | beta   | D       | ${}^{4}C_{1}$ | 0.91              | 28.07               | Ok         |
| BGC  | В     | 0.481 | 141.748 | 14.7687 | beta   | D       | ${}^{4}C_{1}$ | 0.87              | 33.9218             | Ok         |
| GLC  | С     | 0.564 | 235.187 | 12.9257 | alpha  | D       | ${}^{4}C_{1}$ | 0.91              | 31.5717             | Ok         |
| BGC  | С     | 0.559 | 327.311 | 3.92194 | beta   | D       | ${}^{4}C_{1}$ | 0.90              | 30.8973             | Ok         |
| BGC  | С     | 0.569 | 299.804 | 3.76075 | beta   | D       | ${}^{4}C_{1}$ | 0.87              | 33.0627             | Ok         |

Table S26. Privateer results for the validation of carbohydrate structures in the ZgEngA<sub>GH5 4 E3238</sub> mutant structure.

<sup>1</sup>Q is the total puckering amplitude, measured in Angstroems. <sup>2</sup>Whenever N is displayed in the D/L column, it means that Privateer has been unable to determine the handedness based solely on the structure. <sup>3</sup>RSCC, short for Real Space Correlation Coefficient, measures the agreement between model and positive omit density. A RSCC below 0.8 is typically considered poor.