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Abstract. Global misbehavior detection in Cooperative Intelligent Trans-
port Systems (C–ITS) is carried out by a central entity named Misbe-
havior Authority (MA). The detection is based on local misbehavior
detection information sent by Vehicle’s On–Board Units (OBUs) and
by Road–Side Units (RSUs) called Misbehavior Reports (MBRs) to the
MA. By analyzing these Misbehavior Reports (MBRs), the MA is able
to compute various misbehavior detection information. In this work, we
propose and evaluate different Machine Learning (ML) based solutions
for the internal detection process of the MA. We show through exten-
sive simulation and several detection metrics the ability of solutions to
precisely identify different misbehavior types.

Keywords: Misbehavior Detection, Machine Learning, C–ITS

1 Introduction

Cooperative Intelligent Transport Systems (C–ITS) is a mature technology that
aims at improving road safety, traffic efficiency and users comfort. This technol-
ogy relies on the exchange of information between moving Intelligent Transport
Systems (ITS) Station (ITS–S) (vehicles, trucks, motorbike, bicycle, etc.) and
fixed ones (Road–Side Units (RSUs)). ITS–S periodically broadcast kinematic
information (geographical position, speed, heading, etc.) to advertise their neigh-
bors. These information are then used by safety applications embedded in each
ITS–S to detect and avoid potentially dangerous situations. The C–ITS technol-
ogy is standardized by the European Telecommunications Standards Institute
(ETSI) in Europe and by the IEEE in the US.

? This research work has been carried out in the framework of the Technological Re-
search Institute SystemX, and therefore granted with public funds within the scope
of the French Program Investissements d’avenir
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Securing communications between vehicles and the infrastructure (also called
Vehicle–to–Everything (V2X) communications) is thus of paramount impor-
tance. The C–ITS community worldwide agreed to use a Public Key Infrastruc-
ture (PKI) to perform this task. Basically speaking, the PKI provides unique
digital certificates to ITS–S. ITS–S then use these certificates to digitally sign
their V2X messages in order to guarantee authentication, integrity and non-
repudiation. ITS–S also frequently change the certificate they are using in order
to avoid potential tracking which may lead to break driver’s privacy [18].

The PKI is a solution that protects C–ITS against external attacks. However
C–ITS still remains vulnerable against internal attacks. It is indeed possible for
a malicious ITS–S that is authenticated at the PKI to deliberately send false
information in its V2X messages in order to disrupt the system. MisBehavior
Detection (MBD) is a promising technology that aims at monitoring the C–ITS
in order to detect potentially misbehaving ITS–S. Basically speaking, the MBD
process can be divided into the following three steps:

1. Local detection: detection at the ITS–S level of potentially misbehaving
ITS–S in the neighborhood

2. Reporting: reporting the detected misbehaving ITS–S to the Misbehavior
Authority (MA) localized in the Cloud

3. Global detection: decision-making at the MA level: is the reported ITS–S
actually misbehaving or not?

In this paper, we focus our work at the MA level. The objective of the
MA is to classify the reported ITS–S as: (1) misbehaving (and what kind of
attack it does), (2) faulty (e.g. the MA has a broken sensor), (3) genuine (false
positive). We believe that the MA will benefit from using Artificial Intelligence
(AI) solutions such as Machine Learning (ML) to perform this task. In this
work, our goal is to evaluate different ML approaches for the MA. To this end, we
implemented the complete MBD process in an extension of VEINS simulator [3].
Our results show that the use of ML enables the MA to precisely classify the
reported ITS–S and identify the different types of misbehavior.

The remainder of the paper is as follows. Section 2 presents the state of
the art of ML based approaches used for MBD. Section 3 presents the C-ITS
general architecture and details the misbehavior detection concept. Then, section
4 presents our evaluations and discuss the obtained results. Finally, section 5
concludes this work and gives some future work.

2 Related Work

In this section, we give a brief overview of machine learning based techniques
used for MBD in the context of C–ITS.

Grover et al. [7] propose a machine learning based approach to detect mis-
behavior in VANETs. For this purpose, the authors experiment with different
classifiers implemented in WEKA toolset including Naive Bayes, Instance based
learner (IBK), Decision Tree (J-48), Random Forest (RF) and AdaBoost. They
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conduct a comprehensive comparison and show that RF and J-48 classifiers per-
form best. In a subsequent paper [6], the authors improve the detection perfor-
mance by replacing the single classification algorithm with several classification
algorithms. They aggregate, through a majority voting ensemble-based scheme,
the results of previously mentioned classifiers into a single stronger classifier.
They show that the ensemble-based model is more robust and efficient in clas-
sifying multiple misbehaviors present in VANETs and could achieve a better
result in comparison to each individual base learner.

Ghaleb et al. [5] train a feed forward neural network to detect misbehavior
in a C–ITS system. The authors create features from the data model as well
as historical values of several plausibility and consistency checks. In total, the
network takes 7 features as input. The training and performance evaluation is
done using a relatively small real-world traffic dataset called NGSIM. They show
that the proposed solution could generalize better than some baseline models.

So et al. [21] propose a machine learning based framework to detect and
classify location spoofing. Their model is based on 6 plausibility checks as a
feature vector. They build two machine learning models: k-nearest neighbors (k-
NN) and support vector machine (SVM). The training and data evaluation are
done on using VeReMi dataset [9]. They show that they can improve the overall
detection precision of the plausibility checks used in the feature vectors by over
20%, while maintaining a recall within 5% of that of the plausibility checks.

Gyawali and al. [8] propose a ML based scheme to detect two categories of
attacks: false alert attack and position falsification attack. The false alert mes-
sages are generated using the Veins simulator. The position falsification messages
are extracted from the VeReMi dataset. They train multiple machine learning
models including Logistic Regression, k-NN, Decision Tree and Random Forest.
They claim that the proposed scheme is more effective to detect internal attacks
as compared to the one proposed in VeReMi.

So et al. [20] propose 3 novel physical-layer plausibility checks. They use ma-
chine learning models to evaluate their proposed checks. They test these models
on the VeReMi dataset. They show that these checks outperform recently pro-
posed machine learning based schemes operating at the application-layer.

Note that the studies cited in this section operate at the local level of the C–
ITS misbehavior detection process. We believe that a global detection could yield
better results and still not studied well in the context of C–ITS. In this work, we
focus on machine learning based solutions for the global detection process done
at the MA level.

3 System Model

3.1 C–ITS General Architecture

The vehicular network is based on a set of On–Board Units (OBUs) and RSUs
that periodically broadcast V2X safety messages. Each message contains several
kinematic information such as the position, the velocity, the heading. This in-
formation is generally provided by the vehicle’s internal sensors. To send and
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Fig. 1. C–ITS security architecture

receive safety messages the vehicle needs to acquire digital certificates. These
certificates are requested from the PKI through the IEEE 802.11p or the cellu-
lar technologies. Upon reception of a valid request, the PKI delivers one long
term and several short term certificates. The short term certificates are often re-
ferred to as pseudonym certificates. Vehicles frequently change their pseudonym
certificates to avoid tracking and protect their privacy. These certificates are
used by each transmitting vehicle to sign its messages. Figure 1 illustrates the
C–ITS security architecture and the data flows sent between the security enti-
ties. The signature allows receiving vehicles to authenticate the sender and to
verify the integrity of the transmitted data. Authenticating vehicles is simply
verifying that their certificate is valid. Whereas the integrity test consists on
verifying through the message signature if data is altered by a malicious entity.

However, a malicious vehicle with a valid certificate and a valid data sig-
nature, may send intentionally bogus information. Additionally, vehicles may
experience sensors defect. In this situation, the sent information would be erro-
neous as well. This type of malicious behavior, which targets the data semantics,
or shortly misbehavior, is managed by the MA. The MA is also localized in the
back-end security system. The MA receives misbehavior alerts, called misbe-
havior reports from vehicles which contain data about a potential misbehaving
vehicles. It proceeds then to an internal analysis and processing of the received
data. Finally, once it obtains the MBD results of the data processing, it sends a
report to the entity which is in charge of the misbehavior reaction. In figure 1,
we suppose that the entity which is in charge of the misbehavior reaction is the
PKI. The whole process of MBD is detailed in section 3.2.
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3.2 Misbehavior Detection Overview

Fig. 2. Misbehavior detection steps

Commonly, the MBD process is based on four steps (see Fig. 2).

1 - Misbehavior local detection: Sybil attack is a situation where an attacker
sends ghost beacon messages to simulate the existence of ghost vehicles on the
road. The attack performed by the blue vehicle (see Fig. 2). This attack is able to
create a virtual road congestion situation. The local MBD is performed by each
single vehicle’s OBU and RSU in the local vehicular network to detect a potential
misbehaving entity. It is based on checking the plausibility and the consistency
of the received beacon messages. These checks are described in section 3.3.

2 - Misbehavior reporting: The reporting process consists on building and trans-
mitting a Misbehavior Report (MBR) message containing the relevant detection
information. More precisely, vehicles are required to provide evidences to prove
the type of the detected misbehavior to the MA. This evidence consists mostly
of the messages used in the detection process. After collecting enough evidence,
the MBR is then sent to the global MA. This action is performed by the grey
vehicle (see Fig. 2). More details on the reporting protocol are available [12].

3 - Misbehavior global detection: This operation consists on collecting the re-
ceived MBRs during a specific time frame. These MBRs are then processed to
evaluate their integrity then accurately define the type of misbehavior. This
operation is performed by the MA which is a back-end security management
system. Notice that due to the amount of processed data and the requirements
of a high detection reliability, this operation is not required to be real-time.

4 - Misbehavior reaction: Once the detection results are obtained, the MA may
inform the authority in charge of proceeding to the appropriate misbehavior
reaction. This can be, for instance, an immediate revocation of the misbehaving
entity. Notice that in figure 2, we just provide an example where the PKI is in
charge of proceeding to the appropriate reaction. As this is not yet standardized,
other authorities may be in charge of misbehavior reaction in the future.
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3.3 Local Detectors

The local MBD is based on checks performed by the ITS–Ss on every received
message. These checks are simple and fast to calculate plausibility detectors. The
features of the detection process in detailed in the following study [14]. Based
on these detectors, the vehicle decides if a report should be send or not. Here is
a simple summary of the functionality of all implemented local detectors:

– Range plausibility: The position of the sending ITS–S must be inside of
the ITS–S maximum radio reception range.

– Position plausibility: The position of the sending ITS–S must be at a
plausible place (e.g. on a road, no overlaps of physical obstacles, etc.).

– Speed plausibility: The speed advertised by the sending ITS–S must be
less than a predefined threshold.

– Position consistency: Two consecutive beacons coming from a same ITS–S
have plausible separating distance.

– Speed consistency: Two consecutive beacons coming from a same ITS–S
must have plausible acceleration or deceleration.

– Position speed consistency: Two consecutive beacons coming from a
same ITS–S must have consistent speed and separating distance.

– Beacon frequency: The beacon frequency of a sending ITS–S must be
compliant with the standards.

– Position heading consistency: The positions in two consecutive beacons
coming from a same ITS–S must correspond to the heading advertised in
the respective beacons.

– Intersection check: Two beacons coming from two different ITS–S must
not have overlapping positions.

– Sudden appearance: The ITS–S must not suddenly appear within a cer-
tain range, with a preset positive speed.

– Kalman Filter Tracking: The ITS–S advertised information must be
within a plausible range of the Kalman filter predicted information. The
calculation implementation is open source [13]. As proposed in [11], this
would us to recalculate the following detectors: (1) Position Consistency,
(2) Speed Consistency, (3) Position Speed Consistency.

3.4 Attacker Model

We consider an attacker as any misbehaving entity sending inaccurate data on
the network. The misbehavior is divided into two categories: Faulty behavior
and attacks. A node is exerting faulty behavior if one or more of its sensors is
sending inaccurate data. A node is considered an attacker if it is intentionally
altering the message data before sending it over the network. We extracted from
the literature a set of possible misbehavior types [19] [24]. Details of all the
implemented misbehavior mechanisms are presented below:
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Faulty Behavior

– Constant Position: The vehicle broadcasts the same position each beacon.
– Constant Position Offset: The vehicle broadcasts its real position with a

fixed offset.
– Random Position: The vehicle broadcasts a random position from the

playground.
– Random Position Offset: The vehicle broadcasts its real position with a

random offset limited to a max value.
– Constant Speed: The vehicle broadcasts the same speed each beacon.
– Constant Speed Offset: The vehicle broadcasts its real speed with a fixed

offset.
– Random Speed: The vehicle broadcasts a random speed with a upper limit.
– Random Speed Offset: The vehicle broadcasts its real speed with a ran-

dom offset limited to a max value.
– Delayed Messages: The vehicle broadcasts its information with a delay

from reality.

Attacks

– DoS: The attacking vehicle broadcasts its information with a higher fre-
quency than what is defined in the standard. This increase in the beaconing
frequency would inflict an overhead on the broadcasting channel. At a certain
frequency increase, he channel becomes unusable by other vehicles.

– DoS Random: Similarly to DoS, the vehicle increase its beaconing fre-
quency. However, the data sent in the transmitted messages is completely
random.

– DoS Random Sybil: A DoS Random attack where the attacker also changes
the pseudonym used at every received message.

– Disruptive: The attacking vehicle broadcasts messages with data extracted
from previously received beacons. The data broadcasted in generated by
genuine vehicles, thus making it plausible on some levels. The saturation of
the channel by this type of data would theoretically deteriorate the quality
of the C–ITS system.

– Dos Disruptive: This attack is a combination of the DoS and the Disruptive
attack. The attacker sends disruptive data while simultaneously increasing
its beaconing frequency.

– DoS Disruptive Sybil: A DoS Disruptive attack where the attacker also
changes the pseudonym used at every received message.

– Data Replay: The attacking vehicle chooses a target and replays its data
instantly with a certain minor epsilons added. Consequently, for an observer
it would seem that there are two vehicles in the same space-time dimension.

– Data Replay Sybil: Similar to the Data Replay attack, however the at-
tacker changes his pseudonym when changing the target vehicle to avoid
detection.

– Eventual Stop: The attacking vehicle simulated a sudden stop by setting
the speed to zero and fixing the position.
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– Traffic congestion Sybil: The attacking vehicle uses the multiple stored
pseudonyms to generate ghost-vehicles. The ghost vehicles data is generated
in a grid like matter to simulate a traffic congestion.

4 Misbehavior Authority Evaluation

In this work, we focus on global MBD done at the MA level. More specifically
our aim is to detect the type of misbehavior signaled by the local entities with
MBRs. We cast this problem as a multi-class classification problem. We are
given a series of observations (x1, x2, ..xn) and the task is to learn a classifier
that generates predictions ŷ of the true labels y.

In our context, the data we are dealing with is sequential. Within the same
ITS–S, all the data sent to the MA are time-dependent. To elaborate, data of
more recent MBRs depends on data of previously received MBRs. Therefore, a
predictive system that can learn and model these types of dependencies is highly
recommended.

4.1 Simulation settings and scenarios

(a) Train Network: Luxembourg
City

(b) Test Network: Paris Scalay

(c) Train Vehicle Density (d) Test Vehicle Density

Fig. 3. Simulation Scenarios
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In order to evaluate our proposed solution, we first need a set of data. Due
to the lack of reports data from deployment projects, we resolve to use the
F2MD framework [3]. F2MD is a VEINS extension, VEINS [22] is an open source
framework for vehicular network simulations. VEINS uses OMNeT++ [25] for
network simulation and SUMO [16] for road traffic simulation.

We use different simulation scenarios for the training part and testing part of
our ML algorithms (see Fig. 3). We use the Luxembourg SUMO Traffic (LuST)
scenario for the train vehicle traces [2]. These traces are a synthetic data set
generated with SUMO and validated with real data. Therefore the vehicle den-
sity is somewhat realistic with morning and evening peaks. The network size is
1.61km2 and the peak density of 67.4V ehicle/km2. The train scenario contains
2, 131, 150 transmitted MBRs. For the testing we generated a test bench with
random vehicle traces data on a network extract of Paris Scalay. Consequently
the vehicle density is somewhat stable. The choice of this test scenario has a
purpose of having a significantly different train and test set. The test bench has
a network size of 1.11km2 and semi constant density around 17.1V ehicle/km2.
The test bench contains 1, 047, 670 transmitted MBRs. For further technical de-
tails, the source code of our VEINS extension along with all the configuration
details of the simulated scenario are published on github [13].

4.2 ML Features

A feature is any attribute that can be used to characterize the data. They are
individual independent variables that serve as inputs to a ML system. The qual-
ity and quantity of the features can dramatically affect the results we are trying
to achieve. Thus, choosing a good set of features is of paramount importance.
The process of deriving features from raw data is called feature engineering. In
this work, we use the following features:

– The local detection checks done on the V2X messages (see Section 3.3).
– Kinematic data of the V2X messages (Speed, Acceleration and Position).
– Some generic features (count features, binary features computing the number

of checks that return a complete failure).

4.3 Results and analysis

In order to better understand the data and the problem we are solving, we
perform multiple experiments using several baseline ML algorithms. In this work
we focus our testing on tree-based ensemble techniques and neural networks. This
decision is based on the high state-of-art performance the former models showed
on a wide variety of real-world problems. Algorithms like Random Forests [1]
and Gradient Boosted trees [4] help us to gain valuable insights about the data
by providing a way to estimate the relevance of each feature. Conversely, our
proposed solution is not based on these algorithms since they mostly lack the
ability to model time-dependent data when used in a purely supervised fashion.
The experimental results of all the trained algorithms are listed in Table 1.
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Table 1. Test scenario results of different trained ML models

Misbehavior

Types

Evalucation Metrics

precision recall f1-score

RF XGB LGBM NN LSTM RF XGB LGBM NN LSTM RF XGB LGBM NN LSTM

ConstPos 0.98 0.99 0.99 0.97 1.00 0.94 0.94 0.94 0.93 0.98 0.96 0.96 0.96 0.95 0.99

ConstPosOffset 0.92 0.92 0.93 0.96 0.99 0.77 0.78 0.79 0.76 0.88 0.84 0.84 0.85 0.85 0.93

ConstSpeed 0.90 0.92 0.92 0.84 1.00 0.87 0.88 0.87 0.91 1.00 0.88 0.90 0.89 0.88 1.00

ConstSpeedOffset 0.79 0.74 0.74 0.81 0.90 0.87 0.88 0.87 0.77 0.97 0.83 0.80 0.80 0.79 0.94

DataReplay 0.66 0.71 0.71 0.75 0.83 0.52 0.47 0.49 0.45 0.83 0.58 0.57 0.58 0.56 0.83

DataReplaySybil 0.61 0.64 0.62 0.60 0.58 0.35 0.34 0.37 0.33 0.52 0.44 0.45 0.46 0.43 0.55

Disruptive 0.70 0.69 0.69 0.68 0.89 0.73 0.78 0.78 0.80 0.89 0.71 0.73 0.73 0.74 0.89

DoS 0.95 0.95 0.95 0.95 0.97 0.98 0.92 0.90 1.00 0.98 0.97 0.93 0.92 0.97 0.97

DoSDisruptive 0.96 0.89 0.90 0.96 0.95 0.98 0.98 0.98 0.98 1.00 0.97 0.94 0.94 0.97 0.97

DoSDisruptiveSybil 0.78 0.77 0.79 0.79 0.92 0.81 0.82 0.82 0.82 0.75 0.80 0.80 0.81 0.80 0.83

DoSRandom 1.00 1.00 1.00 1.00 1.00 0.93 0.85 0.85 0.95 0.94 0.97 0.92 0.92 0.97 0.97

DoSRandomSybil 0.97 0.97 0.97 0.97 1.00 0.93 0.93 0.93 0.96 0.95 0.95 0.95 0.95 0.96 0.97

EventualStop 0.98 0.97 0.97 0.86 0.99 0.69 0.71 0.69 0.68 0.98 0.81 0.82 0.80 0.76 0.99

Genuine 0.95 0.94 0.94 0.94 0.98 0.98 0.99 0.99 0.99 1.00 0.96 0.96 0.96 0.96 0.99

GridSybil 0.87 0.87 0.87 0.85 1.00 0.88 0.85 0.86 0.86 0.92 0.87 0.86 0.86 0.86 0.96

RandomPos 0.99 0.99 0.99 0.99 1.00 0.93 0.91 0.91 0.93 0.98 0.96 0.95 0.95 0.96 0.99

RandomPosOffset 0.80 0.84 0.83 0.84 0.98 0.93 0.93 0.93 0.90 1.00 0.86 0.88 0.88 0.87 0.99

RandomSpeed 0.97 0.97 0.97 0.94 0.99 0.94 0.93 0.93 0.94 0.99 0.95 0.95 0.95 0.94 0.99

RandomSpeedOffset 0.80 0.81 0.81 0.84 0.99 0.91 0.89 0.89 0.87 0.97 0.85 0.85 0.85 0.85 0.98

StaleMessages 0.88 0.87 0.87 0.89 0.94 0.64 0.67 0.67 0.58 0.82 0.74 0.76 0.76 0.70 0.87

micro avg 0.92 0.91 0.91 0.92 0.97 0.92 0.91 0.91 0.91 0.97 0.92 0.91 0.91 0.92 0.97

macro avg 0.87 0.87 0.87 0.87 0.95 0.83 0.82 0.82 0.82 0.92 0.85 0.84 0.84 0.84 0.93

weighted avg 0.92 0.91 0.91 0.92 0.97 0.92 0.91 0.91 0.92 0.97 0.92 0.91 0.91 0.92 0.97

Baseline classifiers: In this work, we test a number of baseline classifiers.
(1) Random Forests (RF), (2) XGboost (XGB), (3) LightGBM (LGBM) and
(4) Neural networks (NN). For the sake of brevity, we detail only the architecture
of two models:

1. XGBoost: The proposed XGBoost model is fairly straightforward. We use
grid search based on 5-fold cross validation to tune the hyper-parameters,
which were set to the following values: (1) Learning rate: 0.05. (2) Maximum
depth of trees: 3. (3) Sample bagging fraction: 0.9. (4) Feature fraction: 0.6.
(5) All other parameters were set to default.

2. Neural Network model: The proposed neural network architecture con-
sists of two hidden dense layers with 300 units in each of them. After each
dense layer a Batch Normalization layer [10] and a dropout layer [23] with
probability 0.1 are used. The activation function for hidden layers is Rectified
Linear Unit (ReLU). In this experiment, we are dealing with a multi-class
classification problem. Therefore, the MLP uses a softmax activation in the
output layer. The optimized loss function is a categorical cross entropy and
the model is trained for 20 epochs using Adam optimizer [15] with a learning
rate of 0.1.
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Proposed solution: As mentioned above, the MBRs coming from the same
ITS–S are time-dependent. These MBRs include beacon messages as well as lo-
cal check detectors as evidence (see Section 3.2). The beacon messages contain
kinematic time-series data (Position, Speed, Acceleration, etc...). However, the
local check detectors are Independent and Identically Distributed (I.I.D) obser-
vations. To account for both data types, a two-way neural network architecture
with two input types is proposed and trained in an end-to-end fashion. We use
a sliding window based technique by computing statistical features (mean, me-
dian, min, and quartiles). This method allows us to condense a batch of multiple
observations into a single observation. We experiment with different model ar-
chitectures and resolve to the architecture detailed below.

Fig. 4. Architecture of the proposed solution

The proposed architecture consists of two branches (see Fig 4) : Time-series
branch (left side) and meta-features branch (right side). The time-series branch
takes as input the raw beacon message data. It has two bidirectional LSTM layers
with 32 units each. The meta-features branch takes all the statistical features
as input. It consists of two fully connected layers with 64 neurons followed by a
ReLu activation function and a Batch Normalization layer. Both branches are
concatenated and are followed by a fully connected layer, a ReLu activation
function, Batch normalization and Dropout with probability 0.5.

The goal of training is to find model parameters that minimize a loss func-
tion between the predicted distribution and the actual target labels. This can
be achieved by using Stochastic Gradient Descent algorithm (SGD). At each
iteration, the SGD updates the parameters towards the opposite direction of the
gradients to find a good local minimum. In our solution, we use the focal loss
with parameters suggested by Tsung-Yi et al. [17]. We experiment with multiple
set of parameters and we find that the default parameters yield the best results
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on our validation set. This loss function allows our model to account for the class
imbalance present in the data. Additionally, to combat overfitting, we use early
stopping based on the model performance on the validation set. In this sense,
we evaluate the model accuracy after every epoch on the validation set and stop
training when the accuracy stops improving or goes down. The model is trained
for 10 epochs with Adam optimizer and a learning rate 0.1.

The experimental results regarding this solution are also reported in Table
1. From this results, we can see that the proposed solution based on a LSTM
model outperforms all the baseline algorithms on all three evaluated metrics.
The overall detection for all types of misbehavior yield an accuracy of 97%.

5 Conclusion and Future Work

In this paper, we focus on global misbehavior detection in C–ITS. Specifically, we
explore solutions for global misbehavior type classification. To achieve this, we
extract features from the local ITS–Ss detector checks and engineer additional
features from the raw beacon data. We capitalize on the time-dependent nature
of the data and propose a LSTM-based detection system. We show through
testing results that our proposed system outperforms the baseline classifiers on
all the evaluation metrics.

Future work involves exploring other machine learning techniques, such as
blending and stacking. Additionally, we plan on testing our proposed solutions
on non-synthetic data (i.e. data originating from real deployment projects).
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11. Jaeger, A., Bißmeyer, N., Stübing, H., Huss, S.A.: A novel framework for efficient
mobility data verification in vehicular ad-hoc networks. International Journal of
Intelligent Transportation Systems Research 10(1), 11–21 (Jan 2012), https://doi.
org/10.1007/s13177-011-0038-9

12. Kamel, J., Ben Jemaa, I., Kaiser, A., Urien, P.: Misbehavior reporting protocol for
c-its. In: 2018 IEEE Vehicular Networking Conference (VNC). pp. 1–4 (Dec 2018)

13. Kamel, J.: Github repository: Framework for misbehavior detection (f2md) (2019),
https://github.com/josephkamel/f2md

14. Kamel, J., Kaiser, A., Ben Jemaa, I., Cincilla, P., Urien, P.: CaTch: a confidence
range tolerant misbehavior detection approach. In: 2019 IEEE Wireless Commu-
nications and Networking Conference (WCNC) (IEEE WCNC 2019). Marrakech,
Morocco (Apr 2019)

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and
applications of SUMO - Simulation of Urban MObility. International Journal On
Advances in Systems and Measurements 5(3&4), 128–138 (December 2012), http:
//elib.dlr.de/80483/

17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE international conference on computer vision.
pp. 2980–2988 (2017)

18. Petit, J., Schaub, F., Feiri, M., Kargl, F.: Pseudonym schemes in vehicular
networks: A survey. IEEE Communications Surveys Tutorials 17(1), 228–255
(Firstquarter 2015)

19. Petit, J., Ansari, R.: V2X Validation Tool. https://bitbucket.org/onboardsecurity/
dsrcvt (BlackHat 2018)

20. So, S., Petit, J., Starobinski, D.: Physical layer plausibility checks for misbehavior
detection in v2x networks. In: Proceedings of the 12th Conference on Security and
Privacy in Wireless and Mobile Networks. pp. 84–93. ACM (2019)

21. So, S., Sharma, P., Petit, J.: Integrating plausibility checks and machine learning
for misbehavior detection in vanet. In: 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA). pp. 564–571. IEEE (2018)

22. Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road
traffic simulation for improved ivc analysis. IEEE Transactions on Mobile Com-
puting 10(1), 3–15 (Jan 2011)

23. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research 15(1), 1929–1958 (2014)

24. van der Heijden, R.W., Dietzel, S., Leinmüller, T., Kargl, F.: Survey on misbehavior
detection in cooperative intelligent transportation systems. IEEE Communications
Surveys Tutorials 21(1), 779–811 (Firstquarter 2019)

25. Varga, A.: The omnet++ discrete event simulation system. In: In ESM’01 (2001)


