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Abstract Geologic reconstructions of the Main Himalayan Thrust in Nepal show a laterally extensive
midcrustal ramp, hypothesized to form the downdip boundary of interseismic locking. Using a recent
compilation of interseismic GPS velocities and a simplified model of fault coupling, we estimate the width
of coupling across Nepal using a series of two-dimensional transects. We find that the downdip width of
fault coupling increases smoothly from 70 to 90 km in eastern Nepal to 100–110 km in central Nepal,
then narrows again in western Nepal. The inferred coupling transition is closely aligned with geologic
reconstructions of the base of the midcrustal ramp in central and eastern Nepal, but in western Nepal, the
data suggest that the location is intermediate between two proposed ramp locations. The result for western
Nepal implies either an anomalous coupling transition that occurs along a shallowly dipping portion of
the fault or that both ramps may be partially coupled and that a proposed crustal-scale duplexing process
may be active during the interseismic period. We also find that the models require a convergence rate of
15.5 ± 2 mm/year throughout Nepal, reducing the geodetic moment accumulation rate by up to 30%
compared with earlier models, partially resolving an inferred discrepancy between geodetic and
paleoseismic estimates of moment release across the Himalaya.

1. Introduction

The latest rupture of the Main Himalayan Thrust (MHT), the 2015Mw 7.8 Gorkha earthquake, was likely limited
in size by changes in the fault geometry along strike and dip (Hubbard et al., 2016). The rupture occurred pri-
marily on a subhorizontal décollement bounded on several or all sides by more steeply dipping ramps (Elliott
et al., 2016; Galetzka et al., 2015; Hubbard et al., 2016; Lindsey et al., 2015; Qiu et al., 2016; Wang et al., 2017).
The presence of a midcrustal ramp, located to the north of the Gorkha rupture, has long been proposed as a
key structural component of the MHT throughout the Nepal Himalaya (e.g., Avouac, 2015; Pandey et al., 1995;
Robinson et al., 2006; Schelling & Arita, 1991). If the deeper midcrustal ramp controlled the downdip edge of
the rupture, its presence likely affects other parts of the earthquake cycle as well. Here we seek to understand
how this structural feature may affect the interseismic locking transition across Nepal.

In a thrust environment, the greatest total uplift will typically be found near the top of thrust ramps (Suppe,
1983), and in Nepal, the exposure of the stratigraphically oldest rocks of the Lesser Himalaya (defined as the
core of the Gorkha-Pokhara anticlinorium) provides strong, though indirect, evidence for the location of the
top of the midcrustal ramp along strike. The width of this ramp can be estimated from balanced cross sec-
tions based on mapped geology (Hubbard et al., 2016). The inferred base of this ramp is denoted as a blue
line in Figure 1. The distance between this ramp and the surface trace of the MHT, the Main Frontal Thrust
(MFT), varies significantly along strike. These variations imply differences in the structure of the MHT and in
the associated seismic hazard. However, the existence of a single ramp is not agreed upon everywhere, par-
ticularly where the Gorkha-Pokhara anticlinorium bifurcates in western Nepal. There, evidence from topogra-
phy, geology, and complex patterns of microseismicity suggest that the MHT is either composed of two
ramps linking together three décollement levels (DeCelles et al., 1998), or that a thrust duplex has formed,
with two active ramps linking together two décollement levels, one above the other (Harvey et al., 2015).

Geodetic data suggest that the shallowMHT is fully coupled across Nepal; that is, there is zero relative motion
across the fault interface during the interseismic period. In central Nepal, the downdip width of this
coupled zone has been estimated at close to 100 km (e.g., Freymuller et al., 1996; Grandin et al., 2012;
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Jouanne et al., 2004; Larson et al., 1999). In the same area, the downdip edge of the coupled area is correlated
with an active band of microseismicity and the geologically inferred ramp location (Ader et al., 2012; Cattin &
Avouac, 2000; Pandey et al., 1995; Stevens & Avouac, 2015). However, in eastern and western Nepal, the link
between the ramp (or ramps) and the interseismic behavior of the fault has not been as clearly established.

When considering variations along strike, models of interseismic locking in megathrust systems commonly
adopt an inversion for slip deficit (or coupling) on small patches of the fault, analogous to a coseismic slip
inversion (e.g., Bradley et al., 2017; Bürgmann et al., 2005; Chlieh et al., 2008; Loveless & Meade, 2010;
Moreno et al., 2010; Suwa et al., 2006; Wallace et al., 2004). Where the data are sufficiently dense and precise,
the inversion can reveal fine details of fault coupling, but this typically requires additional constraints and
assumptions, such as spatial smoothing, which make the underlying physical processes difficult to interpret.
For example, one recent coupling model in Nepal used the density of microseismicity as a strain-rate marker
to modulate the smoothing parameter (Stevens & Avouac, 2015), resulting in a coupling map that correlates
well with the microseismicity but which is not independent of it. Inversions for coupling in three dimensions
can be useful for hazard analysis, but the use of many free parameters or reliance on additional assumptions
makes it difficult to independently assess the underlying physical mechanisms. This is particularly true in
areas like western Nepal, where additional geologic complexity suggests that the relationship between struc-
ture and coupling is not simple.

One alternative approach is to enforce a smooth coupling distribution by using a model with fewer free para-
meters, such as a series of finite dislocations (Bettinelli et al., 2006; Jouanne et al., 2004). Here to focus our
analysis on variations in the width of coupling along the MHT, we adopt this simplified approach and model
a series of two-dimensional (2D) profiles drawn perpendicularly to the fault (Figure S1). We invert each profile
separately for the location of a single locked-to-creeping transition at depth using a semi-infinite, 2D disloca-
tion model and compare the results to geologic observations. Like the three-dimensional (3D) coupling

Figure 1. Map showing geologic provinces in Nepal (Department of Mines and Geology of Nepal, 1994), faults active dur-
ing the Quaternary, and GPS-derived convergence rates relative to India. The solid blue line shows the base of the
midcrustal ramp inferred by Hubbard et al. (2016). The dashed blue line in western Nepal indicates the approximate
location of the base of the southern ramp proposed by DeCelles et al. (2001) and Harvey et al. (2015). The colored squares
show the arc-normal components of GPS velocities in the Indian plate reference frame (Kreemer et al., 2014). The locations
of the Main Frontal Thrust (MFT) and Main Boundary Thrust (MBT) are shown in red and black, respectively. Inset shows
primary thrust faults between India and Eurasia in red, with Kathmandu shown as a white star.
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models, this approach is sensitive to the assumed dislocation geometry, which relates nonlinearly to defor-
mation and can cause biases (e.g., Lindsey & Fialko, 2013); we assess the effect of mismodeled geometry in
a Bayesian framework to obtain a conservative estimate of the model uncertainty. Our model is independent
of the structural data, yet we find that the obtained extent of coupling correlates strongly with both the
distribution of microseismicity (Ader et al., 2012) and the geologically inferred base of the midcrustal
ramp across central and eastern Nepal (Hubbard et al., 2016). In western Nepal, our inferred coupling transi-
tion is located between the two proposed midcrustal ramps (DeCelles et al., 1998; Harvey et al., 2015;
Hubbard et al., 2016), which suggests neither ramp is dominant and may indicate partial coupling along
the décollement between the two ramps.

2. Methods and Results

To constrain our inversions, we use a recently updated set of GPS velocities spanning the 1990s to 2015,
within and surrounding Nepal, including recently updated velocities for Tibet. Site velocities within Nepal
and India from a number of published studies were combined into a consistent reference frame by reducing
the best-fitting pole of rotation between overlapping sites in each data set by Kreemer et al. (2014); these
were combined with a reprocessed, updated velocity field for stations within China by Zheng et al. (2017).
The velocities are reported by Zheng et al. (2017) in the Eurasia-fixed reference frame; we used the rotation
pole for Eurasia-India motion reported by Kreemer et al. (2014) to convert the velocities to an India-fixed
reference frame, then selected all data within 300 km of the MFT. The final 275 velocities within the study
region are taken from 16 published studies (Ader et al., 2012; Banerjee et al., 2008; Bettinelli et al., 2006;
Gahalaut et al., 2013; He et al., 2013; Ischuk et al., 2013; Jade et al., 2004; Jade et al., 2007; Kreemer et al.,
2014; Liang et al., 2013; Mahesh et al., 2012; Mukul et al., 2010; Mullick et al., 2009; Paul et al., 2001; Ponraj
et al., 2010; Zheng et al., 2017) and are listed in supporting information Table S1. We did not include leveling
(Jackson & Bilham, 1994) or InSAR (Grandin et al., 2012) observations, because these data are available only in
two narrow locations along strike and their inclusion would make the resulting data distribution too hetero-
geneous along strike.

We first construct a smooth approximation to the MFT (supporting information Figure S1) and project the
arc-perpendicular velocity components onto 150-km-wide overlapping profiles (supporting information
Figure S2). The profiles are narrow enough to render effects due to arc curvature negligible but at the
same time wide enough to include sufficient data to recover a robust model fit for each profile. The
projection parameters for each profile are listed in supporting information Table S2. We neglected any
arc-parallel component of velocity in the modeling since this motion is likely taken up by independent
structures within the overriding plate (e.g., Murphy et al., 2014; Silver et al., 2015) and these values are
comparatively small (less than 5 mm/year, see Figure S2; also Banerjee et al., 2008). We address possible
complications from unmodeled 3D effects related to arc-parallel motion and deformation in Tibet (e.g.,
McCaffrey & Nabelek, 1998; Zhang et al., 2004) with a separate model in the discussion. The profile loca-
tions are shown in map view in Figure S1, and the projected arc-perpendicular and arc-parallel velocities
from all profiles are shown in Figure S2.

We then fit a simplified, 2D interseismic dislocation model to each profile, assuming a single, sudden locked-
to-creeping transition. The model is an analytic solution relating surface displacements vi at station positions
xi to slip s on a semi-infinite plane strain dislocation in an elastic half space (Mansinha & Smylie, 1971; Rani &
Singh, 1992; Savage, 1980; Segall, 2010):

vi ¼ S
π

cos δ tan�1ξ þ sin δ� ξ cos δ
1þ ξ2

� �
; ξ ¼ Xi � d

D

The free parameters are the long-term slip rate s, the depth to the dislocation D, and the horizontal lock-
ing distance from the MFT d. The reference frame for the model is chosen such that the far-field velocity
tends to zero in India, by applying a least squares penalty to the absolute value of the modeled velocity at
a distance of 500 km south of the fault trace. The dip δ of the dislocation below the coupling transition is
held constant in all models. We compared several possible values (0°, 5°, and 10°) and found that varia-
tions in dip make only a small change in the result, with a maximum difference of 0.8 mm/year between
the models, localized to a ~10-km region around the locking line, but do not impact the velocities in the
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far field (supporting information Figure S3). Therefore, we set the dip to zero to make the slip rate and
plate convergence rate identical. This would be consistent with the dislocation representing a horizontal
shear zone or brittle-ductile transition at constant depth. In addition, we created a synthetic model to
test the effect of ignoring the small component of fault-parallel motion that would be generated by
changes in the locking distance along strike and found no bias in the results even in the case of a step
change in locking. However, the scale over which we could resolve such a step is limited by the data
profile width (supporting information Figure S4).

Models in which the depth is considered a free parameter tend to prefer extremely shallow depths (in some
cases less than 10 km), which we consider unlikely given available observations. We therefore allowed the
locked-to-creeping transition to vary in depth from 12 to 22 km below the model surface, in accordance with
thermal modeling that proposes this depth range for the brittle-ductile transition in Nepal (Herman et al.,
2010). This is consistent with the maximum depth of relocated aftershocks following the 2015 Gorkha event
(15 km below sea level; Wang et al., 2017). This range is similar to depths used in previous studies, which used
an average fault dip to fix the depth at approximately 17 km below the surface based on a locking distance of
100 km (Ader et al., 2012; Bettinelli et al., 2006; Jouanne et al., 2004; Stevens & Avouac, 2015).

This method allows us to identify the location of greatest geodetic strain rate along each profile, reflecting
the fault’s downdip transition from locked to creeping. However, the use of a single dislocation should not
be understood to imply that we believe the transition from locked to creeping is sudden. Instead, the transi-
tion zonemust occur over some finite width that is likely controlled by both rheology and temperature on the
fault (e.g., Scholz, 1988, 1998; Hyndman, 2013), and its width may depend on the distance over which the
temperature increases through the brittle-ductile transition. This in turn depends on several factors, including
the dip of the fault (e.g., Bilham et al., 2017). The sensitivity of geodetic data to this transition width is limited,
however, due to a nearly perfect trade-off with the depth of locking (Lindsey et al., 2014).

Throughout the discussion below, we use the terms locked and coupled interchangeably to refer to the updip
portion of the fault that is not slipping. We note that by doing so, we implicitly assume that the entire portion
of the fault that is not slipping (kinematically coupled) is also frictionally locked and therefore potentially

Figure 2. (a–c) Model fit and inferred geometry from three profiles from western (a), central (b) and eastern (c) Nepal.
Profile locations are shown in Figure 3. The six blue lines in each profile represent best-fitting models with different
assumed depths to the dislocation, sampled every 2 km between 12 (dark blue) and 22 km (light blue). The reported
parameter uncertainties represent the combination of all models. (d–f) Vertically exaggerated cross sections showing the
inferred position of the dislocation edge with uncertainties (blue ellipses) compared to themodeledMain Himalayan Thrust
geometry from Hubbard et al. (2016), along with mean, minimum, and maximum topography along each profile, and
observed microseismicity from the relocated Nepal National Seismological Centre catalog (1996–2008; Ader et al., 2012;
Rajaure et al., 2013). Results for all profiles are shown in Figure S5. MFT = Main Frontal Thrust.
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seismogenic. This is a conservative assumption; some of the presently coupled areas could in fact be
frictionally stable (unlocked) and simply located in the stress shadows of nearby locked patches,
preventing them from creeping interseismically (Almeida et al., 2018). In this case, they may release their
slip deficit as future afterslip rather than as coseismic slip. However, given the absence of shallow afterslip
following the 2015 Gorkha earthquake (e.g., Wang & Fialko, 2018) and the lack of evidence for shallow
creep, we feel that this conservative assumption is appropriate for the MHT.

The model results for three representative profiles are shown in Figure 2; the complete set is shown in
Figure S5, along with the weighted misfit values for each model for each profile. The modeled coupling tran-
sition location is compared to topography, microseismicity, and the fault model of Hubbard et al. (2016) in the
right-hand panels. Our preferred location for the coupling transition in each profile is shown in map view as
the red line in Figure 3, with the red shaded area representing uncertainty. Uncertainties were calculated for
all parameters using a Bayesian framework (Lindsey & Fialko, 2013) with uniform prior distributions for all
model parameters and by combining all models from the range of possible assumed depths (12–22 km).
Figure 3 shows the downdip edge of the midcrustal ramp proposed by Hubbard et al. (2016) for comparison,
alongwith the distribution of microseismicity from the relocated Nepal National Seismological Centre catalog

Figure 3. Modeled downdip limit of coupling across Nepal, shown as a red band representing the 95% confidence range.
The solid blue line shows the downdip edge of the midcrustal ramp inferred from surface geology (Hubbard et al., 2016);
the dashed blue line shows a proposed new ramp structure in western Nepal (Harvey et al., 2015). The colored squares
show the arc-normal component of GPS velocities relative to India. Profiles labeled (a), (b), and (c) correspond to the
panels in Figure 2; all profile locations are shown in supporting information Figure S1. Black dots denote microseismicity
from a relocated Nepal National Seismological Centre catalog (1996–2008; Ader et al., 2012; Rajaure et al., 2013) and from
Mahesh et al. (2013). Background colors and shading represent topography. Lower panel shows the best-fitting inferred slip
rate (red line) and 95% confidence range (red bar) for each profile along strike. MFT = Main Frontal Thrust.
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(Ader et al., 2012; Rajaure et al., 2013). In western Nepal, the southern dashed line shows the location of a pro-
posed southward step of the active ramp of the Lesser Himalayan duplex (Harvey et al., 2015).

The modeled plate convergence rates are shown in the lower panel of Figure 3; the average is 15.5 ± 2 mm/
year across Nepal when considering the model uncertainties and the assumed range of possible depths. The
inferred rates are generally well constrained by data far from the coupling transition, particularly in Tibet,
although the rates do trade off with the modeled depth of the dislocation, and show some variation across
Nepal with higher rates in the west. Models with the shallowest assumed depth of 12 km have an average
convergence rate of 14.7 ± 2 mm/year, while models with a 22-km depth increase to an average rate of
16.4 ± 2 mm/year. Overall, the rates are lower than commonly cited geologic slip rates of 18–21 mm/year
for the MFT in central Nepal (Bollinger et al., 2014; Lavé & Avouac, 2001; Mugnier et al., 2004); we discuss
the possible reasons for this difference below.

3. Discussion
3.1. Along-Strike Variations

The location of our modeled locking transition strongly correlates with the geologically inferred ramp in east-
ern and central Nepal. Here the modeled locking line generally falls near the lower half of the ramp or at its
base (Figures 2e and 2f). In the east, both the base of the ramp and the inferred locking line are approximately
80 km from the MFT, making this the narrowest part of the locked zone in Nepal. Geologic observations there
suggest a single midcrustal ramp and relatively simple thrust geometry (Hubbard et al., 2016; Schelling &
Arita, 1991). This contrasts with nearby central Nepal, where the locked zone is at its widest beneath
Kathmandu. It has been suggested that several Gorkha-type moderate earthquakes may be required to suffi-
ciently load the upper part of the fault here, which may explain why the last two large earthquakes occurred
only on the deeper, blind part of the fault in 1833 and 2015 (Bilham et al., 2017). By comparison, in eastern
Nepal paleoseismic evidence suggests that the past two recorded events (in A.D. 1255 and 1934) ruptured
all the way to the surface (Bollinger et al., 2014; Nakata et al., 1998; Sapkota et al., 2013; Wesnousky et al.,
2017). Earthquake cycle models incorporating realistic fault geometry have shown that an upper ramp can
potentially control the occurrence of partial ruptures (Qiu et al., 2016). An intriguing question, then, is
whether the proposed change in structure between central and eastern Nepal also forms a persistent rupture
boundary, as has been observed at along-strike structural changes in other subduction zones including Chile
and Sumatra (e.g., Melnick et al., 2009; Meltzner et al., 2012; Morgan et al., 2017; Tang et al., 2013).

In western Nepal, the inferred coupling transition passes between the divided northern and southern
outcrops of Lesser Himalayan rocks (Figures 1 and 2c). This contrasts with the location of the deep ramp
proposed by Hubbard et al. (2016) and Robinson et al. (2006), which follows the northern outcrop of
Lesser Himalayan material. However, other authors have suggested that the active ramp falls at the southern
outcrop belt (DeCelles et al., 2001). To reconcile these interpretations with an observed broadening of the
topographic slope in this area and a double band of microseismicity, Harvey et al. (2015) proposed that both
ramps are simultaneously active, reflecting an ongoing process of crustal-scale duplexing. In this scenario, the
deep décollement transfers slip to both ramps at a partial rate, leading to elevated strain rates and microseis-
micity in both areas at the same time (Figure 4b). Our method assumes only a single narrow coupling transi-
tion, so we created a synthetic test for the case of a half-coupled décollement between two transition points
and found that the model returns a best-fitting location halfway between the two points (supporting
information Figure S6), similar to the results obtained for this area. Thus, our results are consistent with an
active duplex producing interseismic strain on both ramps, with a décollement slipping interseismically at
a reduced rate between them. Crustal-scale duplexing is believed to be an important process during the
growth of the Himalaya (e.g., Cannon & Murphy, 2014; Gao et al., 2016), but the combined geologic, micro-
seismic, and geodetic observations suggest that this section of the MHT may be the only area in Nepal where
it is presently ongoing. Structural models typically assume that the ramp in the hinterland is abandoned as
soon as the new ramp becomes active, but these observations suggest that there may be a prolonged transi-
tion period between these two events.

It is also possible that only one ramp is still active or that the two proposed ramps in the west are linking three
décollement levels rather than two, in which case this would not represent a duplex but rather a thrust
system (e.g., DeCelles et al., 1998; Hubbard et al., 2016). In this case, the geodetic data suggest that the
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locked-to-creeping transition falls along a décollement, rather than on the ramp as observed elsewhere
(Figure 4a). The locking transition in Nepal is believed to be thermally controlled (e.g., Ader et al., 2012), so
it is generally more likely to occur where the fault dips more steeply through the geothermal gradient, but
it is nevertheless possible that this transition could sometimes fall along a gently dipping portion of the fault
instead. Because GPS observations in western Nepal are currently sparse, we are not able to constrain the
width of the locking transition, which could help to resolve this question. In the near future, our best avenue
for obtaining more detailed information about the distribution of interseismic strain in this region is likely
InSAR observations of interseismic uplift (e.g., Grandin et al., 2012). At the same time, our results suggest a
clearer set of criteria under which geologic observations might be used to predict the potentially seismo-
genic portion of continental thrust belts even where dense geodetic data are not available.

Our model does not assume that microseismicity is physically related to the interseismic coupling transition,
but the generally close correlation between our inferred coupling location and the density of microseismicity
does agree with the proposed physical connection (Ader et al., 2012; Pandey et al., 1995; Stevens & Avouac,
2015). In many of the profiles, most of the microseismicity is located just south of our inferred coupling
transition (Figures 2, 3, and S4). Such a southward offset of the microseismicity would be expected if the
brittle-ductile transition is located near the base of the midcrustal ramp, while the microseismicity occurs

Figure 4. Illustration of two possibilities for interseismic strain accumulation in western Nepal (Figure 2a). (a) The structure
proposed by Hubbard et al. (2016), similar to DeCelles et al. (1998), with two ramps linking three separate décollements.
The geodetic data requires that the locking transition occurs somewhere along the central décollement in this case, shown
as the transition between the thick black line (creeping) and thin line (locked/coupled). The model uncertainties in the
location of the locking transition are shown as the blue ellipse. (b) The Main Himalayan Thrust MHT structures proposed by
DeCelles et al. (2001) in green and Robinson et al. (2006) in blue. Harvey et al. (2015) suggested that both ramps could still
be active, forming a duplex between them. The material in gray was formerly part of the downgoing plate but will now
become part of the overriding plate, as slip transfers from the old ramp (right) to the newly formed ramp (left). In this case,
interseismic strain could accumulate on both ramps simultaneously (medium-thickness black lines) if the thermally con-
trolled locking transition is located at a depth intersected by both ramps. The geodetic data are presently unable to
distinguish between these two possibilities, due the sparsity of GPS observations and a strong trade-off between the
depth of interseismic deformation and the width of the transition zone. Both panels show microseismicity (black dots)
from the relocated Nepal National Seismological Centre (NSC) catalog (1996–2008; Ader et al., 2012; Rajaure et al., 2013),
along with mean, minimum, and maximum topography for the western profile, with a 6× vertical exaggeration.
MFT = Main Frontal Thrust.
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primarily in the volume around the ramp (Ader et al., 2012). The density of microseismicity is a complex func-
tion of stressing rate, thermal structure, frictional properties, and deformation history and off-fault damage
(e.g., Cattin & Avouac, 2000); our results in western Nepal highlight that it should not be taken in isolation
as a strain rate marker.

3.2. Depth of Locking

The model depths referred to here are relative to an idealized horizontal surface, while geologic reconstruc-
tions are generally relative to sea level. Thus, our model depths may be slightly too shallow compared to
these reconstructions. Models in which we allowed the depth to vary as a free parameter sometimes resulted
in extremely shallow inferred depths, in many cases less than 10 km below the surface. Such a shallow depth
is reflected in the relatively sudden transition between GPS velocities moving with the Indian plate and those
converging toward it at nearly the full rate (Figure 2). However, a shallow locking depth is inconsistent with
both the depth of the Gorkha earthquake (Avouac, 2015; Wang et al., 2017) and structural reconstructions of
the MHT at depth (DeCelles et al., 2001; Hubbard et al., 2016; Robinson et al., 2006). These preferred shallow
depths may be due to bias from the heterogeneous GPS data distribution, unmodeled variations in elastic
modulus (e.g., Savage, 1998), strain from unmodeled shallow crustal faults, inelastic strain, viscoelastic effects
(see below), or topographic effects (e.g., Thompson et al., 2015). This is an important question for future stu-
dies; however, there is only a weak correlation in our model results between the depths and the horizontal
location of the coupling transition (Figure 2; supporting information Figure S5), so our results still provide a
robust constraint on the horizontal location. To account for this uncertainty in locking depth, we vary the
fixed locking depth in our models from 12 to 22 km and use the full range of depths to define the model
uncertainties as shown in Figures 2 and 3.

3.3. Viscoelastic Effects

Viscoelastic models and postseismic and paleogeodetic observations show that geodetic velocities above a
fault naturally vary over time throughout the earthquake cycle (e.g., Chuang & Johnson, 2011; Hetland &
Hager, 2006; Meltzner et al., 2015; Tsang et al., 2015). While Nepal has generally been seismically quiescent
during the period of geodetic observation modeled here (1990s–2015), large earthquakes in the past century
may still be contributing a small postseismic signal that could affect the interseismic velocities. To test the
possible magnitude of this effect, we modeled the viscoelastic deformation caused by the largest of these,
the 1934 M~8.2–8.4 Nepal-Bihar earthquake (Chen & Molnar, 1977; Sapkota et al., 2013), using the finite
difference code Relax 1.0.7 (Barbot, 2014; Barbot & Fialko, 2010a, 2010b). The result is shown in supporting
information Figure S7. The maximum rate anomaly is 2.4 mm/year, directed northward for sites located just
above the earthquake source area. Sites just to the north of the source area have similar rates, but directed
southward. Thus, the potential late postseismic velocity anomaly is nearly symmetric about the downdip
edge of the coseismic source, which approximately coincides with the interseismic locked-creeping transi-
tion. Because of this symmetry, any viscoelastic transient could have the effect of narrowing the strain profile
but would not shift its center in either direction. Thus, while a residual viscoelastic transient from large mega-
thrust earthquakes in Nepal could bias the inferred long-term slip rate (by making it appear too large) or the
depth of the coupling transition (by making it appear too shallow), it should not bias the inferred horizontal
location of the coupling transition. We note that the late postseismic velocity anomaly modeled here is dif-
ferent from the immediate postseismic deformation following the 2015 Gorkha earthquake, which is domi-
nated by afterslip in the downdip area just to the north of the rupture zone and therefore has a much less
symmetric pattern (e.g., Gualandi et al., 2017; Wang & Fialko, 2018; Zhao et al., 2017).

3.4. Slip Rate and Moment Deficit

One of the primary results of this study is an updated estimate of the long-term convergence rate on the MHT
throughout Nepal (Figure 3). The average rate we obtain, 15.5 ± 2mm/year, is lower than themost commonly
cited rates (e.g., Lavé & Avouac, 2001; Stevens & Avouac, 2015). Below, we explore several possible reasons for
this discrepancy and show that our result is less likely to be biased by modeling artifacts than previous
studies. We infer that the long-term moment deficit rate on the MHT across Nepal is likely smaller than pre-
viously reported (e.g., Ader et al., 2012) and show that this helps to explain part of the apparent shortfall of
paleoseismic moment release over the last ~1,000 years relative to geodetic moment (e.g., Bilham &
Ambraseys, 2005; Stevens & Avouac, 2016).
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The average convergence rate of 15.5 ± 2 mm/year for all 2D profiles across Nepal is within the range of
published values from prior geodetic and geologic studies (e.g., see comparisons by Bettinelli et al., 2006;
Feldl and Bilham, 2006; and Stevens and Avouac, 2015). In particular, it agrees well with the recent esti-
mate of 15 mm/year by Zheng et al. (2017), who did not attempt to model the fault coupling but looked
only at the absolute difference in convergence rate between India and southern Tibet. This rate is strongly
constrained by the geodetic velocities in southern Tibet, which reach 15 mm/year relative to India only
200 km north of the frontal thrust (Figure 2). Beyond that distance, the contribution of elastic loading from
the MHT is small, and any additional convergence must be accommodated on other structures, namely,
conjugate strike-slip faults associated with eastward escape tectonics within Tibet (e.g., Taylor et al.,
2003). It is therefore difficult to construct a model in which the MHT accumulates slip at a rate faster than
the net convergence. Models with the deepest assumed locking depths show slightly higher convergence
rates (16.4 ± 2 mm/year for a depth of 22 km) but do not fit the data as well (supporting information
Figure S5).

A higher convergence rate could be possible if a several hundred kilometer-wide coupling transition zone
is assumed (Feldl & Bilham, 2006), but this is unlikely given the absence of postseismic afterslip at large
distances beneath central Tibet following the Gorkha earthquake (e.g., Mencin et al., 2016; Wang &
Fialko, 2018; Zhao et al., 2017). Some studies may have overestimated the convergence rates by consider-
ing only data close to the zone of elastic strain accumulation (e.g., Grandin et al., 2012), resulting in a
trade-off between the model slip rate and locking depth that is similar to a well-known effect in strike-slip
fault settings (Lindsey & Fialko, 2013; Smith-Konter et al., 2011). We also note that because interseismic
geodetic observations are not sensitive to the geometry of the locked portion of the fault, which will ulti-
mately propagate coseismic slip to the surface, these convergence rates are an upper bound for the slip
rate on the MFT proper; if shallow faults other than the MFT accommodate some of this convergence at
the surface (e.g., Whipple et al., 2016; Wobus et al., 2005), the long-term slip rate of the MFT near the sur-
face could be even lower.

Bettinelli et al. (2006) explored several types of models and found a range of best-fitting rates between 13.5
and 19 mm/year. They explained higher slip rates in their 3D model compared to 2D models by proposing a
systematic bias caused by neglecting 3D effects in 2D models. We compared synthetic predictions for data
along a 2D transect using our 2D dislocation model and a backslip model using a 3D fault matching the pie-
cewise curvature along the Himalayan arc in the model of Bettinelli et al. (2006) but could not reproduce this
proposed bias: the predicted horizontal velocities are nearly identical (supporting information Figure S8). We
also constructed a 3D deep dislocation model matching the 3D geometry of Bettinelli et al. (2006) and fit a
single convergence rate and direction to the data across Nepal and southern Tibet following their proposed
method. We conducted this simple model for three available regional-scale compilations of GPS data from
Stevens and Avouac (2015), Kreemer et al. (2014), and Zheng et al. (2017) and obtained average convergence
rates of 14.7 ± 0.1, 17.1 ± 0.1, and 15.6 ± 0.1 mm/year for the three data sets, respectively, although in all cases
the predicted azimuths of vectors fit the data poorly because this semi-3D model does not account for lateral
spreading in Tibet (supporting information Figure S9). Three-dimensional effects could also impact the
inferred slip rates to some degree if unmodeled fault-parallel motions contribute to an increased total slip
rate on the megathrust with a slightly different rate. The unmodeled fault-parallel rates from our profiles
(supporting information Figure S2) are generally less than 5 mm/year; nevertheless, they do exhibit a trend
within some profiles, which could potentially bias the results.

A fully 3D model permits additional parameters to account for this transcurrent motion across the Himalayas
(e.g., Murphy et al., 2014; Silver et al., 2015), as well as east-west extension within southern Tibet (Armijo et al.,
1986). We therefore constructed a 3D backslip model using the Blocks software (Meade & Loveless, 2009),
which estimates best-fitting fault slip rates and resulting rigid block motions simultaneously. We used several
blocks in southern Tibet to account for the observed east-west extension and modeled the MHT with a lock-
ing depth of 15 km and a dip of 8° so that the locking line falls in approximately the same place as inferred
from the 2D models. We found that the best-fitting convergence rates for the MHT across Nepal are
15.4 ± 1.2 mm/year, indistinguishable from our 2D results (Figure 5). We computed the best-fitting rates
for three different data sets (Kreemer et al., 2014; Stevens & Avouac, 2015; Zheng et al., 2017) and found con-
sistent results; the average convergence rate across Nepal is between 14.5 and 15.4 mm/year in all three
cases (supporting information Figure S10).
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Loveless and Meade (2011) considered block models for the Eurasian collision zone in which a geologic con-
straint was used to fix the MHT slip rate. We ran several models in which we applied a constraint of
20 ± 1 mm/year, taking the lower end of the range proposed by Lavé and Avouac (2001), but we found that
the χ2 misfit increased by 15–25% in this case (supporting information Figure S11). We conclude that it is pos-
sible that a different block geometry or other set of modeling choices could produce a higher best-fitting
MHT slip rate, but such a model would need to invoke a mechanism to explain the low total convergence
rates observed between southern Tibet and India (Zheng et al., 2017)—for example, the model of Loveless
and Meade (2011) includes 4–8 mm/year of north-south-directed normal slip on the South Tibetan
Detachment, which is inconsistent with geologic evidence that shows the cessation of north-south normal
faulting in this area in the Miocene (Cannon & Murphy, 2014; Carosi et al., 2013).

Our best-fitting geodetic convergence rate in both 2D and 3D models is 10–30% smaller than the most com-
monly cited Holocene shortening rate estimated for Nepal based on geologic observations (Lavé & Avouac,
2001) but is consistent with other studies in the region (Bollinger et al., 2014; Mugnier et al., 2004). Lavé and
Avouac (2001) used terrace uplift measurements to estimate a shortening rate of 21 ± 1.5 mm/year over the
Holocene. Mugnier et al. (2004) used tilting measurements of dated Holocene surfaces, combined with
balanced cross sections, to estimate a shortening rate of 14 ± 4 mm/year over the Holocene. Bollinger et al.
(2014) calculated late Holocene uplift for several flights of terraces in eastern Nepal. While they do not
quantitatively estimate an uplift or shortening rate, the best-fitting uplift rates to the data provided there
are 7.8–8.1 mm/year, which represent approximate shortening rates of 15.6–16.2 mm/year given their
assumed fault dip. The variation among these results could be caused purely by uncertainties in the

Figure 5. Block boundaries, modeled slip rates and block motions for a three-dimensional backslip model constructed
using the blocks software (Meade & Loveless, 2009), using data from Zheng et al. (2017). Vectors show observed GPS
velocities (black) and model prediction (red). Block motions, evaluated at one point inside each block, are shown as
bold black arrows. Transparent red patches indicate the locked extent of the thrust faults. Dip-slip (convergence positive)
rates are indicated in mm/year in black numbers; strike-slip rates (left-lateral positive) are shown in blue; formal uncer-
tainties for all slip rates are 0.3 mm/year. Dip slip rates along the Main Frontal Thrust within Nepal range between 13.3 and
16.4 mm/year (weighted average 15.2 ± 1.2 mm/year), indistinguishable from the slip rates for the two-dimensional
models. A faster convergence rate of the block in the far eastern Himalayas is divided between the Main Himalayan Thrust
(MHT) and Dauki thrust, so that the MHT convergence rate remains relatively constant. West of 80°E, a larger strike-slip
component and variable convergence rates may trade off with block rotation or other unmodeled overriding plate
structures, owing to limited data coverage in this area.
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various methods used to estimate the rates, or it could point to the presence of medium-term variations in
slip behavior on the megathrust over several earthquake cycles. For example, energy could be stored elasti-
cally near the deeper portion of the fault (e.g., Bilham et al., 2017), manifesting as temporarily reduced and
subsequently accelerated rates of shallow slip in certain areas. At present, the temporal resolution of geologic
observations and fidelity of numerical models is not yet sufficient to quantify the potential magnitude and
timescales of this type of variability in megathrust behavior.

A lower MHT slip rate translates to a smaller inferred moment accumulation rate than previous studies (e.g.,
Ader et al., 2012; Stevens & Avouac, 2015). We compute the total moment accumulation rate for our 2D mod-
els by summing the nonoverlapping locked fault area multiplied by the slip rate for each profile along strike
and find a total value of 4.8 ± 0.3 × 1019 Nm/year within Nepal, 27% less than the value found by Ader et al.
(2012) over the same fault length of 1,000 km. This smaller value reduces, but does not eliminate, the pro-
posed problem of a long-term seismic moment deficit inferred from paleoseismic observations (Ader et al.,
2012; Bilham & Ambraseys, 2005; Bilham et al., 2017; Bollinger et al., 2014; Stevens & Avouac, 2016). This issue
was partially addressed by Stevens and Avouac (2016), who assumed that their estimated moment deficit
rate was overestimated by 50% due to a combination of unmodeled afterslip and interseismic modeling
uncertainties; if we replace their estimated convergence rates with our lower inferred values, the data may
be consistent either with a maximum earthquake magnitude smaller than 9.0, or a longer recurrence interval
for such events. A lower MHT slip rate also affects the timing of inferred fault activation based on shortening
estimates from balanced structural cross sections (e.g., Hubbard et al., 2016)—thus, these age estimates may
need to be re-evaluated in this context.

4. Conclusions

We show that simple 2D models of interseismic deformation along the MHT in Nepal can illuminate detailed
variations in the width of fault coupling along strike (Figure 2) and that they are not biased by potential 3D
effects related to arc curvature and extension within Tibet (Figure 5). The results confirm that the deep
transition from locked to creeping is likely controlled by the midcrustal ramp in eastern and central Nepal.
By contrast, in western Nepal we find that the locking distance is intermediate between two proposed ramps,
which could be related to the ongoing formation of a new sliver within a midcrustal duplex (Figure 4). The
close correspondence between our geodetic results and the surface geology across Nepal suggests a promis-
ing avenue of research for other convergent zones where structural geologic observations may be more
readily available than geodetic data.

One of the pressing earthquake hazard questions for the Himalayan convergence zone is the return time of
large earthquakes along the MHT and their maximum potential magnitude. Our results, based on improved
GPS observations and models, require an average convergence rate of 15.5 ± 2 mm/year and indicate that
the suggested moment deficit of historical and paleoseismicity with respect to geodetic moment accumula-
tion rates (Ader et al., 2012; Bilham & Ambraseys, 2005; Stevens & Avouac, 2016) is smaller than previously
inferred—though we stress that the seismic hazard throughout the Himalayas remains high.
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