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Abhilash Nayak1, Stéphane Caro2, and Philippe Wenger2

1 Centrale Nantes, Laboratoire des Sciences du Numerique de Nantes (LS2N),
2 CNRS, Laboratoire des Sciences du Numerique de Nantes (LS2N),
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Abstract. A lower-mobility parallel manipulator with multiple opera-
tion modes can be considered as inherently reconfigurable. 4-RUU par-
allel manipulator is one such manipulator with three different operation
modes. Allowing the first revolute joint axis to have any horizontal ori-
entation leads to a dual reconfigurable 4-rRUU mechanism. This paper
presents a novel method to determine its operation modes as functions
of the orientation of its base revolute joint axes. Moreover, it’s transla-
tional workspace is plotted for three mutually perpendicular orientations
of its base revolute joint axes. With a goal to realize a working prototype,
pareto optimization is used to determine its design parameters such that
it has a larger singularity- and interference-free workspace while having
a smaller size.

Keywords: parallel manipulator, dual reconfigurable, 4-RUU, operation
modes, Pareto optimization

1 Introduction

2 Manipulator architecture

The dual reconfigurable 4-rRUUPM with a square base and a platform is shown
in Fig. 1. Each limb consists of a double Hooke’s joint (rR) followed by two
universal joints (UU). Point Li, i = 1, 2, 3, 4 lies on the pivotal axis of the double-
Hooke’s joint linkage. Point Ai lies on the first revolute joint axis of the PM.
Points Bi and Ci are the geometric centers of the first and the second universal
joints, respectively. Points Li and Ci are the vertices of the square base and
the platform, respectively. FO and FP are the coordinate frames attached to
the fixed base and the moving platform such that their origins O and P lie at
the centers of the respective squares. The circum-radii of the base and platform
squares are denoted r0 and r1, respectively. p and q are the link lengths. The
revolute-joint axes vectors in i-th limb are marked sij , i = 1, 2, 3, 4; j = 1, ..., 5.
Vectors si1 and si2 are always parallel, so are vectors si3 and si4. For simplicity,
it is assumed that the orientation of vector si1 expressed in coordinate frame
FO is the same as that of si5 expressed in coordinate frame FP .
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Fig. 1: A 4-rRUU parallel manipulator

3 Operation Mode Analysis

3.1 Constraint Equations

Since the reconfigurable revolute joint is actuated, a RUU limb must satisfy the
following two constraints:

1. The second revolute joint axis, the fifth revolute joint axis and link BC
must lie in the same plane. In other words, the scalar triple product of the
corresponding vectors must be null:

gi : (bi − ci)
T (si2 × si5) = 0, i = 1, 2, 3, 4 (1)

2. The length of link BC must be q:

gi+4 : ||bi − ci|| − q = 0, i = 1, 2, 3, 4 (2)

Since the length of link BC does not affect the operation modes of the 4-rRUU
PM, only the principal geometric constraint from Eq. (1) is considered. To ex-
press it algebraically, the homogeneous coordinates of the necessary vectors ex-
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pressed in frame FO are listed below:

0li = Rz(λi) [1, r0, 0, 0]T (3a)
0ai =0 li + Rz(λi + βi) [0, 0, li, 0]T (3b)
0bi = 0ai + Rz(λi + βi) [0, p cos(θi), 0, p sin(θi)]

T (3c)
0ci = FRz(λi)[1, r1, 0, 0]T , (3d)
0si2 = Rz(λi + βi) [0, 0, 1, 0]T , (3e)
0si5 = FRz(λi + βi)[0, 0, 1, 0]T , i = 1, 2, 3, 4. (3f)

where li = |AiLi|, Rz(·) is the homogeneous rotation matrix about the z-axis,

λi for the i-th limb is given by λ1 = 0, λ2 =
π

2
, λ3 = π, λ4 =

3π

2
and θi is the

actuated joint angle. F is the following transformation matrix:

F =
1

∆


∆ 0 0 0

d1 x0
2 + x1

2 − x22 − x32 −2x0x3 + 2x1x2 2x0x2 + 2x1x3

d2 2x0x3 + 2x1x2 x0
2 − x12 + x2

2 − x32 −2x0x1 + 2x2x3

d3 −2x0x2 + 2x1x3 2x0x1 + 2x2x3 x0
2 − x12 − x22 + x3

2


(4)

with ∆ = x0
2 + x1

2 + x2
2 + x3

2 6= 0
and d1 = −2x0y1 + 2x1y0 − 2x2y3 + 2x3y2,

d2 = −2x0y2 + 2x1y3 + 2x2y0 − 2x3y1,
d3 = −2x0y3 − 2x1y2 + 2x2y1 + 2x3y0,

where xj , yj , j = 0, 1, 2, 3 are called Study parameters of the transformation F.
A point P = (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3) ∈ P7 represents an Euclidean
transformation, if and only if P lies in a 6-dimensional quadric, S2

6 ∈ P7 called
the Study quadric:

S2
6 : x0y0 + x1y1 + x2y2 + x3y3 = 0 (5)

Thus, Eq. (1) is derived for each limb algebraically by substituting ti = tan

(
θi
2

)
and vi = tan

(
βi
2

)
, i = 1, 2, 3, 4. The equations are not displayed here due to

space limits.
The constraint polynomials gi, i = 1, 2, 3, 4 along with Study’s quadric form

the following ideal3:

I = 〈g1, g2, g3, g4,S2
6〉 ⊆ k[x0, x1, x2, x3, y0, y1, y2, y3] (6)

3 The ideal generated by the given polynomials is the set of all combi-
nations of these polynomials using coefficients from the polynomial ring
k[x0, x1, x2, x3, y0, y1, y2, y3] [1].
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To simplify the determination of the operation modes, the 4-rRUU PM is split
into two 2-rRUU PMs [5] by considering two ideals:

I(I) = 〈g1, g3,S2
6〉 (7a)

I(II) = 〈g2, g4,S2
6〉 (7b)

Furthermore, I(I) and I(II) can be decomposed into simpler ideals using primary
decomposition to understand the operation modes of the 2-rRUU PMs. Thus, the
union of the corresponding prime ideals characterize the operation modes of the
whole 4-rRUU PM. Two cases can be considered:

Case 1: When the revolute joint axes are arbitrarily oriented, the primary
decomposition of I(I) and I(II) leads to one sub-ideal each. These sub-ideals
depend on the design parameters and are mixed motion modes which are not of
interest in the context of this paper.

Case 2: When the opposite revolute joint axes have the same orientation i.e.
v1 = v3 and v2 = v4, the operation modes can be determined as follows:
All planar orientations of the rR-joint axes are covered by varying βi ∈ [−90◦, 90◦]
and hence vi ∈ [−1, 1]. Design parameters were substituted as r0 = 2, r1 = 3, p =
5, q = 7 to simplify the primary decomposition of ideals I(I) and I(II) in Eq. (7).
The operation modes could be determined only when arbitrary rational values
are substituted for v1 = v3 = v13 and v2 = v4 = v24. The primary decomposition
is performed in a computer algebra system Singular and it leads to three sub-
ideals each. The first two are independent of the design parameters and actuated
variables. They are of the following form:

I(I) = I1(I) ∩ I2(I) ∩ I3(I),
where I1(I) = 〈x0, h1x1 + h2x2, x1y1 + x2y2 + x3y3〉

and I2(I) = 〈x3,−h2x1 + h1x2, x0y0 + x1y1 + x2y2〉 (8a)

I(II) = I1(II) ∩ I2(II) ∩ I3(II),
where I1(I) = 〈x0,−h2x1 + h1x2, x1y1 + x2y2 + x3y3〉

and I2(I) = 〈x3, h1x1 + h2x2, x0y0 + x1y1 + x2y2〉 (8b)

where h1 and h2 are functions of v13 and v24. For instance, I1(I) consists of

v13 -1 -
1

2
-
1

4
0

1

4

1

2
1 w

h1 -1 -4 -8 0 8 4 1
2

w
, w 6= 0

h2 0 -3 -15 0 -15 -3 0 1− 1

w2
, w 6= 0

Table 1: h1 and h2 as functions of v13 such that 〈h1x1 + h2x2〉 ∈ I1(I)

x0 and S2
6|x0=0 irrespective of the value of v13. The remaining polynomial has
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coefficients h1 and h2, whose values are listed in Table 1 for arbitrarily chosen
v13 along with their interpolated values for a general v13 = w. Thus, Eq. (8) can
be further simplified as follows:

I1(I) = 〈x0, 2v13x1 + (v213 − 1)x2, x1y1 + x2y2 + x3y3〉
I2(I) = 〈x3, (1− v213)x1 + 2v13x2, x0y0 + x1y1 + x2y2〉 (9a)

I1(II) = 〈x0, (1− v224)x1 + 2v24x2, x1y1 + x2y2 + x3y3〉
I2(II) = 〈x3, 2v24x1 + (v224 − 1)x2, x0y0 + x1y1 + x2y2〉 (9b)

As a result, the first two operation modes of the 4-rRUU PM are:

I1 = I1(I) ∪ I1(II)
= 〈x0, 2v13x1 + (v213 − 1)x2, (1− v224)x1 + 2v24x2, x1y1 + x2y2 + x3y3〉

(10a)

I2 = I2(I) ∪ I2(II)
= 〈x3, (1− v213)x1 + 2v13x2, 2v24x1 + (v224 − 1)x2, x0y0 + x1y1 + x2y2〉

(10b)

In general, I1 = 〈x0, x1, x2, y3〉 and I2 = 〈x3, x1, x2, y0〉. The former corresponds
to a 3-dof pure translational mode, where the platform is upside down with the
zP -axis pointing downwards. The latter is also a 3-dof translational mode, but
the platform is in upright position with zP -axis pointing upwards. An example
would be the configuration (2) in [4] with βi = 90◦, i = 1, 2, 3, 4.
However, the set of binomial equations 2v13x1+(v213−1)x2 = 0 and (1−v224)x1+
2v24x2 = 0 can have non-trivial values for x1 and x2 if the following conditions
are satisfied:

2v13
v213 − 1

=
1− v224

2v24
=⇒ tan(β1) = tan(β3) = − cot(β2) = − cot(β4)

=⇒ β1 = β3 = β2 − 90◦ = β4 − 90◦ (11)

In that case, the first two operation modes are

I1 = I1(I) ∪ I1(II)
= 〈x0, 2v13x1 + (v213 − 1)x2, x1y1 + x2y2 + x3y3〉 (12a)

I2 = I2(I) ∪ I2(II)
= 〈x3, (1− v213)x1 + 2v13x2, x0y0 + x1y1 + x2y2〉. (12b)

With x3 = 1, the Study parameters corresponding to the first operation mode,
I1 are [0, x1, x2, 1, y0, y1, y2,−x1y1 − x2y2]. Thus, only four independent param-
eters are sufficient to characterize this operation mode and it corresponds to
a 4-dof Schönflies mode in which the translational motions are parametrized
by y0, y1 and y2 and the rotational motion is parametrized by x1, x2 along
with 2v13x1 + (v213 − 1)x2 = (1− v224)x1 + 2v24x2 = 0. In this operation mode,
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the platform is upside down with the zP -axis pointing in a direction opposite
to the zO-axis. The rotational motion is about an axis located at an angle of
β1 − 90◦ = β3 − 90◦ = β2 = β4 from the xO-axis.
Similarly, with x0 = 1, the Study parameters corresponding to the first oper-
ation mode, I2 are [1, x1, x2, 0,−x1y1 − x2y2, y1, y2, y3]. Thus, only four inde-
pendent parameters are sufficient to characterize this operation mode and it is
a 4-dof Schönflies mode in which the translational motions are parametrized
by y1, y2 and y3 and the rotational motion is parametrized by x1, x2 along
with (1− v213)x1 + 2v13x2 = 2v24x1 + (v224 − 1)x2 = 0. In this operation mode,
the platform is in upright position with rotational motion about an axis located
at an angle of β1 − 90◦ = β3 − 90◦ = β2 = β4 from the xO-axis.
Hence, it can be concluded from Eqs. (11) and (12) that when all the base R-
joint axes of the 4-rRUU PM have the same horizontal orientations, it exhibits
a Schönflies motion mode with the rotational dof about a horizontal axis with
the same orientation as those R-joint axes. An example is the configuration (1)
in [4], where β1 = β3 = 90◦, β2 = β4 = 0◦.

4 Workspace for the same orientations of base R-joint
axes

The moving platform center of the 4-rRUU PM lies on the boundary of the
translational workspace only when at least one of its limbs is in a fully extended
or a folded configuration. In this case, the limb is said to be in a limb or serial
or input singularity [3]. It can happen when the 8 × 4 input Jacobian matrix

JI =
∂g

∂ti
with i = 1, 2, 3, 4 and g = [g1, g2, ..., g8] is not full-rank. One approach

to deal with the non-square matrix is to search for conditions such that all its
4 × 4 minors vanish as shown for a 3-RUU PM in [6]. However, the first three
equations of the 3-RUU PM do not depend on the variable ti which is the half
tangent of the actuated joint variable θi. Likewise, here, gi does not depend on
ti, i = 1, 2, 3, 4. Therefore, the input singularities corresponding to limb i can be

simply calculated as fi :
∂gi+4

∂ti
= 0, i = 1, 2, 3, 4. Eliminating ti from fi and gi+4

leads to four polynomials, Si solely in terms of Study parameters. The singularity
surfaces (tori shaped) are nothing but the varieties of these polynomials and
the workspace boundary is given by their intersection. By considering the 4-
rRUU PMs in Schönflies motion mode, it is possible to visualize the translational
workspace boundaries for different fixed orientations of the moving platform. For
instance, the singularity surfaces of a 4-rRUU PM with base R-joint axes parallel
to xO-axis and with design parameters r0 = 2, r1 = 1, p = 2, q = 3 have the
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following implicit representations:

S1 : x4 + 2x2y2 + 2x2z2 + y4 + 2 y2z2 + z4 − 4x3 − 4xy2 − 4xz2 − 4x2 − 24 y2

− 24 z2 + 16x+ 16 = 0 (13a)

S2 : x4 + 2x2y2 + 2x2z2 + y4 + 2 y2z2 + z4 − 4x2y − 4 y3 − 4 yz2 − 8x2 − 20 y2

− 24 z2 + 48 y = 0 (13b)

S3 : x4 + 2x2y2 + 2x2z2 + y4 + 2 y2z2 + z4 + 4x3 + 4xy2 + 4xz2 − 4x2 − 24 y2

− 24 z2 − 16x+ 16 = 0 (13c)

S4 : x4 + 2x2y2 + 2x2z2 + y4 + 2 y2z2 + z4 + 4x2y + 4 y3 + 4 yz2 − 8x2 − 20 y2

− 24 z2 − 48 y = 0 (13d)

where the orientation of moving platform, φ = 0◦ and (x, y, z) are the coor-
dinates of point P . The workspace boundary for this PM is shown in Fig. 2c.
Additionally, Fig. 2 shows the workspaces for three configurations of the PM
with their base R-joint axes parallel to xO, yO and zO-axes, henceforth named
as 4-RxUU, 4-RyUU and 4-RzUU PMs, respectively. The workspaces are plotted
for different orientations of the moving platform including their cross-sections
about a symmetric axis a for the 4-RaUU PM, where a can be x, y or z.

5 Design optimization

With an ultimate goal to build a working prototype of the 4-rRUU PM, the de-
sign parameters are determined using a Pareto optimization procedure shown
in Algorithm 1. Although there are infinitely many possible orientations of the
base R-joint axes, the optimization problem is simplified by only considering 4-
RxUU, 4-RyUU and 4-RzUU PMs. Moreover, these PMs are examined with zero
orientations of their moving platform since it is the only pose shared by them.

The design parameters are r0, r1, p and q. They must be homogenized to
facilitate scaling of the final design, which is done by setting the circum-radius
of the base, r0 to unity. It also reduces the number of parameters and hence the
computation time. Their arithmetic mean is the first objective function ObjS,
which is an array with each of element in the range [0, 1]. It gives the overall

size of the PM. Eventually, design parameters are varied from l =
r0
5

to u = 2r0

with an increment of d =
r0
5

. For a given set of {r1, p, q}, a cube of side length

2val = 6r0 is discretized into n3 = 613 points. At each of these points, the
following conditions are checked in the prescribed order:

I. Does it belong to the workspace of the PM?
Thanks to the polynomials Si(x, y, z) in Eq. (13) corresponding to serial
singularities, a point (x, y, z) lies in the workspace when Si(x, y, z) < 0 ∀ i ∈
{1, 2, 3, 4}.
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(a) φx = −90◦
(b) φx = −45◦ (c) φx = 0◦

(d) φx = 45◦ (e) φx = 90◦ (f) φy = −90◦

(g) φy = −45◦
(h) φy = 0◦ (i) φy = 45◦

(j) φy = 90◦ (k) φz = −90◦ (l) φz = −45◦

(m) φz = 0◦
(n) φz = 45◦

(o) φz = 90◦

Fig. 2: Workspaces of 4-RxUU(a-e), 4-RyUU(f-j) and 4-RzUU(k-o) PMs
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Algorithm 1 Design optimization of a 4-rRUU PM

1: procedure
2: ax← Orientation of base R-joints . 1,2,3 for Rx, Ry and Rz, respectively
3: κ← Inverse condition number of the homogenized forward Jacobian matrix
4: κth ← Threshold value of κ
5: r0 ← Base circum-radius
6: r1 ← Platform circum-radius
7: p← Proximal link length
8: q ← Distal link length
9: ν := 1

10: r0 := 1;
11: for r1 ← l by d to u do
12: for p← l by d to u do
13: for q ← l by d to u do

14: ObjS(ν) :=
r1 + p+ q

6
; . Objective function: Size

15: x, y, z ← −val : res : val;

16: n := 2
val

res
+ 1;

17: for i← 1 to n do
18: for j ← 1 to n do
19: for k ← 1 to n do
20: if (x(i), y(j), z(k)) is in the workspace and there

exists at least one real solution to IKM without
internal collisions with κ > κth then

21: Wax(i, j, k) := 1
22: else
23: Wax(i, j, k) := 0
24: end if
25: end for
26: end for
27: end for

28: Wax :=
ΣiΣjΣkWax(i, j, k)

n3

29:

30: ObjW(ν) := 1−
3

min
ax=1

Wax . Objective function: Workspace density

31: end for
32: end for
33: end for
34: ν := ν + 1
35: end procedure
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II. Does there exist at least one working mode?
A working mode implies a real solution to the Inverse Kinematics Model (IKM).
Given (x, y, z), a solution to IKM involves finding the actuated joint vari-
ables. This could be done by first obtaining the coordinates of point Bi,
which is the intersection of a circle with center Ai, radius p and a sphere
with center Ci, radius q. In C3, a circle and a sphere always intersect at
two points. Hence, in R3, there are at most 24 = 16 IKM solutions. Thus,
a real solution to IKM exists if coordinates of Bi turn out to be real.

III. Aren’t there any internal collisions?
The links are approximated as capsules to determine their interferences. A

S

R

Q

P

d
2

d
1

Fig. 3: Link interferences as collision between two capsules

capsule is a cylinder between two hemispheres as shown in Fig. 3. They
are defined by line segments and a radius. Two capsules PQ and RS with
radii d1 and d2 intersect if and only if the distance between line segments
PQ and RS is less than d1 + d2. There are umpteen ways to calculate the
distance between two line segments. The algorithm used here is based on
the approach by Eberly [2].
Couples of eight line segments AiBi of length p, capsule radius 0.1p and
BiCi of length q, capsule radius 0.1q, i = 1, 2, 3, 4 are checked for collision.
Out of these

(
8
2

)
= 28 combinations, there is a definite intersection between

four of them sharing the point Bi. Thus, if there is an intersection between
at least one of the remaining 24 couples, the PM is deemed to have internal
collisions.

IV. Is the inverse conditioning number of the forward Jacobian matrix κ > κth?
Based on the theory of reciprocal screws, the reduced kinematic modeling
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of the 4-rRUU PM can be expressed as

Ar
0tr = Br θ̇ =⇒


(0
−−→
PC1 × 0u1)T 0uT

1

(0
−−→
PC2 × 0u2)T 0uT

2

(0
−−→
PC3 × 0u3)T 0uT

3

(0
−−→
PC4 × 0u4)T 0uT

4


[

0ω
0vP

]
= Br


θ̇1
θ̇2
θ̇3
θ̇4

 (14)

where θ̇ is the set of actuated joint rates and 0tr is the reduced twist of the
moving platform with respect to the fixed base i.e., it contains the angular
velocity vector of the moving platform and the linear velocity vector of its
circum-center. Since 4-rRUU PM in its Schönflies operation mode has only
one component of its angular velocity, 0tr is essentially a 4×1 vector. Ar is
the 4×4 reduced forward Jacobian matrix and it incorporates the actuation
wrenches of the PM such that its columns correspond to non-zero values

of 0t with 0ui =

−−−→
BiCi

|
−−−→
BiCi|

. Br is the reduced inverse Jacobian matrix. It is

diagonal with its elements being the scalar product of actuation wrenches
and the actuated joint twists.
Ar is homogenized by dividing its elements in the first column by r1 since

r1 is the norm of vectors
−−→
PCi. Thus, the inverse condition number, κ is

calculated. κ gives a measure of how close the manipulator is to a parallel
singularity. If it is small, the matrix is said to be ill-conditioned and is
almost singular while if it is close to 1, the matrix is far from singularities.
A threshold of κth = 0.3 is set and it is checked if κ > κth.

Consequently, the number of points satisfying conditions I-IV are counted and
are divided by the total number of points considered, to obtain Wax ∈ [0, 1],
where ax = 1, 2, 3 for 4-RxUU, 4-RyUU and 4-RzUU PMs, respectively. Consider-
ing the min(W1,W2,W3) leads to design parameters with larger workspaces for
all three orientations of the base R-joint axes. This value is subtracted by 1 to
ensure the preference of smaller values compared to larger ones in both objective
functions.
Fig. 4 shows the feasible solutions, highlighting those that lie on the Pareto

front. Some Pareto-optimal designs are also depicted. The Pareto-optimal de-
sign with r0 = 1, r1 = 0.4, p = 1.q = 1.4 is selected as a potential candidate for
the prototype.
The goal of constructing a prototype of the 4-rRUU PM is to use it for milling

operations. A milling cutter will be mounted on the moving platform, whose axis
will be normal to the latter as roughly represented in Fig. 5 (not drawn to scale).
The workpiece is assumed to be a cuboid of dimension 0.12 m× 0.05 m× 0.05 m.
To place the workpiece, it is necessary choose a location in the workspace that
is free of internal collisions and far from singularities and is done as follows:
The minimum condition number among 4-RxUU, 4-RyUU and 4-RzUU PMs

is calculated for each of their working modes. The maximum of these values
is plotted in Fig. 6 throughout the translational workspace. A point F with
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x = 0.2, y = 0.1, z = 0.6 is chosen as the midpoint of the cuboidal workpiece.
Accordingly, the necessary actuated joint torques and velocities can be calculated
as follows:

τ = JTF, θ̇ = (J−1) 0tr (15)

with J = A−1
r Br J−1 = B−1

r Ar, (16)

where τ = [τ1, τ2, τ3, τ4] and θ̇ = [θ̇1, θ̇2, θ̇3, θ̇4] are sets of actuated joint torques
and velocities, respectively. F = [M,Fx, Fy, Fz] and 0tr = [ω, vx, vy, vz] are the
external forces and velocities applied on the moving platform, respectively. The
direction of angular velocity ω and moment M depend on the orientation of
base R-joint axes. Mx = My = 0, Mz = Fxrt, where rt is the tool radius. The
algorithm to plot κm in Fig. 6 and the choice of point F ensure that there exists
at least one IKM solution for each orientation of the base R-joint axes where the
actuated torques and velocities are smooth.
Figure 7 shows the variation of actuated joint torques and velocities for the

IKM solution with the largest κ that corresponds to Fig. 6. In this figure, the
design parameters are scaled so that the fixed base of the PM is confined within
a square of side 1 m. The tool radius is assumed to be 0.003 m and the remaining
assigned values are listed in Table 2.
From Fig. 7, the nominal absolute torque and velocity are observed to be 10 Nm
and 250 rpm, respectively. Based on these specifications, motors are bought out.
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Fig. 7: Variation of actuated joint torques and velocities through 120 points
divided along the distance to be milled

Design parameters (in m) r0 r1 p q
0.6 0.24 0.6 0.84

External forces, F Mz(Nm) Fx(N) Fy(N) Fz(N)
0.06 20 20 20

Moving platform velocities 0tr ω(rads−1) vx(ms−1) vy(ms−1) vz(ms−1)
0 0.5 0 0

Table 2: Inputs to calculate actuated joint torques and velocities
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6 Conclusions and future work

In this paper, a dual reconfigurable 4-rRUU parallel manipulator was considered
to determine its operation modes as a function of the orientation of its base
revolute joint axes. The constraint equations were written down using Study’s
kinematic mapping for some specific base R-joint orientations such that the co-
efficients are always rational. It simplified the primary decomposition of the
constraint equations to determine the operation modes. Furthermore, the poly-
nomials characterizing those operation modes were interpolated to obtain the
operation modes for any base R-joint orientations. Furthermore, the translational
workspace was plotted for three mutually perpendicular orientations of the base
R-joints, thanks to the algebraic equations describing limb singularities. With
a goal to build a prototype such that the PM has the largest singularity- and
collision-free translational workspace with the least size, a Pareto optimization
design problem was formulated. In order to use the PM for milling applications,
the necessary joint torques were calculated based on which, the motors, con-
troller board and components to be manufactured are bought out.
As a part of the future work, the working prototype of the analyzed PM will be
realized.

References

1. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Springer
(2007)

2. Eberly, D.H.: Chapter 15 - intersection methods. In: D.H. Eberly (ed.) 3D Game
Engine Design (Second Edition), The Morgan Kaufmann Series in Interactive 3D
Technology, second edition edn., pp. 681 – 717. Morgan Kaufmann, San Francisco
(2007)

3. Gosselin, C., Angeles, J.: Singularity analysis of closed-loop kinematic chains. IEEE
Transactions on Robotics and Automation 6(3), 281–290 (1990)

4. Nayak, A., Caro, S., Wenger, P.: A Dual Reconfigurable 4-rRUU Parallel Manip-
ulator. In: The 4th IEEE/IFToMM International conference on Reconfigurable
Mechanisms and Robots (ReMAR2018). Delft, Netherlands (2018)

5. Nurahmi, L., Caro, S., Wenger, P., Schadlbauer, J., Husty, M.: Reconfiguration
analysis of a 4-ruu parallel manipulator. Mechanism and Machine Theory 96, 269–
289 (2016)

6. Stigger, T., Pfurner, M., Husty, M.: Workspace and singularity analysis of a 3-ruu
parallel manipulator. In: B. Corves, P. Wenger, M. Hüsing (eds.) EuCoMeS 2018,
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