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ABSTRACT
Photonic bandgap engineering plays a key role in modern photonics since it allows for an ultimate control of photon propagation in periodic
dielectric or metallic media. Tamm plasmon structures are a particularly attractive platform since the electromagnetic field can be completely
controlled by patterning the thin metal layer. Up to now, only macroscopic patterning (larger than the operation wavelength) has been
experimentally demonstrated, leading to 3D confinement of light but suffering from a lack of fine control of the dispersion properties of Tamm
plasmons. Here, we report for the first time the opening of a bandgap in Tamm plasmon structures via subwavelength-periodic patterning of
the metallic layer. By adopting a “double period” design, we experimentally put into evidence a photonic bandgap for the TE polarization up
to 150 nm wide in the telecom wavelength range. Moreover, such a design offers a great flexibility to tailor on-demand, and independently, the
bandgap size from 30 nm to 150 nm and its spectral position within a range of 50 nm. Finally, by implementing a defect cavity within the Tamm
plasmon photonic crystal, a 1.6 μm cavity supporting a single highly confined Tamm mode is experimentally demonstrated. All experimental
results are in perfect agreement with numerical calculations. Our results demonstrate the possibility to engineer novel band dispersion with
surface modes of hybrid metallic/dielectric structures, thus opening the way to applications in topological photonics, metamaterials, and
parity-time symmetry physics.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5104334., s

I. INTRODUCTION

Photonic bandgap engineering plays a key role in modern pho-
tonics since it allows for an ultimate control of photon propagation
in periodic dielectric or metallic media.1 In such structures, photons
cannot propagate in the direction of periodicity within given ranges
of energies, similarly to the forbidden gaps for electrons in crystals.
The simplest example of the apparition of a photonic bandgap in
a periodic layered media is the well-known Bragg mirror.2 At the
edges of the forbidden gap, as the group velocity is close to zero,
the high density of states leads to strong enhancement of the light-
matter interaction. This unique property has been widely used for
the realization of various nanophotonic devices, with applications
such as integrated and mirror-free microlasers3 or enhancement of

nonlinear effects.4 Moreover, the local modification of the periodic
pattern of a photonic crystal can induce localized states within the
photonic bandgap. This modification can take the form of a line5,6

or a point defect7–9 within the periodic modulation, or of a pho-
tonic heterostructure,10–12 hence creating various guiding structures
and cavities with high potential interest. In particular, the concept
of photonic nanocavity has been widely used to demonstrate las-
ing in microcavities,13,14 enhancement of spontaneous emission,15,16

strong coupling regime between quantum emitters and photonic
defect cavity,17,18 and exciton polariton lasing in photonic crystal
cavities.19

Tamm plasmon modes are optical states localized at the inter-
face of a dielectric Bragg mirror and a thin metal layer.20 Unlike
conventional plasmons, they present much less losses and allow for
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direct coupling to free space modes.21 One of the main advantages of
Tamm plasmons is the tailoring of the field confinement simply by
patterning the thin metal layer, thus avoiding deep etching of nanos-
tructures. Up to now, lateral mode confinement has been achieved
by defining micrometric metallic structures such as disks22–25 and
rectangles,26 leading to three-dimensional light confinement that has
been experimentally put into evidence by a set of discrete Tamm
modes in energy. Brückner et al.27 have recently shown that thin
metallic periodic arrays with a period of a few microns replicate the
parabolic dispersion of Tamm modes in k-space. They have demon-
strated that at the edges of the Brillouin zone, where k = ±mπ/a (m
being an integer and a the period of the grating) the local density of
states is greatly enhanced due to the crossing of the replicated dis-
persions. However, in Brückner’s work, the period of the grating is
7.4 μm, which is more than ten times their mode emission wave-
length (655 nm): in this regime, the coupling of forward and back-
ward propagating waves at the edge of the Brillouin zone is too small
to observe any bandgap opening. The bandgap (if existing) is much
smaller than the spectral width of the modes, making it impossible to
realize large photonic bandgaps, microcavity Tamm structures, and
related band engineering. As a consequence, new metallic nanos-
tructures need to be designed, in order to gain more versatility in
the dispersion tailoring of optical Tamm modes and obtain strong
light confinement within photonic Tamm cavities.

In this work, we show that a bandgap opening can be observed
at the edge of the Brillouin zone, if the coupling strength between
forward and backward propagating waves is strongly increased. This
is achieved when the period of the lattice is much smaller than
the observed mode wavelength.1 In particular, we show that a pho-
tonic bandgap for TE polarization (electric field along the axis of the
metallic stripes) can be opened by patterning the metallic layer of
Tamm plasmon structures with a periodic lattice in the photonic
crystal regime (i.e., a/λ ≪ 1). Moreover, we propose an original
design, named “double period,” which offers an on-demand con-
trol of both the width and the spectral position of the bandgap.

Angle-resolved measurements show perfect agreement with numer-
ical calculations, hence demonstrating that the bandgap width and
spectral position can be freely and independently tuned within the
telecom range and that a photonic bandgap as large as 150 nm can
be opened around the 1.5 μm wavelength. In order to highlight the
potential of bandgap engineering, we also introduce lateral confine-
ment of the Tamm modes within the bandgap via a defect cavity of
only 1.6 μm-size. Highly confined states with discrete energy and
flat dispersion are observed. These experimental results should open
the way to all photonic bandgap applications on a hybrid metal-
dielectric platform, where the light confinement only relies on metal
patterning.

II. RESULTS AND DISCUSSION
We first highlight the mechanism of bandgap opening of Tamm

plasmon photonic crystals (i.e., Tamm structures with the periodic
metallic layer in the regime a/λ≪ 1). Figure 1(a) shows a schematic
view of the photonic Tamm structure, which consists of a 1D peri-
odic gold grating deposited onto a silicon-based Distributed Bragg
Reflector (DBR) (consisting of 4 pairs of Si/SiO2 alternances with
λ/4n layer thickness and center wavelength λBragg = 1.5 μm, leading
to a stopband from 1.2 μm to 2 μm at normal incidence). The energy-
momentum dispersion of TE-polarized Tamm modes, numerically
simulated by the Finite-Difference Time-Domain (FDTD) method,
is presented in Fig. 1(b). It clearly shows the backfolding of the
Tamm mode induced by the periodic lattice, as well as a complete
photonic bandgap in TE polarization at the edge of the first Bril-
louin zone (i.e., at the X point with kx = π/a). This bandgap opening
results from the diffractive coupling between the forward and back-
ward Tamm modes propagating beneath the metallic layer. A large
bandgap width of 120 nm, corresponding to 15% of the stopband of
the DBR, is observed. Such a bandgap width is much larger than the
linewidth of Tamm modes (∼10 nm). Figure 1(c) depicts the electric

FIG. 1. (a) Sketch of the studied photonic crystal Tamm plasmon structure. (b) Numerical simulation of the energy-momentum dispersion diagram (TE polarization) of a
photonic crystal Tamm plasmon with the 50 nm layer of gold, the period of the pattern is a = 400 nm and the width of the metal stripes is w = 250 nm. (c) Calculated electric
field distribution of two band-edge modes at the X point (kx = π/a). (d) Sketch of the double period design showing the single unit cell containing two gold stripes and the
definition of the factor f and shift s. (e) Energy-momentum dispersion diagram (TE polarization) of the double period pattern with a = 400 nm, w = 250 nm, f = 0.9, and
f = 0.025. Band folding is highlighted by the white arrows: band-edge modes at the X point (kx = π/a) are folded to the Γ-point (kx = 0).
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field distribution at the two band edges. In both cases, we can rec-
ognize that the fields show exponential decays from the metal/DBR
interface into the Bragg structure, which are characteristic of sur-
face modes such as Tamm modes.25 Furthermore, we note that (i)
the antinodes of the upper-edge mode are located beneath the metal
stripes; thus, we will refer to such localization as “metal” mode, and
(ii) the antinodes of the lower-edge mode are located beneath the air
grooves. We will refer to such localization as “air” mode. The fact
that the “metal” mode is at higher energy than the “air” mode can
be explained simply because the real part of the refractive index of
metal is lower than for the air.1

The results mentioned above demonstrate that a large bandgap
can be opened when the metal layer of a Tamm structure is peri-
odically patterned with a subwavelength period. However, the band
edges are located below the light line; thus, they are not experimen-
tally accessible for far-field measurements such as reflectivity, trans-
mission, and photoluminescence experiments. Besides, in order to
open new degrees of freedom in the tailoring of the band dispersion
and increase the spatial and spectral control of the light, the symme-
try of the unit cell containing a single gold stripe has to be broken.
Thus, in this work, we adopt a “double period” design with two gold
stripes per unit cell [see Fig. 1(d)] instead of one as in the initial “sin-
gle period” [see Fig. 1(a)]. This “double period” design is obtained by
shifting and shrinking the second gold stripe with respect to its initial
position and size. Quantitatively, the period of the single unit cell is
doubled to 2a, with the second gold stripe shifted by a distance s × a
and shrunk by a factor f, with 0 < s, f < 1. This design offers a twofold
advantage: (i) Tamm modes at the band edges are now directly
accessible from free space and can be probed via far-field exper-
iments.28 Indeed, as the unit cell is twice bigger (2a), the Brillouin
zone gets twice smaller: the edge is now located at kx = π/2a and
the band edges initially located below the light line at the X-point

(kx = π/a) are back-folded to the Γ-point (kx = 0) [see Fig. 1(e)].29 (ii)
The shifting factor s and the shrinking factor f provide efficient
degrees of freedom for bandgap engineering. Indeed, by imple-
menting a shifting or a shrinking of the gold stripes, the effective
refractive index and the field distribution would be greatly modi-
fied, leading to a change of the bandgap size or/and the bandgap
position.

Our sample is fabricated on a silicon platform to take advan-
tage of the high refractive index contrast between silica and silicon
for the realization of the DBR. As mentioned previously, the DBR is
constituted by 4 pairs of Si/SiO2 layers on a silicon substrate, cen-
tered at 1.5 μm. The microstructure arrays (50 × 50 μm2) of 1D
double-period metallic gratings are obtained via a lift-off process:
gratings are first defined by electron beam lithography, followed by
a 50 nm gold deposition, and stripping of the underlying resist pat-
terns (see Sec. IV for more details). A scanning electron microscopy
(SEM) image of a typical structure is shown in Fig. 2(a), with the
inset highlighting the unit cell of the double period design.

The reflectivity spectrum of a structure with a = 400 nm,
w = 260 nm, s = 0.175, and f = 0.55 at normal incidence is pre-
sented in Fig. 2(b). Two dips corresponding to the two band edges,
separated by a bandgap of 130 nm, are experimentally observed,
and perfectly reproduced by numerical simulations using the Rigor-
ous Coupled-Wave Analysis (RCWA) method. To demonstrate that
these dips correspond to the band edges of two Tamm modes with
opposite curvature, we visualize the band diagram in the momentum
space by performing angle-resolved microreflectivity measurements
(see Sec. IV). The experimental band diagram, shown in the right
panel of Fig. 2(c), provides clear evidence of the two band edges at
kx = 0 and of the complete photonic bandgap with 130 nm width,
centered at 1412 nm. These data are perfectly reproduced by RCWA
calculations [left panel of Fig. 2(c)]. The small gaps at kx ≠ 0 of the

FIG. 2. (a) SEM image of a double period structure. Inset
is a zoomed-in image to highlight the structure details on
a single unit cell. (b) Reflectivity spectrum at normal inci-
dence of the structure with a = 400 nm, w = 260 nm, s
= 0.175, and f = 0.55. The red dots are experimental data,
while the black line is the RCWA calculation. (c) Dispersion
diagram obtained by angle-resolved reflectivity spectra. The
right (left) panel corresponds to experimental data (RCWA
calculation).
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lower band are due to the coupling between Tamm Bloch modes
with the propagating mode within the Bragg mirror.30 In the follow-
ing, we will show how such a bandgap can be tailored on-demand by
playing with the shifting factor s and the shrinking factor f.

A. Bandgap-size tuning
Figure 3(a) reports experimental measurements and RCWA

calculations of the band edge positions when varying the shifting
factor s while keeping the shrinking factor at the fixed value f = 0.55.
The band edge positions correspond to the two reflection dips as
shown in Fig. 1(b). For the smallest shifting factor s, the structure
perturbation is too small to experimentally observe the lower edge
mode in the reflection spectrum. These results clearly show that a
simple variation of the shifting factor enables us to tune the bandgap
width from 30 nm to 150 nm (i.e., 500% of variation) without any
change of its central wavelength. In this case, the amount of metal
(or filling factor) is the same when the shifting factor s is increased:
as a result, the central wavelength of the bandgap is fixed since the
effective index of each band edge mode remains the same. The effect

of bandgap-size tuning is explained by a confinement reduction of
the upper edge mode, together with a confinement enhancement of
the lower edge state when increasing s. In order to illustrate this phe-
nomenon, the electric field distribution of each band edge mode is
presented in Fig. 3(b) for two extreme values of the shifting factor
(s = 0.025 and s = 0.4). It shows that for s = 0.025, the field distri-
bution of each mode is almost the same as in the case of the simple
period design [Fig. 1(c)]: the upper edge is a “metal” mode with the
field confined beneath the metal stripes and the lower edge is an “air”
mode with the field confined beneath the air grooves. However, for
s = 0.4, a large part of the field of the upper edge is pushed beneath
the air grooves, and inversely, a large part of the field of the lower
edge is pushed beneath the metal stripes. As a consequence, the con-
finement of the upper edge mode is reduced, while the one of the
lower edge modes is enhanced.

B. Bandgap-center tuning
Figure 3(c) reports experimental measurements and RCWA

calculations of the band edge positions when varying the shrinking

FIG. 3. Bandgap tailoring by tuning the
double period design parameters s (shift)
and fraction f [(a) and (c)]. Variation of
band edge positions while varying (a)
the shifting factor with constant shrink-
ing factor f = 0.55 and (c) the shrinking
factor with constant shifting parameter s
= 0.2. The blue line shows the results
of RCWA calculation. [(b) and (d)] Elec-
tric field distributions corresponding to
extreme cases of (a) and (c).
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factor f, while keeping the shifting factor at the fixed value s =
0.2. In contrast to the previous observation, these results show
that the bandgap width remains almost constant (i.e., ∼120 nm),
whereas its central wavelength can be freely tuned within 50 nm
(i.e., 42% of the bandgap), simply by changing the shrinking fac-
tor. This effect is explained by the confinement enhancement of
both band-edge modes when decreasing the shrinking parameter
f. In order to illustrate this phenomenon, the electric field dis-
tribution of each band-edge mode is presented in Fig. 3(d) for
two extreme values of the shrinking factor (f = 0.3 and f = 0.9).
On one hand, for both case, the upper-edge is always a “metal”
mode and the lower-edge is always an “air” mode. This proba-
bly explains why the bandgap width remains constant for differ-
ent values of f. On the other hand, when the second gold stripe is
shrunk, there is more air space for both modes to leak, leading to
a confinement reduction for both of them. This explains the red-
shift of the bandgap center when decreasing f (i.e., increasing the
shrinking). Finally, in order to further highlight the potential of
bandgap engineering offered by photonic crystal Tamm structures,
we implement a defect cavity within a photonic heterostructure.10–12

These heterostructures are obtained by introducing a local geo-
metrical modification (i.e., defect) in the lattice parameters of a
photonic crystal to create a “photonic crystal defect” supporting
modes at specific wavelengths that lie within the bandgap of the sur-
rounding lattice (i.e., cladding region). This results in light confine-
ment in the heterostructure cavity.11 In our heterostructure design,
we consider a cladding structure with parameters a = 400 nm, w
= 250 nm, s = 0.15, and f = 0.5. The defect cavity has exactly the same
parameters as the cladding, except for the shrinking factor f = 1.

According to the results shown in Fig. 3(c), the bandgap size of both
the cladding region and the defect is the same, but the bandgap cen-
ter of the defect is red shifted with respect to the one of the cladding.
This leads to the confinement of the lower edge mode within the
bandgap of the cladding structure. To experimentally demonstrate
such confinement, three cavities of different sizes have been fab-
ricated. The corresponding cavity sizes are 2 unit cells (1.6 μm),
7 unit cells (5.6 μm), and 12 unit cells (9.6 μm). Figure 4(a)
presents SEM images of the 2-unit-cells cavity, illustrating the fab-
rication quality of our samples. Angle-resolved microreflectivity
experiments have been performed on each cavity, as well as on the
cladding for comparison. The dispersion diagrams obtained from
the experimental measurements are reported in Figs. 4(b) and 4(c)
for the cavities and the cladding, respectively. Comparing with the
measurements of Fig. 4(c) performed on the cladding, where the
photonic bandgap extends from 1350 nm to 1500 nm, the cavity
measurements all show discrete modes within the corresponding
wavelength range, hence demonstrating the apparition of discrete
Tamm modes inside the cladding bandgap for all cavities, with
increasing mode spacing when reducing the cavity size as high-
lighted in Fig. 4(b). In the case of the 5.6 μm cavity, the mode spacing
is 19 nm between the first (1440 nm) and second (1459 nm) modes,
and 23 nm between the second and third modes, respectively; con-
sidering the 9.6 μm cavity, the mode spacing is reduced to 11 nm
between the first (1436 nm) and second (1450 nm) modes, and to
10 nm between the second and third modes, respectively. Interest-
ingly, unlike the case of confinement induced by metallic patches22,23

where the initial Tamm mode has positive effective mass, the Tamm
mode that is confined within our cavities is the lower edge mode with

FIG. 4. Experimental demonstration of a photonic Tamm heterostructure cavity. (a) SEM images of the 2 unit cell cavity. [(b) and (c)] Experimental measurements of the
angle-resolved microreflectivity experiment performing on (b) three cavities of size of 2 unit cells (1.6 μm), 7 unit cells (5.6 μm), and 12 unit cells (9.6 μm) and (c) the cladding
region of the cavities.
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negative effective mass. That explains why the fundamental mode of
our cavities is the mode with highest energy. It should also be high-
lighted that in the case of the smallest cavity (i.e., size of 2 unit cells),
the confinement is strong enough to push away higher-order modes

outside the cladding bandgap so that only the fundamental mode is
observed.

In an analogous way to the study of electron and hole confine-
ment in solid-state heterostructures, the confined Tamm modes can

FIG. 5. Envelope functions calculated
by solving the Schrödinger equation for
1.6 μm (a) and 5.6 μm-size (b) cavi-
ties showing a single confined mode for
the 1.6 μm-size cavity and three con-
fined modes for the 5.6 μm cavity. (c)
Integrated intensity over all angles of the
reflectivity signal for the 1.6 μm-size cav-
ity and (d) 5.6 μm-size cavity. Eigen-
values of the Schrödinger equation for
each cavity are represented by vertical
dashed lines. FDTD simulation results
for the (e) 1.6 μm-size cavity and (f)
5.6 μm-size cavity showing one and
three confined modes, respectively. (g)
Electric field maps for the first three con-
fined cavity states of the 5.6 μm-size
cavity. Only the x-boundaries of the cav-
ity are shown for sake of clarity (and not
the detailed Au grating).
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be numerically calculated by solving the Schrödinger equation of the
envelope function Ψ(x),31

− h̵2

2m∗
d2Ψ(x)
dx2 + V(x)Ψ(x) = EΨ(x), (1)

where m∗ < 0 is the photonic effective mass of the lower edge mode
and V(x) is the confinement potential of this mode due to the het-
erostructure landscape: V(x) = V0 > 0 in the cavity and V(x) = 0
in the cladding. We extract m∗ ≈ −2.4 × 10−5melectron by fitting
the dispersion of the lower edge mode in the cladding with the
parabolic approximation in the vicinity of the Γ-point. We estimate
V0 ≈ 41 meV, corresponding to the blueshift of the quasicontin-
uous dispersion of the biggest cavity (9.6 μm) with respect to the
lower edge mode in the cladding. The envelop functions, numeri-
cally calculated by solving the Schrödinger equation for 1.6 μm-size
cavity and 5.6 μm-size cavity, are depicted in Figs. 5(a) and 5(b),
respectively. Qualitatively, good agreement with the experimental
results is observed: the 1.6 μm-size cavity is single mode, while the
5.6 μm-size cavity supports three confined modes. Figures 5(c) and
5(d) present the integrated intensity over all angles of the reflectivity
signal of the 1.6 μm-size cavity and the 5.6 μm-size cavity, respec-
tively. The cavity modes are identified as the reflectivity dips in these
spectra. The eigenvalues calculated by numerical resolution of the
Schrödinger equation are also presented in the same figures (verti-
cal dashed lines), showing a very good spectral agreement with the
experimental measurements.

We also calculated direct mode shapes and resonant wave-
lengths for these cavity structures by using an electromagnetic
numerical method. Thus, we performed 2D finite difference in the
time domain (FDTD) simulations to calculate the position of the
confined states in the cavity. We excited the structure using a single
electrical dipole at the center of the cavity to compute the symmet-
ric modes. For the antisymmetric modes, we used a pair of dipoles
with a π phase difference located symmetrically with respect to
the center of the cavity. Qualitatively, good agreement with exper-
imental results is observed: the 1.6 μm-size cavity is single mode,
while for the 5.6 μm-size, cavity three peaks are obtained, iden-
tified by their parity: 2 even modes and 1 odd mode [Figs. 5(e)
and 5(f)]. The corresponding electric field maps of Fig. 5(g) clearly
show that the first two cavity states are well localized within the
cavity, whereas the third one extends to the cladding. This can be
explained by the spectral localization of this state very close to the
band edge of the cladding. These results clearly show that by using
a Tamm photonic crystal, it is possible to design efficient cavity
heterostructures.

III. CONCLUSION
In conclusion, the present work demonstrates band diagram

engineering of optical Tamm modes for the first time, by peri-
odically patterning the metal layer in the photonic crystal regime
(a/λ ≪ 1). By adopting a “double period” design, we have experi-
mentally put into evidence a TE photonic bandgap up to 150 nm
wide in the telecom wavelength range. Moreover, we have also
shown that our design makes it possible to tailor on-demand, and
independently, the bandgap size and its spectral position. Experi-

mental results highlight a continuous tuning of the bandgap size
from 30 nm to 150 nm and of the bandgap center within a 50 nm
range. All of our experimental data are perfectly reproduced by
numerical calculations. Moreover, by introducing a defect cavity
within our Tamm plasmon photonic crystal, a heterostructure cav-
ity of 1.6 μm supporting a single highly confined Tamm mode is
experimentally demonstrated. It should be pointed out that all 1D
photonic crystal concepts developed in this work can be generalized
to the case of 2D photonic crystals, with the possibility of even more
degrees of freedom for bandgap engineering. Our results open excit-
ing perspectives, since novel band engineering should also be possi-
ble in such hybrid metal-dielectric structures, in views of observing
properties such as Dirac cones28,32–34 or flat bands28,35,36 with sur-
face modes. This should pave the way toward contemporary top-
ics of optics research such as topological photonics,37 metamateri-
als,32,33,38,39 coupling with 2D materials,40,41 non-Hermitian physics,
and parity-time symmetry.34,42,43

IV. METHODS
A. Sample fabrication

The bottom DBR consists of 4 pairs of amorphous Si/SiO2
λ/4n layers grown on a silicon substrate. It has been externally fab-
ricated using a combination of PECVD and high density plasma
chemical vapor (HDPCVD), and characterized via complementary
techniques such as ellipsometry of the individual layers, reflec-
tivity, and SEM measurements. The targeted central wavelength
of the mirror stopband is 1.55 μm, corresponding to a-Si and
SiO2 thicknesses of 110 nm and 267 nm, respectively. Using
these parameters, the photonic stopband ranges from 1.2 μm to
2 μm. The periodic metallic patterns are defined using electron beam
lithography followed by a 50 nm gold deposition. Electron beam
lithography is performed on a modified SEM [field emission gun
(FEG)- Inspect F e-beam lithography system and Raith Elphy Plus
is used for the writing]. The 50 nm gold layer is evaporated using
e-beam evaporation after development of the e-beam resists. A lift-
off with acetone is performed at the end of the process. The period
of the 1D metallic gratings is chosen to obtain a back-folded Tamm
Bloch mode at the Γ-point between 1.3 μm and 1.5 μm (a = 400 nm).
The size of each array is 50 μm × 50 μm.

B. Micro reflectivity measurements
Microreflectivity experiments are performed at room temper-

ature using a wide spectral white light source (halogen lamp). The
Fourier space imaging principle is based on the following pro-
cedure:44 the samples are excited at normal incidence through a
high aperture microscope objective (the use of a high aperture
microscope objective allows for the excitation of a range of angles
around the normal incidence from −24.8○ to 24.8○ for bandgap mea-
surements by using a microscope objective with NA = 0.42). The
reflected light by the patterns is collected through the same objec-
tive. By using a set of optical lenses, we can image either the real
space (i.e., near field imaging) or Fourier space (i.e., far field imag-
ing) at the entrance slit of the spectrometer. Imaging is realized
by an infrared camera (InGaAs). A half waveplate and a polarizer
are placed in the path of collected light to retrieve only the TE
polarization (parallel to the grating structures).
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SUPPLEMENTARY MATERIAL

See the supplementary material for more information about the
origin of the observed modes.
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