N
N

N

HAL

open science

Dynamic modeling and control of a tensegrity

manipulator mimicking a bird neck

Benjamin Fasquelle, Matthieu Furet, Christine Chevallereau, Philippe Wenger

» To cite this version:

Benjamin Fasquelle, Matthieu Furet, Christine Chevallereau, Philippe Wenger. Dynamic modeling
and control of a tensegrity manipulator mimicking a bird neck. Advances in Mechanism and Machine
ScienceProceedings of the 15th IFToMM World Congress on Mechanism and Machine Science, pp.2087-
2097, 2019, 978-3-030-20130-2. 10.1007/978-3-030-20131-9_ 207 . hal-02353763

HAL Id: hal-02353763
https://hal.science/hal-02353763
Submitted on 13 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02353763
https://hal.archives-ouvertes.fr

Dynamic modeling and control of a tensegrity
manipulator mimicking a bird neck

Benjamin Fasquelle, Matthieu Furet, Christine Chevallereau, and Philippe
Wenger

Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS, Ecole centrale de
Nantes, 44321 Nantes, France

Abstract. This paper studies a tensegrity manipulator mimicking a bird
neck. This manipulator is built upon assembling several X-shape one-dof
tensegrity mechanisms in series. A methodology is proposed to derive
the dynamic model using Lagrange’s equations. The dynamic model is
used to design a dynamic control law. This control law is applied to a
backward-and-forward motion between an S-shape rest equilibrium con-
figuration and a straight configuration of the neck manipulator. Simu-
lation results show a much better tracking as compared with a classical
PD control.
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1 Introduction

The bird neck features outstanding dexterity and dynamic performances (think
of the woodpecker). It operates in large workspaces and applies high forces and
torques relative to the bird mass. Contrary to hydrostats such as the elephant
trunk or the cephalopod tentacle, bird necks have a spine like the snake, but they
do not lie on the ground like those latter. This work is carried out in the frame
of a collaborative, multidisciplinary project and aims at proposing a bird neck
robotic model. The concept of tensegrity has been chosen in this project as a
general paradigm able to link the interests of biologists and roboticists. A tenseg-
rity structure is made of compressive and tensile components held together in
equilibrium [1], [2]. Tensegrity structures were first used in art [3] and have then
been applied in civil engineering [4] and robotics [5], [6], [7], [8]. There are suit-
able to model muskuloskeleton structures where the bones are the compressive
components and the muscles and tendons are the tensile elements [9]. A prelim-
inary, planar bird neck robotic model is considered in this paper. This model
is built upon stacking a series of Snelson’s X-shape mechanisms [2]. Although
simplified because it is planar, this model goes beyond the only available bird
neck model in the literature that uses a simple planar articulated linkage [10].
Snelson’s X-shape mechanisms have been studied by a number of researchers,
either as a single mechanism [5], [7], [11], [12] or assembled in series [13], [14],
[15], [16], [17], [18]. In this paper, each X-shape mechanism is actuated with two
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lateral tendons threaded through the spring attachment points like in [15], [16],
[17], and [18]. The resulting manipulator is supposed to operate in a vertical
plane and is thus subject to gravity, unlike in [15], where the mechanism was
used in a snake-like manipulator moving on the ground. The goal of this study
is to propose a dynamic model of the manipulator along with a dynamic control
law. The control law is simulated for point-to-point motions between two desired
configurations.

2 A tensegrity-based neck model

We consider a set of N X-shape tensegrity mechanisms stacked in series (see
figure 1). The mechanisms 4 are numbered from ¢ = 1 (base) to i = N (head).
Each mechanism 4 is a class-2 tensegrity mechanism [4] consisting of a bottom
bar By,, a top bar By;, two crossed bars (Bg; and Bs;) and two pretensioned
springs. Note that the bottom bar of mechanism 7 and the top bar of mechanism
i — 1 are the same, namely, B1;=By(;_1). The first mechanism is fixed to the
ground and all the rigid links and springs are connected to each other with
perfect revolute joints. All the crossed bars have the same length L and all the
top and bottom bars have the same length b, which means that the mechanism
is an anti-parallelogram. In parallel to the left spring (resp. to the right spring),
a tendon (not shown in figure 1) applies a force fi, (resp. fr;).

Fig. 1: Parametrization of a stack of mechanisms.

The angle parameters are shown in figure 1. & = [y, ...,an] " is chosen as the

vector of generalized coordinates, where «; is the angle between the bottom bar
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B1; and the top bar B,,;. The other angles ¢; and 1; are useful for computation
and can be expressed w.r.t ; (equation (1)) [12].

¢i(a;) = 2arctan [ 2bLsin(a;) + S }

(202 + 2bL) [cos(av;) + 1]
—2bLsin(ay) — S
(262 — 20L) [cos(av;) + 1]}

¥;(a;) = 2arctan [

with S = \/(—QbL sin(ay))? 4 (—2bL [cos(a;) + 1])% — (2b2 [cos(a;) + 1])°.
In order to have a generic formula, let +; denote the angle of the base bar of
the i*" mechanism with respect to the horizontal axis:

Yi+1 =7 + oy, 1= 17'“uN (2>

Note that ~y;, the orientation of the first mechanism, is given as a geometric
parameter of the neck and depends on the bird specie.

3 Dynamic modelling

The Lagrange’s equations for a multi-dof system are:

i oT oT n dVv
dt aOéZ aOéi dai
where T is the kinetic energy, V the potential energy, Q the generalized forces
and ngofr is the number of dof. In the next sections the kinetic and potential

energy and the generalized forces used in (3) are derived to obtain the equation
of motion in the following form:

+:Qi7 i=1,2,...,ndof (3)

M(a)é + Cla, &)+ Gla) = Q(o) (4)

where M is the inertia matrix, such that T = %dTMd, C is the matrix of
coriolis effects that can be deduced from M [19], G is the vector of potential
effects, G = Z—Z,and Q is the vector of generalized forces.

3.1 Kinetic energy and inertia Matrix

The inertia matrix for one mechanism is first computed. The local frame of
mechanism 7 is located at the center x;,y; of the base bar with the x-axis along
this bar, forming an angle v; with the horizontal axis. Thus, the local frame of
each mechanism is described by the three parameters x;, y;, y;. The translational
(resp. rotational) velocities are @;, §; (resp. ;). Since the position and orientation
do not affect the kinetic energy, x;,¥;,y; will not appear in the equation. The
total kinetic energy of mechanism ¢ is obtained by summation of the translational
and rotational kinetic energy of the three movable links Bo;, Bs; and By;:
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T, = %(m2iv2i2+12i<¢.i+'5/i>2+m3i7]3i2+13i(w.i“"')"i)2+m4ivii+l4i(di+7;i)2) (5)

where m;; and Ij; are the mass and inertia of bar B; and vj; is the velocity of
body B;; CoM. The first (resp. second) term in every set of brackets corresponds
to the translational (resp. rotational) kinetic energy. Note that by definition
Ti+1 = T44 and Yi+1 = Yai- Let us define 1742 = ($4i — LEZ‘)2 + (y4z — yi)Q. It
can be shown that [; does not depend on ~v; but it is a function of «; [17]:

li(a;) = /L% — bQCOS(%)Q. The absolute coordinates of the pose of the centre

of mass of segments 2, 3, 4 are:

Toj = gcos(%) + %cos( o) (6a)
yoi = Yi — ssin(vi) + gsin(vi + ¢;) (6b)
x3; = x; + Scos(i) + Seos(yi + i) (6¢)
ysi = yi + ssin(vi) + 5sin(vi + 1) (6d)
Tai = Tip1 = 7 — li( )Sln(’Y %) (Ge)
Yai = Yit1 = Yi + li(ai) cos(yi + ) (6f)

By differentiating (6) and using (5), the total kinetic energy of mechanism ¢
can be written in the following form :

T
T, = % [‘rz Ui Vi az] M, z: (7)
Q;
with M; such that :
Ma:xi 0 M'ya:i Mocwi
0 My, My, Mgy
Mi — yyr Yy ayl 8
M'yf':i M’yyi M'Wi Maw ( )
Mazi Mayi Moz'yi Maai

where:
Maai =ma; (%) +mai (%) + may; ((%ﬂii))? + l?(iw)) i
S35 (ai)Io; + S3;(i) I3i + i
My =mai (% + 55 = tcos(90) ) +mai (% + 57— Hcos(un)) +ma; (12(a2) +
Ipi + Ii + Ly
Mo =mg; (%2521‘(0@) - %Szi(ai)cos(qbi)) + ma; (%Sgi(ai) - %Sgi(ai)cos(wi)) +

2 .
myg (li (Z‘L)) + SZi(ai)IQi + S3i(ai).[3i + I4i
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Mezi = — mo; (552 (i) sin(vi + ¢:)) — mai (5 Ssi(cw)sin(y; + ;) +
mas (4022 sin(o + %) — S22 cos(o + %))
Mayi =ma; (582 ()cos(yi + ¢:)) + ma; (553 (ci)cos(vi + ;) +
ma (2402 cos(; + 5) — L5 sin(yi + §))
M.ypi =ma; (8sin(v;) — Ssin(vy; + ¢;)) + ms; (4sin(v;) — Lsin(y; + i) +
My ( I;(c;) cos(y; + —l))
(-
(

M.y =mo; s(vi) + §cos(yi + i) + mai (—5cos(vi) + Feos(vi + i) +

(
(aq) sin(y; + %))
Mywi =Myy; = ma; + mg; + my;

U
beo
2¢

My, (—1;

with Sgi(ai) = ZZ: and Sgi(Ozi) = Zi: .

Let us define a general transformation matrix R, linking [, Ui, Vi, (] to the
generalized coordinates [, ...cy]. this transformation matrix will be useful to
build the inertia matrix of the whole manipulator:

(24, Uir Yir €] T = Ri[d, ooy o] T 9)

The translational and rotational velocities are calculated upon differenting
egs. (2), (6e) and (6f) with respect to time:

. . s dl; . N A
Ty = @y — licos(yi + G )Y + (— o sin(vy; + %) — 5 cos(v; + %’)) &
(10a)

. . . Ny dl; . L . .

Yirr = Yi — lisin(y; + )9 + (da- cos(vi + ) — ) sin(~y; + %’)) &; (10b)

Yitr =i+ (10c)
Since &1 = 91 = Y1 = 0, the first transformation matrix R; is:

0

R, = 8 Oax(v-1) (11)
1

Matrix R; can be defined by an iterative procedure. Using (2), equation (10)
is rewritten under the form below:

Tip1 o Ty T 0

Yit1 | | ¥ Yoi | /- . Yai | - 0| .

S | = s [ T L0 [ @t tdio)+ 0 it gl din (12)
1

Qi1 & 0 -1
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with z,; = —I; cos(y; + % ) Toi = ( dl@ sm(% + —l) — 51 os(y; + 7)), Yvyi =
—lisin(y; + %), Yai = (;il cos(y; + %) — %sm (vi + )
Thus :
Ty Tail0
R, =R, Yryi 1 Yai 0 O4><(N—i) 13
i+1 = R + 0 | X tixa-n|"1 o (13)
0 —-1|1

The inertia matrix M of the whole manipulator can then be expressed as:

N
M=) R/MR; (14)
i=1
For more simplicity in this study, the Coriolis effects are neglected in the
control law and need not be calculated (see section 4).

3.2 Potential energy for a stack of N mechanisms

The potential energy of one mechanism is composed of the potential energy due
to the mass of the different bars, and the potential energy due to the springs:

Vg, = 9(maiyai + maiyzi + maiyai) (15a)
Vip; = ski(lii — 10)* + $hri(lei — lo)® (15b)

where [y is the free length of spring. The gravity and spring contribution to
the equation of motion G can be written as :

Gla)=[2X .. v ov T (16)

da da; dan

Since the spring lengths depend only on the internal geometry of the ‘"
mechanism (i.e «;), each component of G is computed as follows :

G 8011 6041 (Z V!Jk) *Pz (17>

3.3 Generalized forces

In this study, each mechanism is assumed fully actuated in an antagonist way,
namely, a pair of tendons applies two positive forces f;; and f,; in parallel to the
left and right spring, respectively. The generalized forces vector Q defined in (3)
is the torque associated to the generalized coordinate « :

Q= 7,1, + 7.1, (18)

with £ = [fi1, .o, fin] T £ = [fr1y o fon] s Zl and Z, are two diagonal matrices
whose entries are respectively —% and — dl ,i=1,..N.
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4 Control

Each mechanism i has a desired trajectory af. Let a be the vector of all those
trajectories, and « the vector of the measured mechanism orientations. The
control law is built from equation (4). Low velocities are assumed and the Coriolis
effects are thus neglected: C = Oy« . Thus, the desired torque Qg is:

Qq = M(a) (&d + kgl (60— &) + kI (ad — a)) +Ga)  (19)

where k4 and k, are the gains of the control law. The required forces f; and f,.
must satisfy:
Qg = Zl(a)fl + Zr(a)fr (20)

The solution that minimizes the norm of the sum of the forces ||f; +£|| is chosen
i.e. since forces must remain positive, for each mechanism one force is zero and
the other one produces the motion.

This dynamic control law is compared to a PD control law including G. For
this control law, the desired torque is :

Qi = My (kdIN(dd — &)+ kyIy (ol — a)) + G(a) (21)

where My, is a constant diagonal matrix built with the maximum of the diagonal
elements of M for angular positions between —7 and 7. Thus, the lower the
mechanism in the stack, the bigger the gains of the PD control law.

5 Simulation Results

5.1 Neck parameters

The manipulator studied is made of N = 9 identical mechanisms with L = 0.15m
and b = 0.1m. The springs free length is defined as l[o = L — b (which is the
smallest length of the springs reached in the flat configurations «; = £7). All
bars are cylinders of diameter d = 0.01 m and made of ABS with a volumic
mass 1050 kg/m?. Since most birds have an S-shape rest configuration of their
neck, such a rest configuration is chosen for our manipulator. It is defined by
Qrest = g [1 1110-1-1-1 71]. The base bar of the first mechanism makes
an angle y; = —7 with respect to the horizontal axis. Since the rest configuration
is a stable equilibrium of the manipulator with zero-actuation forces, the two
conditions below must be satisfied for each mechanism [12]:

{qi(arest) =0 (22)

% (arest) Z Kmin

Here, we choose K, = 1 Nm/rad. The 2N = 18 equations in (22) are used
to determine the 18 spring stiffnesses of the manipulator. Figure 2 shows the rest
configuration and the spring stiffnesses obtained. Note that due to the effect of
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Fig. 2: Position at rest of the mechanism and spring stiffnesses

weight, we may obtain different spring stiffnesses for mechanisms with the same
rest orientation.

The minimal and maximal bounds of the actuation forces are defined as
fmin = ON (the tendons can only pull) and f,,4. = 100 N, respectively.

5.2 Control results

Simulations are performed with Matlab and Working Model 2D©. Starting from
its S-shape rest configuration, the manipulator is moved toward a straight con-
figuration in five seconds where it is maintained straight during one second, and
then returns to its rest configuration in five seconds. A skew sine displacement
is defined between each desired configuration. It is worth noting that in the rest
configuration, mechanism 5 has its equilibrium at as,cs; = 0, thus it does not
need to move during the whole trajectory. The desired trajectories are shown in
black in Figure 3.

Figure 3 shows the positions of the mechanisms during the simulations. The
blue curve, which corresponds to the PD control law, is close to the reference
curve, however oscillations appear. Here, the gains are k, = 38 and kg = 0.07.
The main problem of the PD control law is that the gains cannot be too high
due to the oscillations, otherwise the manipulator becomes unstable.

Nevertheless the dynamic control law works well with higher gains. The red
curve shows the configurations obtained with the dynamic control law with k, =
625 and kg = 50. In this case, the error is very low, except for the last mechanism,
which has a small delay with respect to the desired trajectory. This is because
the centrifugal and coriolis effects are not compensated whereas they becomes
predominant for this module. Here again, no oscillations appear (see a video at
http://perso.eleves.ens-rennes.fr/people /benjamin.fasquelle /english /phd.html).

The forces applied with the dynamic control law on each mechanism are
shown in Figure 4. Here, the bar masses and inertia as well as the velocities
are quite law. Consequently, the generalized forces deriving from the potential
energy G is the major part of the desired torque Q.


http://perso.eleves.ens-rennes.fr/people/benjamin.fasquelle/english/phd.html
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Fig.3: Position during the simulations. The Reference curve (in black) corre-
sponds to the desired trajectory, the CL1 (in red) one is the result of the dynamic

control law and CL2 (in blue) is the result of the PD control law including G.
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Fig. 4: Forces applied during the movement.
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6 Conclusion

This paper proposed an original, efficient method for the derivation of the in-
ertia matrix of a tensegrity manipulator made of several X-shape mechanisms
in series. A local inertia matrix was defined for each mechanism. This matrix
was parametrized with the absolute pose of the reference frame x;, y;,; and one
unique variable «; defining the mechanism configuration. The complete inertia
matrix was obtained in a simple way from the absolute coordinates of all mech-
anisms expressed as functions of the configuration variable . Then, a dynamic
control law was proposed for the tensegrity manipulator to track desired trajec-
tories. It was shown that taking into account the inertia matrix, which accounts
for the couplings between the individual mechanisms, allows for a reasonable
damping of the shaking effects due to the inherent flexibilities, as well as for the
use of sufficient gains for an acceptable system behavior.

Acknowledgement This work was conducted with the support of the French
National Research Agency (AVINECK Project ANR-16-CE33-0025).
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