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Introduction

The bird neck features outstanding dexterity and dynamic performances (think of the woodpecker). It operates in large workspaces and applies high forces and torques relative to the bird mass. Contrary to hydrostats such as the elephant trunk or the cephalopod tentacle, bird necks have a spine like the snake, but they do not lie on the ground like those latter. This work is carried out in the frame of a collaborative, multidisciplinary project and aims at proposing a bird neck robotic model. The concept of tensegrity has been chosen in this project as a general paradigm able to link the interests of biologists and roboticists. A tensegrity structure is made of compressive and tensile components held together in equilibrium [START_REF] Motro | Tensegrity systems: the state of the art[END_REF], [START_REF] Snelson | Continuous Tension, Discontinuous Compression Structures[END_REF]. Tensegrity structures were first used in art [START_REF] Fuller | Tensile-integrity structures[END_REF] and have then been applied in civil engineering [START_REF] Skelton | Tensegrity Systems[END_REF] and robotics [START_REF] Arsenault | Kinematic, static and dynamic analysis of a planar 2-dof tensegrity mechanism[END_REF], [START_REF]Kinematic analysis of a planar tensegrity mechanism with presstressed springs[END_REF], [START_REF] Wenger | Kinetostatic Analysis and Solution Classification of a Planar Tensegrity Mechanism[END_REF], [START_REF] Boehler | Design and evaluation of a novel variable stiffness spherical joint with application to MR-compatible robot design[END_REF]. There are suitable to model muskuloskeleton structures where the bones are the compressive components and the muscles and tendons are the tensile elements [START_REF] Levin | The tensegrity-truss as a model for spinal mechanics: biotensegrity[END_REF]. A preliminary, planar bird neck robotic model is considered in this paper. This model is built upon stacking a series of Snelson's X-shape mechanisms [START_REF] Snelson | Continuous Tension, Discontinuous Compression Structures[END_REF]. Although simplified because it is planar, this model goes beyond the only available bird neck model in the literature that uses a simple planar articulated linkage [START_REF] Zweers | Perception and Motor Control in Birds: An Eco-logical Approach[END_REF]. Snelson's X-shape mechanisms have been studied by a number of researchers, either as a single mechanism [START_REF] Arsenault | Kinematic, static and dynamic analysis of a planar 2-dof tensegrity mechanism[END_REF], [START_REF] Wenger | Kinetostatic Analysis and Solution Classification of a Planar Tensegrity Mechanism[END_REF], [START_REF] Boehler | Definition and computation of tensegrity mechanism workspace[END_REF], [START_REF] Van Riesen | Dynamic Analysis and Control of an Antagonistically Actuated Tensegrity Mechanism[END_REF] or assembled in series [START_REF] Aldrich | Time-energy optimal control of hyper-actuated mechanical systems with geometric path constraints[END_REF], [START_REF] Chen | Analytical Computation of the Actuator and Cartesian Workspace Boundaries for a Planar 2-Degree-of-Freedom Translational Tensegrity Mechanism[END_REF], [START_REF] Bakker | Design of an environmentally interactive continuum manipulator[END_REF], [START_REF] Van Riesen | Optimal Design of Tensegrity Mechanisms Used in a Bird Neck Model[END_REF], [START_REF] Furet | Kinematic analysis of planar tensegrity 2-X manipulators[END_REF], [START_REF] Furet | Workspace and cuspidality analysis of a 2-X planar manipulator[END_REF]. In this paper, each X-shape mechanism is actuated with two lateral tendons threaded through the spring attachment points like in [START_REF] Bakker | Design of an environmentally interactive continuum manipulator[END_REF], [START_REF] Van Riesen | Optimal Design of Tensegrity Mechanisms Used in a Bird Neck Model[END_REF], [START_REF] Furet | Kinematic analysis of planar tensegrity 2-X manipulators[END_REF], and [START_REF] Furet | Workspace and cuspidality analysis of a 2-X planar manipulator[END_REF]. The resulting manipulator is supposed to operate in a vertical plane and is thus subject to gravity, unlike in [START_REF] Bakker | Design of an environmentally interactive continuum manipulator[END_REF], where the mechanism was used in a snake-like manipulator moving on the ground. The goal of this study is to propose a dynamic model of the manipulator along with a dynamic control law. The control law is simulated for point-to-point motions between two desired configurations.

A tensegrity-based neck model

We consider a set of N X-shape tensegrity mechanisms stacked in series (see figure 1). The mechanisms i are numbered from i = 1 (base) to i = N (head). Each mechanism i is a class-2 tensegrity mechanism [START_REF] Skelton | Tensegrity Systems[END_REF] consisting of a bottom bar B 1i , a top bar B 4i , two crossed bars (B 2i and B 3i ) and two pretensioned springs. Note that the bottom bar of mechanism i and the top bar of mechanism i -1 are the same, namely, B 1i =B 4(i-1) . The first mechanism is fixed to the ground and all the rigid links and springs are connected to each other with perfect revolute joints. All the crossed bars have the same length L and all the top and bottom bars have the same length b, which means that the mechanism is an anti-parallelogram. In parallel to the left spring (resp. to the right spring), a tendon (not shown in figure 1) applies a force f li (resp. f r i ). The angle parameters are shown in figure 1. α = [α 1 , ..., α N ] is chosen as the vector of generalized coordinates, where α i is the angle between the bottom bar B 1i and the top bar B 4i . The other angles φ i and ψ i are useful for computation and can be expressed w.r.t α i (equation ( 1)) [START_REF] Van Riesen | Dynamic Analysis and Control of an Antagonistically Actuated Tensegrity Mechanism[END_REF].

B1 i B2 i B3 i B4 i l li , k li lr i , kr i φi ψi αi α i 2 γi (i -1) (i + 1) l (i-1)
φ i (α i ) = 2 arctan 2bL sin(α i ) + S (2b 2 + 2bL) [cos(α i ) + 1] (1a) 
ψ i (α i ) = 2 arctan -2bL sin(α i ) -S (2b 2 -2bL) [cos(α i ) + 1] (1b) 
with S = (-2bL sin(α i ))

2 + (-2bL [cos(α i ) + 1]) 2 -(2b 2 [cos(α i ) + 1]) 2 .
In order to have a generic formula, let γ i denote the angle of the base bar of the i th mechanism with respect to the horizontal axis:

γ i+1 = γ i + α i , i = 1, ..., N (2) 
Note that γ 1 , the orientation of the first mechanism, is given as a geometric parameter of the neck and depends on the bird specie.

Dynamic modelling

The Lagrange's equations for a multi-dof system are:

d dt ∂T ∂ αi - ∂T ∂α i + dV dα i + = Q i , i = 1, 2, ..., n dof (3) 
where T is the kinetic energy, V the potential energy, Q the generalized forces and n dof is the number of dof. In the next sections the kinetic and potential energy and the generalized forces used in (3) are derived to obtain the equation of motion in the following form:

M(α) α + C(α, α) α + G(α) = Q(α) (4) 
where M is the inertia matrix, such that T = 1 2 α M α, C is the matrix of coriolis effects that can be deduced from M [START_REF] Khalil | Modeling, identification and control of robots[END_REF], G is the vector of potential effects, G = dV dα ,and Q is the vector of generalized forces.

Kinetic energy and inertia Matrix

The inertia matrix for one mechanism is first computed. The local frame of mechanism i is located at the center x i , y i of the base bar with the x-axis along this bar, forming an angle γ i with the horizontal axis. Thus, the local frame of each mechanism is described by the three parameters x i , y i , γ i . The translational (resp. rotational) velocities are ẋi , ẏi (resp. γi ). Since the position and orientation do not affect the kinetic energy, x i , y i , γ i will not appear in the equation. The total kinetic energy of mechanism i is obtained by summation of the translational and rotational kinetic energy of the three movable links B 2i , B 3i and B 4i :

T i = 1 2 (m 2i v 2i 2 +I 2i ( φi + γi ) 2 +m 3i v 3i 2 +I 3i ( ψi + γi ) 2 +m 4i v 2 4i +I 4i ( αi + γi ) 2 ) (5)
where m ji and I ji are the mass and inertia of bar B ji and v ji is the velocity of body B ji CoM. The first (resp. second) term in every set of brackets corresponds to the translational (resp. rotational) kinetic energy. Note that by definition x i+1 = x 4i and y i+1 = y 4i . Let us define l 2 i = (x 4i -x i ) 2 + (y 4i -y i ) 2 . It can be shown that l i does not depend on γ i but it is a function of α i [START_REF] Furet | Kinematic analysis of planar tensegrity 2-X manipulators[END_REF]:

l i (α i ) = L 2 -b 2 cos( αi 2 ) 2 .
The absolute coordinates of the pose of the centre of mass of segments 2, 3, 4 are:

x 2i = x i -b 2 cos(γ i ) + L 2 cos(γ i + φ i ) (6a) 
y 2i = y i -b 2 sin(γ i ) + L 2 sin(γ i + φ i ) (6b) 
x 3i = x i + b 2 cos(γ i ) + L 2 cos(γ i + ψ i ) (6c) 
y 3i = y i + b 2 sin(γ i ) + L 2 sin(γ i + ψ i ) (6d) x 4i = x i+1 = x i -l i (α i ) sin(γ i + αi 2 ) (6e) 
y 4i = y i+1 = y i + l i (α i ) cos(γ i + αi 2 ) (6f) 
By differentiating (6) and using ( 5), the total kinetic energy of mechanism i can be written in the following form :

T i = 1 2 ẋi ẏi γi αi M i     ẋi ẏi γi αi     (7) 
with M i such that :

M i =     M xxi 0 M γxi M αxi 0 M yyi M γyi M αyi M γxi M γyi M γγi M αγi M αxi M αyi M αγi M ααi     (8) 
where:

M ααi =m 2i L 2 S 2 2i (αi) 4 + m 3i L 2 S 2 3i (αi) 4 + m 4i ( dli(αi) dαi ) 2 + l 2 i (αi) 4 + S 2 2i (α i )I 2i + S 2 3i (α i )I 3i + I 4i M γγi =m 2i b 2 4 + L 2 4 -bL 2 cos(φ i ) + m 3i b 2 4 + L 2 4 -bL 2 cos(ψ i ) + m 4i l 2 i (α i ) + I 2i + I 3i + I 4i M αγi =m 2i L 2 4 S 2i (α i ) -bL 4 S 2i (α i )cos(φ i ) + m 3i L 2 4 S 3i (α i ) -bL 4 S 3i (α i )cos(ψ i ) + m 4i l 2 i (αi) 4 + S 2i (α i )I 2i + S 3i (α i )I 3i + I 4i M αxi = -m 2i L 2 S 2i (α i )sin(γ i + φ i ) -m 3i L 2 S 3i (α i )sin(γ i + ψ i ) + m 4i dli(αi) dαi sin(γ i + αi 2 ) -li(αi) 2 cos(γ i + αi 2 ) M αyi =m 2i L 2 S 2i (α i )cos(γ i + φ i ) + m 3i L 2 S 3i (α i )cos(γ i + ψ i ) + m 4i dli(αi) dαi cos(γ i + αi 2 ) -li(αi) 2 sin(γ i + αi 2 ) M γxi =m 2i b 2 sin(γ i ) -L 2 sin(γ i + φ i ) + m 3i b 2 sin(γ i ) -L 2 sin(γ i + ψ i ) + m 4i -l i (α i ) cos(γ i + αi 2 ) M γyi =m 2i -b 2 cos(γ i ) + L 2 cos(γ i + φ i ) + m 3i -b 2 cos(γ i ) + L 2 cos(γ i + ψ i ) + m 4i -l i (α i ) sin(γ i + αi 2 ) M xxi =M yyi = m 2i + m 3i + m 4i with S 2i (α i ) = dφi
dαi and S 3i (α i ) = dψi dαi . Let us define a general transformation matrix R i linking [ ẋi , ẏi , γi , αi ] to the generalized coordinates [ α1 , ... αN ]. this transformation matrix will be useful to build the inertia matrix of the whole manipulator:

[ ẋi , ẏi , γi , αi ] = R i [ α1 , ..., αN ] (9) 
The translational and rotational velocities are calculated upon differenting eqs. ( 2), (6e) and (6f) with respect to time:

ẋi+1 = ẋi -l i cos(γ i + αi 2 ) γi + - dl i dα i sin(γ i + αi 2 ) - l i 2 cos(γ i + αi 2 ) αi (10a) ẏi+1 = ẏi -l i sin(γ i + αi 2 ) γi + dl i dα i cos(γ i + αi 2 ) - l i 2 sin(γ i + αi 2 ) αi (10b) γi+1 = γi + αi (10c) 
Since ẋ1 = ẏ1 = γ1 = 0, the first transformation matrix R 1 is:

R 1 =     0 0 0 4×(N -1) 0 1     (11) 
Matrix R i can be defined by an iterative procedure. Using (2), equation ( 10) is rewritten under the form below:

    ẋi+1 ẏi+1 γi+1 αi+1     =     ẋi ẏi γi αi     +     x γi y γi 0 0     ( α1 + ... + αi-1 ) +     x αi y αi 1 -1     αi +     0 0 0 1     αi+1 (12) with x γi = -l i cos(γ i + αi 2 ), x αi = -dli dαi sin(γ i + αi 2 ) -li 2 cos(γ i + αi 2 ) , y γi = -l i sin(γ i + αi 2 ), y αi = dli dαi cos(γ i + αi 2 ) -li 2 sin(γ i + αi 2 )
. Thus :

R i+1 = R i +         x γi y γi 0 0     × 1 1×(i-1)
x αi 0

y αi 0 0 4×(N -i) 1 0 -1 1     (13) 
The inertia matrix M of the whole manipulator can then be expressed as:

M = N i=1 R i M i R i (14) 
For more simplicity in this study, the Coriolis effects are neglected in the control law and need not be calculated (see section 4).

Potential energy for a stack of N mechanisms

The potential energy of one mechanism is composed of the potential energy due to the mass of the different bars, and the potential energy due to the springs:

V g i = g(m 2i y 2i + m 3i y 3i + m 4i y 4i ) (15a) 
V sp i = 1 2 k li (l li -l 0 ) 2 + 1 2 k ri (l ri -l 0 ) 2 (15b)
where l 0 is the free length of spring. The gravity and spring contribution to the equation of motion G can be written as :

G(α) = ∂V ∂α1 ... ∂V ∂αi ... ∂V ∂α N (16) 
Since the spring lengths depend only on the internal geometry of the i th mechanism (i.e α i ), each component of G is computed as follows :

G i = ∂V ∂αi = ∂ ∂αi N k=i V g k + ∂Vsp i ∂αi (17) 

Generalized forces

In this study, each mechanism is assumed fully actuated in an antagonist way, namely, a pair of tendons applies two positive forces f li and f ri in parallel to the left and right spring, respectively. The generalized forces vector Q defined in ( 3) is the torque associated to the generalized coordinate α :

Q = Z l f l + Z r f r ( 18 
)
with f l = [f l1 , ..., f lN ] , f r = [f r1 , ..., f rN ] , Z l and Z r are two diagonal matrices whose entries are respectivelydl li dαi anddlri dαi , i = 1, ..N .

Control

Each mechanism i has a desired trajectory α d i . Let α d be the vector of all those trajectories, and α the vector of the measured mechanism orientations. The control law is built from equation ( 4). Low velocities are assumed and the Coriolis effects are thus neglected: C = 0 N ×N . Thus, the desired torque Q d is:

Q d = M(α) αd + k d I N ( αd -α) + k p I N (α d -α) + G(α) (19) 
where k d and k p are the gains of the control law. The required forces f l and f r must satisfy:

Q d = Z l (α)f l + Z r (α)f r (20) 
The solution that minimizes the norm of the sum of the forces ||f l + f r || is chosen i.e. since forces must remain positive, for each mechanism one force is zero and the other one produces the motion. This dynamic control law is compared to a PD control law including G. For this control law, the desired torque is :

Q ld = M m k d I N ( αd -α) + k p I N (α d -α) + G(α) (21) 
where M m is a constant diagonal matrix built with the maximum of the diagonal elements of M for angular positions betweenπ 2 and π 2 . Thus, the lower the mechanism in the stack, the bigger the gains of the PD control law.

Simulation Results

Neck parameters

The manipulator studied is made of N = 9 identical mechanisms with L = 0.15 m and b = 0.1 m. The springs free length is defined as l 0 = L -b (which is the smallest length of the springs reached in the flat configurations α i = ±π). All bars are cylinders of diameter d = 0.01 m and made of ABS with a volumic mass 1050 kg/m 3 . Since most birds have an S-shape rest configuration of their neck, such a rest configuration is chosen for our manipulator. It is defined by

α rest = π 8 1 1 1 1 0 -1 -1 -1 -1 .
The base bar of the first mechanism makes an angle γ 1 = -π 4 with respect to the horizontal axis. Since the rest configuration is a stable equilibrium of the manipulator with zero-actuation forces, the two conditions below must be satisfied for each mechanism [START_REF] Van Riesen | Dynamic Analysis and Control of an Antagonistically Actuated Tensegrity Mechanism[END_REF]:

G i (α rest ) = 0 ∂Gi ∂αi (α rest ) ≥ K min (22)
Here, we choose K min = 1 N m/rad. The 2N = 18 equations in (22) are used to determine the 18 spring stiffnesses of the manipulator. Figure 2 shows the rest configuration and the spring stiffnesses obtained. Note that due to the effect of The minimal and maximal bounds of the actuation forces are defined as f min = 0 N (the tendons can only pull) and f max = 100 N , respectively.

Control results

Simulations are performed with Matlab and Working Model 2D c . Starting from its S-shape rest configuration, the manipulator is moved toward a straight configuration in five seconds where it is maintained straight during one second, and then returns to its rest configuration in five seconds. A skew sine displacement is defined between each desired configuration. It is worth noting that in the rest configuration, mechanism 5 has its equilibrium at α 5rest = 0, thus it does not need to move during the whole trajectory. The desired trajectories are shown in black in Figure 3.

Figure 3 shows the positions of the mechanisms during the simulations. The blue curve, which corresponds to the PD control law, is close to the reference curve, however oscillations appear. Here, the gains are k p = 38 and k d = 0.07. The main problem of the PD control law is that the gains cannot be too high due to the oscillations, otherwise the manipulator becomes unstable.

Nevertheless the dynamic control law works well with higher gains. The red curve shows the configurations obtained with the dynamic control law with k p = 625 and k d = 50. In this case, the error is very low, except for the last mechanism, which has a small delay with respect to the desired trajectory. This is because the centrifugal and coriolis effects are not compensated whereas they becomes predominant for this module. Here again, no oscillations appear (see a video at http://perso.eleves.ens-rennes.fr/people/benjamin.fasquelle/english/phd.html).

The forces applied with the dynamic control law on each mechanism are shown in Figure 4. Here, the bar masses and inertia as well as the velocities are quite law. Consequently, the generalized forces deriving from the potential energy G is the major part of the desired torque Q d . 

Conclusion

This paper proposed an original, efficient method for the derivation of the inertia matrix of a tensegrity manipulator made of several X-shape mechanisms in series. A local inertia matrix was defined for each mechanism. This matrix was parametrized with the absolute pose of the reference frame x i , y i , γ i and one unique variable α i defining the mechanism configuration. The complete inertia matrix was obtained in a simple way from the absolute coordinates of all mechanisms expressed as functions of the configuration variable α. Then, a dynamic control law was proposed for the tensegrity manipulator to track desired trajectories. It was shown that taking into account the inertia matrix, which accounts for the couplings between the individual mechanisms, allows for a reasonable damping of the shaking effects due to the inherent flexibilities, as well as for the use of sufficient gains for an acceptable system behavior.
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 1 Fig. 1: Parametrization of a stack of mechanisms.
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 2 Fig. 2: Position at rest of the mechanism and spring stiffnesses
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 3 Fig. 3: Position during the simulations. The Reference curve (in black) corresponds to the desired trajectory, the CL1 (in red) one is the result of the dynamic control law and CL2 (in blue) is the result of the PD control law including G.

Fig. 4 :

 4 Fig. 4: Forces applied during the movement.
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