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Abstract—Single diverging wave (DW) imaging produces ul-
trasound (US) images at high frame rate (ultrafast) but of low
quality. Conventional high-quality DW imaging relies on the
coherent compounding of multiple consecutive steered emissions,
which in turn reduces the gain in frame rate. Reconstructing
high-quality US images for ultrafast imaging using deep learning
techniques has recently raised a growing interest in the US com-
munity. We recently described a convolutional neural network
(CNN) architecture called ID-Net, which exploited an inception
layer devoted to the reconstruction of DW ultrasound images
using radio frequency (RF) data. We derive in this work the
complex equivalent of this network, i.e., the complex inception
for DW network (CID-Net), operating on in-phase/quadrature
(I/Q) data. We experimentally demonstrate that the CID-Net
yields the same image quality as that obtained from the RF-
trained CNN, i.e., using only three I/Q images, the CID-Net yields
high-quality images competing with those obtained by coherently
compounding 31 RF images.

Index Terms—Deep learning, complex convolutional neural
networks (CCNNs), ultrasound imaging, diverging wave, image
reconstruction.

I. INTRODUCTION

Ultrasound (US) images obtained from single diverging
wave (DW) emissions exhibit low image quality. A conven-
tional reconstruction approach consists in coherently com-
pounding series of ultrasound signals from steered DW trans-
missions [1], at the expense of frame rate, data volume, and
computation time. Recently, there has been a growing interest
in applying deep learning techniques to improve US imaging.
Most of the existing studies operate on radio frequency (RF)
signals [2], while modern ultrasound systems typically sam-
ple the complex in-phase/quadrature (I/Q) baseband signals
instead of RF signals. Thus in this work, inspired by the study
of Trabelsi et al. [3], we propose to extend the deep learning-
based US imaging to the complex domain using complex
convolutional neural networks (CCNNs).

We present the complex inception for DW network (CID-
Net) constructed with the complex building components intro-
duced in [3], for high-quality DW image reconstruction from
I/Q data. CID-Net is derived from our prior work [4], [5],
inception for DW Network (ID-Net), which has demonstrated
the ability to reconstruct high-quality DW images from RF
data. We provide experimental evidence that the CID-Net
yields the same image quality as that obtained from the
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Fig. 1. Block diagram of complex convolution. The orange, blue, and green
blocks denote the convolution kernel W , input data X , and output data Z.
Both the data and kernel are formed as the concatenation of two real-valued
matrixes, each representing the real (denoted as solid blocks) and imaginary
(denoted as dotted blocks) parts.

RF-trained CNN, and an image quality competing with the
coherent compounding of 31 DWs.

II. METHODS

The DW image reconstruction is modeled as an image
input-output problem where the objective is to estimate a
high-quality image Ŷ using I/Q data X obtained from m
DW transmissions. We propose to use the CID-Net with
trainable complex-valued parameters Θ to seek for the op-
timal compounding operation Ŷ = F(X ;Θ), with respect to
the high-quality target images Y obtained from the coherent
compounding of n (n� m) DWs.

A. Complex Convolution

As depicted in Fig. 1, we used real-valued matrixes to
represent the real and imaginary components of complex data,
and performed complex convolution using real-valued arith-
metic. We consider a complex-valued data matrix X =Xr+ jXi,
where j =

√
−1 is the imaginary unit, while Xr = Re(X)

and Xi = Im(X) are the real and imaginary components of
X respectively. Likewise, we represent the complex-valued
weight of a convolution kernel as W =Wr + jWi. We convolve
W with X as

Z =W ∗X = (Wr + jWi)∗ (Xr + jXi). (1)

Considering the distributive property of convolution, the com-
plex convolution is represented with four real convolutions as

Z = (Wr ∗Xr−Wi ∗Xi)+ j(Wr ∗Xi+Wi ∗Xr). (2)
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TABLE I
ARCHITECTURE OF PROPOSED NETWORK

layer type
feature size kernel size nb. of

channel × height × width height × width kernels

inputs m×h×w - -
convolution 32×h×w 9×3 128
convolution 16×h×w 17×5 64
convolution 8×h×w 33×9 32

inception 4×h×w

41×11 4
49×13 4
57×15 4
65×17 4

convolution 1×h×w 1×1 4

Thus the mathematical relation between real and imaginary
components is fully reflected in this representation.

B. Network Architecture

We constructed the CID-Net using the complex convolution
blocks described in Section II-A. The CID-Net maintained
the architecture of ID-Net, which was devoted to the re-
construction of DW ultrasound images from RF data. The
architecture was a fully convolutional network composed of
five complex convolution layers with maxout activation units.
Particularly, the second last layer was an inception layer
consisting of multi-size convolution kernels. As demonstrated
in [4], the inception layer used in conjunction with maxout
activation units allowed features from multiple receptive field
sizes to be captured, which contributed to dealing with the
specific geometry of DW. A more detailed specification of the
architecture is provided in Table I.

III. EXPERIMENTS

A. Dataset Acquisition

We performed steered DW acquisitions using a Verasonics
system research scanner (Vantage 256) equipped with an ATL
P4-2 probe (bandwidth: 2-4 MHz, center frequency: 3 MHz).
The acquisition planes were obtained by continuously moving
the probe on the surface of target areas, at an imaging rate of
50 frames/s and a packet size of 250 frames. Each acquisition
plane was obtained using 31 steered DWs spanning ±30◦ in
2◦ steps. The received raw data were I/Q demodulated, then
downsampled by a factor 2 and beamformed using a delay-
and-sum (DAS) to produce the beamformed I/Q data. The
input X of CID-Net were made up of m = 3 I/Q images
corresponding to steering angles (-20◦, 0◦, and 20◦), while
the reference images Y were the compounding of all n = 31
I/Q images. The data used in the experiments corresponds
to 7500 (X , Y ) samples. Specifically, 1500 in-vivo samples
were acquired from three healthy subjects (thigh muscle, finger
phalanx, and liver regions), and 6000 in-vitro samples were
acquired from two phantoms (Gammex, model 410SCG, and
CIRS, model 054GS). From the 7500 (X , Y ) samples, 5000
samples were used as the training set and 1250 samples were

used as an independent validation set. The remaining 1250
samples were used for testing.

B. Training Implementation

The training was implemented with Pytorch [6] library
on an NVIDIA Tesla V100 GPU with 32 Gb of memory.
Specifically, the network weights were initialized with the
Xavier initializer [7]. Mean squared error (MSE) was used
as the training loss and minimized using mini-batch gradient
descent with the Adam optimizer [8]. The batch size was set
to 16, and the initial learning rate was set to 1×10−4. During
the training process, the learning rate was halved if there had
been no decrease in the validation loss for 20 epochs, and
40 epochs without validation loss reduction would end the
training, resulting in training time of two days.

C. Evaluation Metrics

We used contrast ratio (CR), contrast-to-noise ratio (CNR),
and lateral resolution (LR) to quantitatively evaluate the per-
formance of the proposed network.

CR and CNR were used to measure the contrast between
the object of interest and the surrounding background.

CR =−20log10
µt

µb
, (3)

CNR = 20log10
|µt −µb|√

σ2
t +σ2

b

, (4)

where µt and µb (σ2
t and σ2

b ) denote the means (variances)
of the intensity within the target region and the background.
The CR and CNR were measured on two cysts (in the near
field at 40-mm depth and the far field at 120-mm depth) of
the images obtained from the Gammex phantom.

LR was used to assess the width of the point spread function
from point target images. The full width at half maximum was
used in this work to assess the LR. The LR was measured on
0.1-mm nylon monofilaments (in the near field at 20-mm and
40-mm depth, the middle field at 60-mm depth, and the far
field at 80-mm, 90-mm, and 100-mm depth) of the images
obtained from the CIRS phantom.

IV. RESULTS

Fig. 2 displays the B-mode images of the representative in-
vivo samples, obtained from RF data using the compounding
method and ID-Net, as well as the image obtained from I/Q
data using the CID-Net. It can be observed that the ID-Net
and CID-Net both produced better image quality than that of
the compounding with the same three DWs, yielding images
visually very close to the reference image.

We report in Table II the CR, CNR, and LR reached by
the compounding method, CID-Net, and ID-Net. CID-Net
and IDNet obtained approximately the same values in all
evaluation metrics, while providing slightly lower values in
CR and CNR, and lower values in LR than those associated
to the reference.



TABLE II
EVALUATION METRICS OF COMPOUNDING METHOD, CID-NET, AND ID-NET [4].

model
CR [dB] CNR [dB] LR [mm]

near field far field near field far field near field middle field far field

compounding (3 DWs) 12.24 10.54 2.94 3.02 1.05 1.54 1.94
CID-Net (3 IQ images) 21.51 18.24 8.10 6.35 1.05 1.67 2.08
ID-Net (3 RF images) 21.47 18.48 8.11 6.32 1.06 1.67 2.04

compounding (31 DWs) 21.74 18.85 8.20 6.45 1.13 1.76 2.20

(a) (b)

(c) (d)

Fig. 2. B-mode images obtained with (a) compounding of 3 DWs, (b) CID-Net, (c) ID-Net [4], and (d) compounding of 31 DWs (reference), acquired from
in-vivo scans (thigh muscle).

V. CONCLUSION

We proposed a complex convolutional neural network
(CCNN), CID-Net, for fast and high-quality diverging wave
(DW) imaging. The network was trained to learn a com-
pounding operator for reconstructing high-quality images from
I/Q data obtained with a small number of DW transmis-
sions. Experimental results showed that the proposed CID-Net
yielded the same image quality as the real equivalent CNN
trained with RF data, and an image quality competing with
the coherent compounding of 31 DWs. The proposed work
will provide motivation to explore CCNN-based approaches
for US imaging applications.
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