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ABSTRACT 

Galectins (Gal) are a family of glycan-binding proteins characterized by their affinity for β–

galactosides. Galectin-1 (Gal-1), a dimeric lectin with two galactoside-binding sites, regulates 

cancer progression and immune responses. Coordination chemistry has been engaged to 

develop versatile multivalent neoglycoconjugates for binding Gal-1. In this study we  report  a 

fast and original method to synthesize hybrid gold nanoparticles in which a hydrochloride-

lactose-modified chitosan, named CTL is mixed with  dicarboxylic acid-terminated 

polyethylene-glycol (PEG), leading to shell-like hybrid polymer-sugar-metal nanoparticles 

(CTL-PEG-AuNPs). The aim of this paper, is to preliminary study the interaction of the CTL-

PEG-AuNPs with a target protein, namely Gal-1, under specific conditions. The molecular 

interaction has been measured by Transmission Electron Microscopy (TEM), UV-Vis and 

Raman Spectroscopy on a large range of Gal-1 concentrations (from 0 to 10
-8 

M). We 

observed that the interaction was strongly dependent on the Gal-1 concentration at the surface 

of the gold nanoparticles. 
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Introduction 

Gold nanoparticles (AuNPs) are used in various fields as medical nanovectors, transducers or 

nanosensors
1
. The research on new synthesis methods is still an active field in order to 

optimize the AuNPs properties for such applications
2,3,4

. In a  previous study we have 

investigated a fast synthesis method to realize polymer-modified AuNPs using dycarboxylic 

PEG, collagen or bisphosphonate (BPO) as stabilizers in order to demonstrate high stability 

and efficacy under realistic biomedical conditions
5,6,7,8

. Other authors have synthetized hybrid 

metal nanoparticles based on chitosan and chitosan-derivatives as sugar stabilizers for various 

applications in the field of the nanomedicine
9,10,11,12,13

. 

Lactose-modified chitosan, shortly termed CTL (in other papers termed Chitlac), is a 

branched polysaccharide synthetized via reductive N-alkylation of primary amines by lactose 

moieties (Figure S1 in Supporting Information)
14

. CTL is a ternary heteropolysaccharide 

composed of β-1→4 linked glucosamine (D unit), N-acetyl-glucosamine (A unit) and N-lactit-

1-yl glucosamine (L unit) sugars. The presence of lactose residues grafted on the chitosan 

backbone ensures some advantages with respect to the original polymer, such as a higher 

solubility at neutral pH than most of commercial chitosans, a miscibility with polyanions to 

form soluble complexes without associative phase separation, and the possibility to form gels 

upon mixing with boric acid as cross-linker under physiological conditions of pH and 

osmolarity
15

. From the biological point of view, it has been proven that CTL fosters  the 

aggregation of an osteoblast-like cell line in vitro, stimulates the cell proliferation and 

enhances the alkaline phosphatase activity
16

. Contextually, the aggregation of chondrocytes 

and the stimulation of collagen and glycosaminoglycans production was also 

demonstrated
17,18

. It was found that the bioactivity of CTL is ascribed to the specific 

interaction between the lactitol groups of the polymer and the β-galactoside-binding protein 

Galectin-1
19,20

. 



Galectin-1 (Gal-1) is a protein differentially expressed in various normal and pathologic 

tissues and displays a wide range of activities in biological processes. Increased Gal-1 

expression has been reported in different tumors such as colon, breast, lung, head and neck, 

ovarian, prostate carcinomas and Hodgkin lymphoma
21,22,23,24,25,26,27

. The expression of this 

protein in various cancer cells appears to affect tumor progression steps, mainly angiogenesis, 

apoptosis, cell migration and metastatic spread. It has been recently demonstrated that Gal-1 

overexpression positively correlates to tumor aggressiveness, poor patients’ survival and 

prognosis
28

. Several studies identify this lectin as a promising therapeutic and prognostic 

marker in cancer
29

. Topologically, Gal-1 represents a particularly interesting challenge for 

targeting with synthetic, multivalent ligands
30

 since it is a rigid dimer
31

 with two binding sites 

oriented in opposite directions. The positions of the binding sites compete with each other at 

linear distance up to 6 nm. Since the main biological targets of Gal-1 reside on the cell 

surface, one strategy for targeting Gal-1 is to use structures that mimic the fluidity and 

adaptability of cellular membranes. Detecting and identifying this protein in biological media 

can be then of primary importance. However, its specific recognition needs the interaction 

with a bioreceptor providing a high affinity with Gal-1. The bioreceptor must be grafted at the 

surface of sensing transducer that could induce a modification of its affinity with the analyte 

to be detected. Most of methods used to detect biomolecules require strict molecular 

recognition events
32

. In these latter cases, grafted biomolecules at the AuNP surface can act as 

bioreceptors having a high affinity for the targeted analytes
33

. The analyte target detection 

depends on the affinity constant of the bioreceptor to the targeted analyte
34

. The goal of the 

present paper is to preliminary investigate the possibility to exploit the interaction between 

CTL and Gal-1 for the development of a nanocarrier system based on CTL-decorated AuNPs 

for the detection and the tracking of the lectin protein. 



We would like to understand if the grafting will modify the interaction and thus if some 

parameters can be optimized in order to improve this interaction in terms of sensing purpose. 

The specific binding affinity between CTL and Gal-1 was as certained and quantified by 

means of Surface Plasmon Resonance. Shell-like hybrid CTL-PEG-gold nanoparticles (CTL-

PEG-AuNPs) were synthesized and characterized. The interaction between Gal-1 and CTL-

PEG-AuNPs was then investigated using Localised Surface Plasmon (LSP), Transmission 

Electron Microscopy (TEM) and Raman spectroscopy as analytical tools.  

 

RESULTS AND DISCUSSION 

CTL-Galectin 1 binding affinity 

In a previous paper
1
, we evidenced experimentally for the existence of the interaction between 

the polymer CTL and the lectin Gal-1 able to induce specific biological responses.  

Herein, the Surface Plasmon Resonance (SPR) technique was exploited to demonstrate in 

vitro the presence of a molecular interaction between Gal-1 and CTL and the equilibrium 

binding constants were calculated. To this aim CTL was immobilized on the chip via 

amidation chemistry. SPR signals were recorded using different concentrations of Gal-1 and 

corrected for the contribution of the solvent as shown in Figure S3 in Supporting Information. 

SPR analysis performed on non-derived polysaccharide (chitosan) allows clearly of deducing 

that the specific interaction exists only in the case of CTL (data not shown). Interestingly, for 

CTL the SPR signal for concentrations of Gal-1 equal to or greater than 1 μM does not seem 

to reach a constant value, indicative of the achievement of a steady state. On the contrary, in 

the time interval in which the plateau would be expected, the signal increases linearly with 

slopes increasing with Gal-1 concentrations. 

The analysis of the kinetic data (see Supporting Information) were carried out by 

adopting a model unimolecular (1:1) for the protein-substrate system providing the values of 



the kinetic association constant (ka = 6 x 10
3
 M

-1
s

-1
) and kinetic dissociation constant (kd = 6 x 

10
-2

 M
-1

s
-1

) of the complex. The calculated affinity constant, defined as KA = ka / kd, was 1 x 

10
5
 M

-1
. The affinity constant was also calculated independently using the steady state values 

of the temporal trace at the different protein concentrations. The value of KA obtained from 

the kinetic data was comparable with those obtained from the responses to equilibrium: 1 x 

10
5
 M

-1 
in the first case and 4 x 10

5
 M

-1
 in the second one. 

Gal-1 binds relatively strongly to CTL, in fact the calculated affinity constant (1 x 10
5
 M

-1
) is 

stronger than that reported in literature by Miller et al. for the binding of Gal-1 with the 

disaccharide lactose (Gal-β(1→4)-Glc)
36

. The multivalent structure of CTL may contribute to 

this high analogy for Gal-1, something that is viewed  with many cell-surface glycoconjugates 

that bear multiple galectin-binding sites
37

 
38

.  Moreover this value is in the same range of 

values reported for the affinity constants for binding to both linear and complex branched 

glycans bearing terminal β(1→4)-linked galactose side chains
39

.   

 

Formation mechanism of CTL-PEG AuNPs  

In the last years Spadavecchia et al. have extensively investigated the synthesis of hybrid 

nanoparticles and the effect of various surfactant agents on the growth process
5-6

. Recently 

Furlani-Sacco et al. have developed colloidal coacervates using the bioactive chitosan-

derivative CTL by ionotropic gelation
11

. Contextually, other authors have designed a 

nanocomposite hydrogel based on natural polysaccharides, CTL and gold nanoparticles with 

considerable antimicrobial activity
20

. 

 



 

Scheme 1. Representation of the synthesis of CTL-PEG-AuNPs (Please note that drawings are not in 

scale and are not intended to be representative of the full samples composition). 

 

After demonstrating the existence of a high binding affinity between CTL and Gal-1, the 

objective of this paper was to evaluate the interaction between Gal-1 and CTL under 

formation of stable complexes of PEGylated Au (III)-CTL as active excipients of gold 

nanoparticles. The major discrepancy with other chemical procedures, is that PEG and CTL b 

participate to the stabilization of AuNPs via complexation between their ketone and amino 

groups with chloride auric ions. In our case, the formation of gold NPs from AuCl4
-
 

comprehends the subsequent steps (scheme 1): 

(1) Complexation of PEG with AuCl4
-
 and initial reduction of the polymer-metal complex 

to generate gold cluster
7
. 

PEG-COOH
Stacking

Gold Salt 

CTL-PEG-AuNPs

NaBH4

Chitlac
Stacking

Au

: AuCl4
-

: PEG-COOH

: Chitlac

: Chit-AuCl2
-



(2) Stacking process of CTL by electrostatic adsorption onto the PEGylayed gold clusters. 

(3) Final reduction of metal ions at the vicinity of the clusters, growth of AuNPs and 

colloidal stabilization through the dicarboxylic PEG and CTL polymers. 

In the first step, PEG dicarboxylic acid (PEG) is added into HAuCl4 aqueous solution, to 

complex with it as previously described 
6-7

. In the second step, the positively amino charged (-

NH3
+
 and -NRH2

+
) groups  of CTL in water solution,  favor  strong electrostatic interactions 

with the negatively charged complex PEG-AuCl4
-
, the latter playing  a strategic role in the 

growth process of AuNPs
6
. The addiction of CTL in the PEG-AuCl4

- 
solution increases the 

kinetics of reduction by a further complexation with the Au ions
6
. Such effect controls the 

simultaneous chemical and steric arrangement of CTL and PEG between AuCl4
-
 on the 

surface of gold seeds during the growth process of nanoparticles. In the third step, the 

reduction by NaBH4 induces the grow process of hybrid nanoparticles. 

All products were entirely characterized by UV-Vis absorption spectroscopy, TEM and 

Raman spectroscopy. The UV-visible spectrum of CTL-PEG-AuNPs was characterized by a 

surface plasmon band at 530 nm and a peak at 234 nm assigned to the CTL-PEG absorption 

(Figure 1-A; Figure S4 in Supporting Information), which confirms the formation of AuNPs. 

In addition, the bright violet-blue color of the resulting nanoparticles and the UV-Vis spectra 

remained unaltered after six months at room temperature validating the realization of stable 

colloidal solution. 

Representative TEM images of the colloidal solutions are shown in Figure 2 panel B. CTL-

PEG-AuNPs exhibit a thin distribution in size and shape, with an average size of 20 ± 0.5 nm 

as estimated from 450 particles on a given TEM image. Anyway, some of the particles 

showed a somewhat faceted shape as a result of their nano-crystalline nature. Spadavecchia et 

al. have studied the synthesis of analogous nanomaterials using dicarboxylic PEG
5-6, 8, 35,40

  

obtaining PEG-AuNPs with a smaller size, i.e.  about 6.7 ± 0.5 nm
8
. On the basis of previous 



studies 
8, 35, 40

 we assumed that, when CTL was added to the complex with the PEG-AuCl4
-
, 

the chemical and steric arrangement between PEG and CTL influences the final size of the 

nanoparticles. 

The Raman spectra of free CTL and CTL-PEG-AuNPs in water exhibit many bands in 

the region 500-2000 cm
-1 

(Figure 1-C). The wide band observed around 1600 cm
-1

 on the 

CTL-PEG-AuNPs of raman spectra, is assigned to the water. One of the raman fingerprint of 

the CTL-PEG-AuNPs is the presence of a band around 263 cm
-1

 and a double peak at 446-485 

cm
-1 

disappeared. These bands can be assigned to the gold chloride stretches, ν (Au-Cl), and δ 

(OAuO) in aliphatic chains, and is a clear evidence of the formation of a complex between 

AuCl2
-
 and PEG and CTL in solution. The common peak at 430 cm

-1
 is due to the vibrations δ 

(OH…O), ν (OH…O) of the PEG. Based on the spectrochemical and previously theoretical 

results, we assumed that Au
3+

 ions promoted the deprotonation of the PEG
35

 . The spectra of 

PEG molecules free as control was previously described in literature
35

 
8
 (Figure S1-A in 

Supporting information).Only few bands remain as the two bands around 1000 cm
-1

 and the 

one around 1620 cm
-1

. The other ones are less intense or completely disappeared. For 

instance, the strong band at 1375 cm
-1

 assigned to C=O carbonyl stretching of CTL disappears 

after formation of gold nanoparticles. A double peak at 1065-111 cm
-1

 due to C-O-C 

stretching in backbone of CTL disappears after PEG stacking onto gold nanoparticles. 

Furthermore, new bands also appear as an intense triplet at 1211-1243-1289 cm
-1

 due to C-O 

plane deformation of carboxylic acid and a strong peak at 1471 cm
-1

 assigned to ν C-C 

stretching. These bands are due to the  variation of the steric conformation of the polymers 

and become more prominent upon complexation, as described previously
35,40

. 

 

 



 

Figure 1. (A) Normalized UV-Vis absorption spectrum of CTL-PEG-AuNPs, (B) TEM images of 

CTL-PEG-AuNPs, and size distribution histogram (B’). (C) Raman spectrum of CTL-PEG-AuNPs 

(red line) compared to free CTL spectrum as control (black line). (A-B) Scale bars: 100 nm. (C) 

Raman spectra. Experimental conditions: λexc = 785 nm; laser power 20 mW; accumulation time 180 s. 

 

Galectin Active Interaction 

Galectins are a family of glycan-binding proteins qualified by their affinity for β-galactosides 

and the presence of typical carbohydrate recognition domains (CRDs)
41

. Several studies have 

shown that the linker’s role, responsible for  the intramolecular interactions of CRDs, is 

associated with the ability to induce a specific biological response
42

. For these reasons, 

galectins are hopeful candidates as diagnostic markers and novel drugs targets for human 

diseases
43,44,45

.  

CTL-PEG-AuNPs were used as building blocks to observe the biomolecular interaction with 

Galectin-1 (Gal-1) as protein that plays a key role in some biological processes. In order to 

(%
)



achieve the mechanism of interaction between Gal-1 and CTL-PEG-AuNPs, Gal-1 proteins 

were incubated at different concentrations in the AuNPs solutions (scheme 2). Gal-1 interacts 

through high binding affinity with CTL as showed by SPR measurements. The protein 

interaction   with CTL-PEG-AuNPs was evaluated by UV-visible absorption (Figure 2). As a 

matter of fact, the extinction spectrum of the AuNPs is characterized by the plasmon 

resonance that is strongly dependent on the AuNPs environment, especially to any 

modification of the local dielectric constant. As a consequence, when Gal-1 interacts with 

CTL-PEG-AuNPs, it will modify the local environment, thus inducing a shift of the plasmon 

band. When Gal-1 was added to CTL-PEG-AuNPs in the range from 1 µM to 1 pM, we 

observed a dynamic variation of the plasmon position and width depending on the Gal-1 

amount. Lowering the concentration of protein from 1 µM to 1 pM, we observed that the 

plasmon band red-shifted with a decrease of its width. Therefore, we assumed that the 

grafting of Gal-1 onto CTL-PEG-AuNPs surface induced some agglomeration of the 

nanoparticles due to the interaction with Gal-1 at the gold surface. The weak red shift and the 

decrease of the plasmon band can then be explained by a lower nanoparticle aggregation and a 

dissociation of agglomerates after the addition of Gal-1 at a concentration of 1 nM (scheme 

2). It means that from 1 µM up to 1 pM, Gal-1 interacts with the CTL-PEG-AuNPs inducing 

very small changes on the plasmon band (modification of the dielectric constant around the 

AuNPs with the addition of Gal-1 proteins and maybe few dissociations). At concentrations 

higher than 1 nM, a large number of Gal-1 proteins are expected to interact with the CTL-

PEG-AuNPs forming a Gal-1 monolayer at the AuNPs surface. From 1 nM, the number of the 

Gal-1 is then large enough to prevent any interactions between the proteins on CTL-PEG-

AuNPs, thus inducing the dissociation of the nanoparticle agglomerates. Hence, at these 

concentrations we observed a blue shift of the peak due to the CTL-PEG layer from 234 nm to 

217 nm (Figure 2A’) with the consequent decrease of the plasmon band. This effect can be 



due to the formation of a shell of proteins adsorbed onto the CTL-PEG-AuNPs that 

incessantly exchange with CTL at high concentration of Gal-1 in the environment. With the 

saturation of the surface of the AuNPs, we can suppose that it could induce a better 

orientation of the Gal-1 or a change of its conformation due to chemical hindrance and also 

due to protein conformation changes. The evolution of the CTL-PEG-AuNPs plasmonic 

bands versus the Gal-1 concentration is displayed in Figure 2B. 

 

 

Scheme 2. Schematic representation of interaction mechanism of Galectin-1 onto CTL-PEG-AuNPs 

(A) and subsequent conformational change of galectin molecules under specific concentrations of 

protein (B) (Please note that drawings are not in scale and are not intended to be representative of the 

full samples composition). 

 

 



  

 

Figure 2. A) UV-Vis absorption spectra in the range 200-900 nm of CTL-PEG-AuNPs before (black 

line) and after (red line) interaction of Galectin-1 (from 1 µM to 1 pM) under straight condition (NaCl 

0.9%); A’) Enlargement of UV-Vis absorption spectra in the range 200-400 nm of CTL-PEG-AuNPs 

before and after interaction of Galectin-1. B) Evolution of the CTL-PEG-AuNPs plasmonic bands 

versus the Gal-1 concentration.  

 

The protein interaction with CTL-PEG-AuNPs was also characterized by TEM. Such 

bioconjugates have a spherical shape (Figure 3A-B) with a diameter close to 20 nm. 

Following Gal-1 interaction onto CTL-PEG-AuNPs, we observed characteristic linear chain 

likely (Figure 3B-B’) objects, due to the preferential location of CTL-PEG and Gal-1 onto the 

particle surface.  

(µM)



 

Figure 3. TEM images of CTL-PEG-AuNPs before (A-A’) and after interaction of Galectin-1 (B-B’). 

Scale bars: 100 nm; 20 nm (low A-B and high B-B’ magnification). Directional arrows showing a 

metal core of around 20 nm and suggesting the presence of an organic CTL-PEG layer of few 

nanometers. 

 

The Gal-1 interaction was confirmed by DLS and Zeta potential measurements (Table S1 in 

Supporting Information). The hydrodynamic diameter of CTL-PEG-AuNPs  was slightly 

higher (about 5 nm) than the radius determined by TEM analyses. This discrepancy should 

take into account the overestimation of the hydrodynamic diameter due to the surrounding 

water molecules. Besides, the  -potential measurements show that CTL-PEG-AuNPs and 

Gal-1 CTL-PEG-AuNPs were colloidally stable at physiological pH ( -potential = -29 ± 2 

mV, for CTL-PEG-AuNPs and -25 ± 1 mV for Gal-1 CTL-PEG-AuNPs with a PDI equal to 

0..3± 2).  

5 nm 5 nm

100nm

A) A’)

B) B’)



The stability of CTL-PEG-AuNPs and Gal-1 CTL-PEG-AuNPs was verified in solution by 

visualizing the Localized Surface Plasmon (LSP) band at 530 nm. The analysis was carried 

out at pH 4 and electrolytic conditions up to 3 months. The synthesized CTL-PEG-AuNPs and 

Gal-1 CTL-PEG-AuNPs showed an almost negligible change in the LSP band position in the 

timeframe investigated (Figure S2A-B in Supporting Information). The LPS band intensity 

was almost constant in the first 15 days of incubation, thus indicating the perfect stability of 

the systems. A slight (tolerable) reduction of LPS band intensity was noticed at 1 month. If 

the incubation is prolonged up to 3 months, a marked reduction of the absorbance was 

detected for both CTL-PEG AuNPs and Gal-1 CTL-PEG-AuNPs, thus suggesting that the 

systems were almost unstable for long storage purposes.   

The successful interaction of Gal-1 onto CTL-PEG-AuNPs surface was  established by 

Raman spectroscopy at different Gal-1 concentrations (Figure 4). The detection of the 

fingerprint of CTL and PEG-COOH at the AuNPs surface was demonstrated through the 

observation of the Raman bands at 1137 cm
-1

, 1270 cm
-1

, and 1455 cm
-1

 due to the vibration 

of C-O-H, C-O-C and C-O chemical groups, respectively (Figure 4A-A’). After the Gal-1 

binding, the amide II (1587-1620 cm
- 1

) and amide III (1200-1300 cm
- 1

 regions), as well as 

modifications in protein local environments, confirmed the protein interaction (Figure 4A-

A’). When the protein concentration decreased from 500 nM to 1 pM, the fingerprint of amide 

band was masked by water peak at 1600 cm
-1

 due to the ionic environment. 

 

 

 

 

 



  

Figure 4. A) Raman spectra of the CTL-PEG-AuNPs (red line) and Gal-1 CTL-PEG-AuNPs 

(Galectin-1 concentration range 1 µM - 1 pM) compared to free CTL (black line). A’) Zoom raman 

spectra of Gal-1 CTL-PEG-AuNPs from 1 µM to 500 nM; directional arrows show the characteristic 

peaks during protein interaction. Experimental conditions: λexc = 785 nm; laser power 20 mW; 

accumulation time 180 s. 

 

By evaluating the Raman results it was possible to confirm that the chemical and steric 

conformation of Gal-1 depend on molecule concentration,that influences in turn the 

bioconjugation with CTL-PEG-AuNPs. In fact, the self-assembly of the Gal-1 on the CTL-

PEG-AuNPs will take place due to their great packing density as well as to the forces 

repulsion between the negatively charged Gal-1
30,46

. However, the self-assembly of the Gal-1 

on the CTL-PEG-AuNPs from 1 µM to 1 nM puts in evidence amide bands; in the presence of 

lower Gal-1 concentrations (from 1 µM to 1 pM) amide bands progressively disappear. This 



phenomenon is probably due to the swelling of polymers in water that interferes with protein 

steric conformation at low concentration. Similar analyses of Gal-1 interaction (UV-Vis and 

Raman) (Figure S5 in Supporting Information) were carried out in the presence of PEG-

AuNPs as control, under the same experimental conditions, confirming the selectivity of 

interaction between CTL-PEG-AuNPs and Gal-1. In fact, after incubating PEG-AuNPs and 

Gal-1 at maximal concentration (1 µM), we did not observe any signal variation. 

 

Selectivity of Galectin versus CTL-PEG-AuNPs: 

To confirm the selectivity of Gal-1 versus CTL, a preliminary test in the presence of collagen 

type I was carried out. Collagen (Col), is one of the several structural proteins in the 

extracellular matrix (ECM), over expressed in many type of cancer. For this purpose it has 

been entirely used in biomedical and biomaterial applications
47

. Col solution and Col/Gal-1 

mixture solution were incubated at room temperature with CTL-PEG-AuNPs at 1 µM for 18 

h, and the interaction was monitored by UV-Vis and Raman spectroscopy.  

Figure 5A shows a shift of the plasmon position from 530 nm before interaction (black line) 

to 539 nm after the binding (red line) with the Col/Gal-1 mixture. A weak widened peak at 

640 nm is probably due to agglomeration between gold particles after the capture of the 

protein at the particle surface due to modification of the surface charges. 

The protein interaction was confirmed by Raman spectroscopy. After the Col-Gal-1 

interaction onto CTL-PEG-AuNPs, the Raman spectrum is perfectly equivalent to Raman 

spectra related to single Gal-1 interaction onto CTL-PEG-AuNPs. Indeed the amide II (1587-

1620 cm
-1

) and amide III (1200-1300 cm
-1

 regions), confirmed that the Gal-1 protein is 

effectively captured at the AuNPs surface (Figure 5B). Moreover, the spectroscopical 

fingerprint of collagen is not observable. In order to assume the success of this analysis, we 

checked the interaction of Col free onto CTL-PEG-AuNPs as control (Figure S6A-B in 



Supporting Information), under the same experimental conditions. Figure S6 puts in 

evidence that, when Col was added to CTL-PEG-AuNPs, a negligible blue shift was observed 

in UV-Vis Spectra at 1 pM probably due to the chemical exchange between Col and PEG 

onto AuNPs surface (Figure S6A red line). However, at 1 µM, we noticed a decreased and 

widened peak, with a strong red shift at 680 nm due to the aggregation of AuNPs. The 

comparative Raman spectra at 1 pM (red line) and 1 µM (blue line) (Figure S6 B in 

Supporting Information), did not show any remarkable spectroscopical modification. This 

means that there was no capture of the Col at the AuNPs surface even at high concentration of 

Col. We thus can conclude that the CTL-PEG-AuNPs surface selectively interacts with the 

Gal-1.  

 

Figure 5. (A) Normalized UV-Vis absorption spectrum of CTL-PEG-AuNPs before (black line) and 

after (red line) incubation with a mixture of Collagen (I) and Gal-1 at 1 µM, (B) Raman spectrum of 

CTL-PEG-AuNPs (red line) after interaction with a mixture of Collagen (I) and Gal-1 at 1 µM, 

compared to free CTL-PEG-AuNPs spectrum as control (black line). Raman spectra experimental 

conditions: λexc = 785 nm; laser power 20 mW; accumulation time 180 s. 

 

 

 



CONCLUSIONS 

In this paper, we studied for the first time the bio-interaction between Galectin-1 and CTL-

PEGylated gold nanoparticles. The analysis of the UV-visible and Raman spectra, allowed us 

to highlight the formation of agglomerates due to high binding affinity between Gal-1 and 

CTL onto gold nanoparticles. We observed some dissociation for specific Gal-1 

concentrations giving evidence of the interaction of the protein with the CTL by SPR 

experiments. This paper allows the way to a better understanding of the interaction 

mechanism (chemical structure modifications, kinetic interaction) and to the sensing 

optimization since the detection sensitivity is directly related to the affinity of the bioreceptor 

to the analyte. Further investigations are further needed to assess the in vitro and in vivo 

selectivity of the present system toward different cancer models. 

 

Materials and methods 

Materials 

Tetrachloroauric acid (HAuCl4), sodium borohydride (NaBH4), dicarboxylic PolyEthylene 

Glycol (PEG)-600 (PEG), Sodium Chloride NaCl (0.9%) phosphate-buffered solution (PBS), 

collagen type I were all provided by Sigma Aldrich at maximum purity grade. Recombinant 

Human Galectin-1 (Lot# 0707271-1) was purchased from PeproTech (Rocky Hill, NJ, USA). 

Hydrochloride CTL was kindly provided by BiopoLife S.r.l. (Trieste, Italy). The chemical 

composition of CTL was determined by 
1
H-NMR spectroscopy and resulted to be: fraction of 

deacetylated units (FD) 0.36, fraction of lactose-modified units (FL) 0.56 and fraction of 

acetylated units (FA) 0.08. The physical properties were determined by viscometry: the 

intrinsic viscosity,    , of CTL was checked  at 25 °C by means of a CT 1150 Schott Geräte 

automatic measuring apparatus and a Schott capillary viscometer. A buffer solution composed 

by 20 mM AcOH/AcNa, pH 4.5, and 100 mM NaCl was used as solvent
11

. The resulting      



was 511 mL/g. The estimated viscosity average molecular weight,    of CTL was around 870 

000. 

 

 

Surface Plasmon Resonance analysis 

The interaction between CTL and Gal-1 was assessed by means of a Biacore TM 2000 

Instrument (BIAcore, Uppsala, Sweden) using a Chip sensor CM5 (GE Healthcare). CTL was 

immobilized on the chip following manufacturer’s instructions. Briefly, CTL was dissolved in 

AcOH/AcNa buffer, pH 4.5, at a concentration of 0.05 g/L. Subsequently, CTL was injected 

(30 μL/min) on the chip surface until a SPR signal of approximately 800 RU was observed. 

Gal-1 solubilization and binding measurements were performed in PBS buffer, pH 7, 

supplemented with dithiothreitol (DTT-2 mM) and P20 detergent (0.005%). Gal-1 solutions in 

a range of concentrations 0.12 - 8 μM were injected over the sensor chip surface at 30 

μL/min. Flow channel Fc1 has been used as negative control. The chip was regenerated by 

injection of lactose 10 mM. Data analysis has been performed by the BIA evaluation 3.2 

Software (Biacore). A Langmuir 1:1 model was used for the calculation of rate constants (for 

details see Supplementary Information).  

 

Preparation of CTL and Galectin protein solutions 

CTL was solubilized at a concentration equal to 1 mg/mL in Milli-Q water (final pH around 

3). Galectin powder was solubilized in water and then diluted in order to obtain solutions with 

concentrations comprised within the range 1 μM – 1 pM. Molar concentrations of Galectin-1 

were determined taking into account that molecular weight of Galectin-1 is equal to 14716 

Da. 

 



Preparation of Collagen and Galectin protein solutions (selectivity test) 

Galectin and Collagen were solubilized in water and mixed together to obtain a solution at 

concentration of 1 μM. 

 

Synthesis of CTL PEG-AuNPs (CTL PEG-AuNPs) 

Colloids of CTL- PEG-coated AuNPs (CTL-PEG-AuNPs) were synthesize by a well-

established chemical reduction process described in Scheme 1. Briefly, 250 µL of PEG 

solution (0.5 mM) was added to 20 mL of tetrachloroauric acid solution (2.4 x 10
-4

 M) under 

stirring at room temperature. Then 5 mL of CTL solution (1 mg/mL) and 2 mL of aqueous 

0.01 M NaBH4 were added drop by drop with precaution until solution turned into a violet 

color. The concentration was estimated by standard mathematical calculations in colloidal 

solution. 

 

Determination of CTL-PEG-AuNPs concentration 

AuNPs concentration was determined by exploiting standard mathematical calculations in 

colloidal solution. Lambert-Beer law (       ) was used to determine colloids 

concentration. In this equation A is the maximum absorbance (corresponding to the Surface 

Plasmon Resonance Band at around 530-540 nm) of the UV-visible spectrum,   is the molar 

extinction coefficient (equal to 3.07 × 10
10

 M
-1 

cm
-1

), C is the molar concentration of colloids 

and l is the optical length of cuvette (1 cm). The resulting C was multiplied for the dilution 

factor to obtain the concentration of colloids. 

 

Bioconjugation of CTL-PEG-AuNPs with Gal-1 

The interaction of Gal-1 protein with CTL-PEG-AuNPs surface was obtained exploiting the 

procedures depicted in Scheme 2. Briefly, 5 mL of CTL-PEG-AuNPs (42nM) were added into 



separate tubes containing 50 µL of Gal-1 (from 10 µM to 1 pM; PBS pH 7; NaCl 0.15 M). 

After 18 h of incubation, the CTL-PEG-AuNPs/Gal-1 suspension was centrifuged twice at 

5000 rpm for 10 min to eliminate the excess of Gal-1 and then the pellets were redispersed in 

1 mL of MilliQ water as described previously 
8
.  

 

Physical-chemical characterization  

All the measurements were accomplished in triplicate to confirm the reproducibility of the 

synthetic and analytical procedures. 

 

UV/Vis measurements 

Absorption spectra were recorded using a double-beam Varian Cary 500 UV-Vis 

spectrophotometer (Agilent, France). UV-Vis spectra of the AuNPs were achieved in water at 

concentration of 42 nM in the 200-900 nm spectral range.  

 

Transmission Electron Microscopy (TEM) 

Transmission Electron Microscopy (TEM) images were recorded with a JEOL JEM 1011 

microscope operating (JEOL, USA) at an accelerating voltage of 100 kV. TEM specimens 

were prepared after separating the surfactant from the metal particles by centrifugation under 

a protocol described  previously
8
.  

Raman Spectroscopy 

The Raman experiments have been performed on an Xplora spectrometer (Horiba Scientifics-

France) under a protocol described previously 
8
.  

 

 

 



Dynamic light scattering (DLS) and Zeta potential measurements 

The size and zeta potential measurements were performed using a Zetasizer Nano ZS 

(Malvern Instruments, Malvern, UK) equipped with a He-Ne laser (633 nm, fixed scattering 

angle of 173°) at room temperature as described previously
35

. 

 

Stability of CTL-PEG-AuNPs and Gal-1 CTL-PEGAuNPs as a function of pH. 

The stability of nanoparticles was detected by UV-Vis. All nanoparticles were dissolved in 

PBS solution 10 mM at pH 4 and stored for 3 months (Figure S2 in Supporting 

Information). 
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