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Hydroformylation of 1-Octene Using [Bmim][PF6]-Decane Biphasic Media and

Rhodium Complex Catalyst: Thermodynamic Properties and Kinetic Study

Amit Sharma,†,‡ Carine Julcour Lebigue,*,†,‡ Raj M. Deshpande,§ Ashutosh A. Kelkar,§ and
Henri Delmas†,‡

UniVersité de Toulouse, INP, LGC (Laboratoire de Génie Chimique), 4 allée Emile Monso, BP 84234, 31432
Toulouse Cedex 4, France, CNRS, LGC, 31432 Toulouse Cedex 4, France, and Chemical Engineering and

Process DeVelopment DiVision, National Chemical Laboratory, 411008 Pune, India

A chemical reaction engineering approach is reported to investigate the biphasic hydroformylation of 1-octene
using [bmim][PF6] ionic liquid. It is based both on a process parameter investigation (temperature,
concentrations, and pressures) and a thermodynamic study of the reaction medium (gas-liquid and liquid-liquid
equilibria). Initial rate data show complex behavior with respect to operating parameters and are best described
by a rate equation based on a mechanistic model. Complete reaction scheme including isomerization is then
modeled accounting from the time dependent concentration of the organic substrates measured in organic
phase and recalculated in ionic liquid phase from liquid-liquid equilibria.

1. Introduction

Homogeneous catalysts are used commercially for the

synthesis of various bulk and fine chemicals, especially when

a high selectivity to desired product is required. However the

use of volatile solventssoften environmentally harmfulsand

the difficulties to separate the products from the reaction media

are major drawbacks of homogeneous catalysis. Since the past

decade, ionic liquids (ILs) have gained significant importance

as alternative solvent systems for catalysis applications. ILs

exhibit essential properties that could satisfy the requirements

for hydroformylation reaction. First, they have essentially no

vapor pressure which avoids problems due to volatility (i.e.,

safety, losses) faced with conventional organic solvents. Fur-

thermore, they are good solvents for a wide range of both

organic and inorganic species without undesirable interactions

with the metal center. Moreover their property to be immiscible

with a number of organic solvents makes them very promising

solvents to substitute for water in the biphasic hydroformylation

of olefins.1

The first report on the rhodium catalyzed hydroformylation

using ionic liquid was proposed by Chauvin et al.:2 they showed

that [Rh(CO)2(acac)]/PPh3 in [bmim][PF6] was an efficient

catalyst system for the biphasic hydroformylation of 1-pentene.

However, the system suffered from catalyst leaching and so

various phosphine ligands were investigated. Efficient im-

mobilization of the catalyst in the IL could be achieved with

sulfonated ligands (i.e., triphenylphosphine mono- and trisul-

fonate: TPPMS and TPPTS), but they resulted in lower turn

over frequencies (TOFs). Relatively poor selectivity to the

desired linear hydroformylation product was also obtained in

all cases (n/iso ratio between 2 and 4).

Chlorostannate ionic liquids were evaluated by Wasserscheid

and Waffenschmidt3 for the hydroformylation of 1-octene

catalyzed by (PPh3)2PtCl2. Compared to the monophasic reaction

in CH2Cl2, activity and n/iso ratio were only slightly lower in

the biphasic ionic liquid system. However, significant octane

was formed which was attributed to a higher solubility of H2

compared to CO in chlorostannate ionic liquids. Moreover the

undesired hydrogenation yield was found to depend significantly

on the cation of the ionic liquid (41.7% hydrogenated product

with 1-butyl-3-methylimidazolium vs 29.4% with 1-butyl-4-

methylpyridinium).

The influence of the nature of the IL on the activity and

selectivity of the reaction was further investigated in the works

of Favre et al.4 and Dupont et al.5

Favre et al.4 investigated the [Rh(CO)2(acac)]/TPPTS cata-

lyzed hydroformylation of 1-hexene in eight ionic liquids,

varying the nature of the cation (1,3-dialkylimidazoliums) and

the anion (e.g., BF4
-, PF6

-, CF3CO2
-, CF3SO3

-, N(CF3SO2)2
-,

and NTf2
-). Except in the case of NTf2

- based ionic liquids,

the observed activity could be well-correlated with the solubility

of the substrate in ILs. The n/iso ratio was not affected by the

nature of the solvent.

Dupont et al.5 also compared different solvent systemsspure

[bmim][PF6] (hydrophobic), water saturated [bmim][PF6],

[bmim][PF6] with toluene as cosolvent, and pure [bmim][BF4]

(hydrophilic)sfor the hydroformylation of 1-octene. With Rh/

sulfonated xantphos complex immobilized in [bmim][PF6], a

very high n/iso selectivity (ratio up to 13.1) could be achieved

and the catalytic phase could be recycled up to four times

without loss in activity. In the hydrophilic or mixed IL systems,

lower selectivity to the linear product was observed. This

behavior was associated with changes in the structure of the

ionic liquids in the presence of the cosolvents, resulting in

different miscibilities of alkenes and syngas.

Hydroformylation was also successfully performed in biphasic

IL/CO2 systems.6-9 Ahosseini et al.7 reported that the effect of

CO2 pressure on the apparent reaction rate resulting from a

complex interplay between the volume expansion of the IL

phase, the change in multiphase equilibria, and the modified

transport properties.

These few studies have shown that both chemical and

thermodynamic aspects have to be considered to evaluate the

performances of biphasic IL systems. More examples can be

found in the comprehensive review published by Haumann and

Riisager.10

The use of ionic liquids as solvents to achieve multiphase

homogeneous catalysis is explored in the present work following
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a chemical reaction engineering approach: thermodynamics of

multiphase equilibria and reaction kinetics including modeling

of the concentration-time profiles of all species. This detailed

work is applied to the biphasic hydroformylation of 1-octene

using [bmim][PF6]/decane emulsion and mainly Rh/TPPTS as

catalyst. A few experiments have been carried out with

sulfoxantphos as a ligand to investigate the influence on activity

and selectivity pattern.

2. Solubility Data

As the knowledge of the reactant concentrations in the IL

phase is required for the interpretation and modeling of the

kinetic data, both gas-liquid and liquid-liquid equilibria were

determined for the reaction system.

2.1. Purity of the Ionic Liquid. [bmim][PF6] 99% was

bought from Solvionic. It was delivered with the following

specifications: water content less than 0.1% and halide content

less than 0.005%. From Karl Fisher titration of the samples, a

mean water content of 0.03% was measured. Thermogravimetric

analysis (performed at 423 K) showed around 0.15% of volatile

compounds. From headspace GC/MS analysis, bromobutane,

used for the synthesis of [bmim]+ salt from 1-methylimidazole,

was found as the major volatile impurity.

2.2. Solubility of Hydrogen and Carbon Monoxide in

[bmim][PF6]. From the literature, it was observed that the

solubility values reported for H2 and CO varied significantly

depending on the experimental methods and ranges of conditions

used.11-16 The variations were as high as 200% under similar

conditions. Thus, it was thought necessary to devise a reliable

method for determination of solubility of both the gases in

[bmim][PF6]. The measurement technique was based on the

batch absorption of a single gas at a given temperature and

pressure and measuring of the total gas pressure variation

corresponding to the dissolved gas amount in equilibrium with

final pressure. More details can be found in our previous

article.17

Gas solubility was measured at different temperatures

(293-373 K) and pressures (up to 25 bar). Both gases follow

Henry’s law, carbon monoxide being more soluble than

hydrogen in the investigated range of temperature. Table 1 gives

the corresponding Henry’s constants with an estimated uncer-

tainty of less than 5%. At room temperature, these data lie within

the range of reported values.11-16

As often found in other liquids, the effect of temperature on

hydrogen solubility is not monotonous like with other gases

and shows a maximum. The solubility of CO and H2 (per

volume of solution) is rather low in [bmim][PF6] compared to

usual organic solvents (around three times lower than in decane

at 373 K), but higher than in water.

2.3. Solubility of Olefin and Aldehyde in [bmim][PF6].

2.3.1. Measurement Techniques. The solubility and partition

coefficients of 1-octene and n-nonanal in [bmim][PF6] were

much more difficult to measure, as routine chromatography or

spectroscopy methods are not suitable. For binary mixtures, IL/

1-octene and IL/n-nonanal, thermogravimetry analysis (TGA)

could be used due to the nonvolatile character of the IL. The

TGA unit (TA Instruments SDT Q600) was composed of a

precision microbalance with a maximum capacity of 200 mg

and a sensitivity of 0.1 µg. Analyses were performed by heating

the sample at 423 K under inert atmosphere (nitrogen) and

recording the weight loss until no more variation was observed.

Prior to the analysis of the saturated sample, a blank measure-

ment was performed on the ionic liquid itself (same lot) to

quantify the amount of volatile impurities. This amount was

subtracted from the total weight loss recorded with the saturated

IL, assuming thus that the impurities were not transferred to

the organic phase. Nevertheless this amount of impurities was

checked to be much less than the amount of solute for a reliable

measurement (not more than 0.15% of the total weight).

For ternary or quaternary systems, IL/1-octene/decane/n-

nonanal, a more complex technique was adopted involving

multiple headspace gas chromatography (MHS-GC) in which

the liquid sample is heated and only the vapor phase is injected

in GC and analyzed. The GC-MS apparatus (Trace GC 2000

coupled with PolarisQ detector, ThermoFinnigan) included a

CombiPal Automatic Prep & Load Sampler for Headspace (CTC

Analytics) with the following features: XYZ robot, syringe

heater, shaken incubator oven for equilibrating the sample, and

venting tool for headspace pressure release between extractions.

A polar capillary column (Varian VF-23 ms, 30 m × 0.25 mm,

0.25 µm film thickness with a stationary phase of cyanopropyl)

was used for separation and quantification purpose. The head-

space parameters, dilution factor of the sample, sampling

volume, and split ratio were set so that the response was high

enough for a good sensitivity (but within the linearity domain

of the detector) and the extraction of the solute was significant

enough (but without depletion before the end of the consecutive

headspace sampling steps). A calibration was also made by

applying the MHS procedure to standards prepared by dissolving

different amounts of 1-octene or n-nonanal in [bmim][PF6]

(much below their solubility). The detailed procedure is

described elsewhere.18

2.3.2. Solubility Results. Solubilities of 1-octene and n-

nonanal in [bmim][PF6] were determined at three different

temperatures (298, 323, and 353 K) using both TGA and MHS-

GC/MS techniques. Table 2 gives the corresponding values with

the maximum deviation evaluated from two repetitions of the

measurement.

N-nonanal was found to be much more soluble than 1-octene

in [bmim][PF6] due to its polar nature. Solubility values obtained

by both techniques showed a very good agreement in case of

1-octene (less soluble), but the deviation was however large

for n-nonanal (around 30% difference at 298 K). The temper-

ature influence on the solubility was rather low resulting in less

than 35% variation for the two compounds in the temperature

range investigated (298-353 K). More importantly and as

expected, the solubility of 1-octene is significantly higher in

[bmim][PF6] (1.6 mol % at 298 K) than in water (0.0001 mol

%), which confirms the potential importance of such solvents

for biphasic catalysis. This value is also in accordance with

previously reported data (2.0-2.5 mol %19,20).

2.3.3. [bmim][PF6]/Decane Partition Coefficients. In order

to estimate partition coefficients of 1-octene and n-nonanal in

Table 1. Henry’s Constants (H) for H2 and CO in [bmim][PF6]

T (K) HH2 (bar ·m3 · kmol-1) HCO (bar ·m3 · kmol-1)

293 898 449

323 816 558

373 869 663

Table 2. Solubility of 1-Octene and n-Nonanal in [bmim][PF6] (wt
%)

system T (K) TGA (wt %) MHS-GC/MS (wt %)

1-octene/[bmim][PF6] 298 0.6( 0.05 0.64

323 0.52 0.59 ( 0.002

353 0.85 ( 0.2 0.86 ( 0.15

n-nonanal/[bmim][PF6] 298 11.6 ( 0.5 15.5 (0.2

323 10.5 15.3 ( 0.9

353 11.3 ( 0.3 12.9 ( 0.3



the [bmim][PF6]/decane solvent system, five different organic

mixtures were prepared closely matching the concentrations

observed during the course of the reaction (Table 3). All

measurements were performed twice and analyzed with MHS-

GC/MS. Due to the very low solubility of decane (0.13 wt %

at 353 K) compared to nonanal, an estimation could also be

made from TGA analysis for the last mixture.

Decane has very low solubility in [bmim][PF6], and hence,

the presence of decane does not modify the partitioning of

1-octene or nonanal between organic and IL phases. However,

n-nonanal seems to enhance the affinity of 1-octene for the IL

phase. Partition coefficients estimated were used to evaluate the

concentrations of 1-octene and n-nonanal in the ionic liquid

phase, as required for the modeling of concentration-time

profiles (cf. section 4.2).

3. Kinetic Study of Biphasic Hydroformylation

3.1. Experimental Section. 3.1.1. Materials. Rh(CO)2(acac)

was purchased from Sigma-Aldrich. TPPTS (more than 90%

purity with <10% oxide) and sulphoxantphos (>98% purity)

ligands were prepared at NCL, Pune (India). [bmim][PF6] with

99% purity was purchased from Solvionic (more detailed

information on impurities is given in §2.1.).

Carbon monoxide and hydrogen were supplied by Linde gas

s.a.; 1-octene, decane, and GC standards/solvent (n-nonanal,

anisole/toluene) were purchased from Sigma Aldrich with a

purity >98%.

3.1.2. Experimental Procedure. Hydroformylation experi-

ments were carried out in an autoclave reactor equipped with a

gas inducing stirrer. The catalyst precursor Rh(CO)2(acac) and

TPPTS as standard ligand were dissolved in [bmim][PF6] (40

mL) and added to the reactor. Due to the limited solubility of

TPPTS in [bmim][PF6], no excess ligand was used with respect

to the expected rhodium triphosphine complex (P/Rh molar ratio

of 3 based on pure TPPTS amount). The catalyst complex was

synthesized in situ at 80 °C under 20 bar of syngas (3 h). After

cooling and releasing the pressure, the reactor was also loaded

with the organic phase comprising 1-octene and decane (60 mL).

The resulting liquid-liquid system was again pressurized with

syngas (10 bar) and heated up to the desired temperature under

low stirring (under self-gas induction) to hinder gas-liquid mass

transfer. When thermal equilibrium was reached, syngas was

introduced up to the desired pressure and the reaction was

initiated by increasing the agitation speed to a required value.

Initial hydroformylation rate and selectivity toward linear

aldehyde were obtained from pressure variations of the reservoir

feeding the reactor at constant pressure and gas chromatographic

analysis of liquid samples (after 1, 3, and 6 h of reaction),

respectively.

The organic phase was analyzed using a Varian 3800 gas

chromatograph (GC) with a flame ionization detector (FID). A

CP Wax 52 column (30 m × 0.32 mm ×0.25 µm film) was

used for separation of reactants and products with helium as

carrier gas. The quantitative analysis of the products was carried

out by means of an internal standard method, using anisole as

internal standard and toluene as solvent.

3.1.3. Reaction Parameters. Preliminary experiments were

carried out to standardize the reaction and make sure that the

data were measured in the kinetic regime. The initial reaction

rate was found nearly equal at 1200 and 1500 rpm under

standard conditions (see section 3.2.1.). Therefore, all reactions

for the kinetic study were carried out at an agitation speed of

1200 rpm high enough to ensure that mass transfer limitation

could be ignored.

Following the aforementioned procedure, main reaction

parameters were varied: catalyst loading (2.0-7.0 × 10-3

kmol ·mIL
-3), H2 and CO pressure separately (5-30 bar),

1-octene concentration (0.32-0.97 kmol ·morg
-3), and temper-

ature (333-353 K). When changing rhodium concentration, the

P/Rh ratio was kept constant.

A few experiments were carried out using sulfoxantphos as

a ligand (P/Rh ) 10) instead of TPPTS to check its influence

on the activity and selectivity of hydroformylation.

3.2. Results and Discussion. 3.2.1. Typical Concentration-

Time Profiles. Concentration-time profiles of the reactant and

products at 353 K is shown in Figure 1 for typical operating

conditions (further referred to as standard conditions). It can

be observed that the consumption of 1-octene resulted in the

formation of both n-nonanal and branched aldehydes (three

Table 3. [bmim][PF6]/Decane Partition Coefficientsa of 1-Octene and n-Nonanal at 353 K, for Different Initial Organic Mixtures

initial organic mixtures (wt %) partition coefficient of 1-octene (-) partition coefficient of n-nonanal (-)

mixture 1 (zero conversion; 15% octene + 85% decane) 0.0087 ( 0.002

mixture 2 (25% conversion; 11.1% octene + 4.7% nonanal + 84.2%
decane)

0.0081 (0.002 0.197 ( 0.03

mixture 3 (50% conversion; 7.4% octene + 9.3% nonanal + 83.3%
decane)

0.0071 (0.0007 0.144 ( 0.01

mixture 4 (75% conversion; 3.65% octene + 13.85% nonanal + 82.5%
decane)

0.0161( 0.0008 0.215 ( 0.04

mixture 5 (full conversion; 18.3% nonanal + 81.7% decane) 0.126 (0.007

from TGA: 0.088 ( 0.015

(3 measurements)

a The partition coefficient is defined as the ratio of the weight percent of solute in the IL phase to the weight percent of solute in the organic phase at
equilibrium.

Figure 1. Typical concentration-time profiles for the hydroformylation
reaction. Reaction conditions: Rh(CO)2(acac) 6.97 × 10-3 kmol ·mIL

-3,
TPPTS 2.09 × 10-2 kmol ·mIL

-3 (P:Rh ) 3:1), 1-octene 0.973 kmol ·morg
-3,

T 353 K, PT 40 bar (H2:CO ) 1:1), total liquid volume 100 × 10-6 m3

(organic:IL ) 60:40 v/v), agitation speed 1200 rpm.



isomers) as hydroformylation products. All branched aldehydes

were clubbed together and termed as “iso-aldehyde”. Isomer-

ization of 1-octene was observed as a side reaction, leading to

the formation of internal octenes (three isomers), grouped

together and termed as “iso-octene”. The rate of isomerization

of 1-octene was significant during the first hour of reaction;

afterward the hydroformylation of iso-octene was predominant.

It is noteworthy that n-nonanal was formed much faster than

iso-aldehyde at the beginning. This result suggests that the direct

formation of the branched aldehyde from 1-octene might be

rather low. Because of the isomerization reaction, the concentra-

tion of iso-octene was maximum after 1 h, leading to formation

of iso-aldehyde, which contributed to becoming the major

product at the end of the reaction. As a consequence, the n/iso

ratio decreased as the reaction proceeded, from 2.6 at 1 h to

0.8 at 6 h in the conditions of Figure 1.

As shown in Figure 1, the hydrogenation of 1-octene was

found to be negligible. Thus it was verified that the quantity of

syngas consumed was consistent with the amount of aldehyde

products formed as per the stoichiometry. A material balance

in the organic phase was also checked for each experiment

during the course of the reaction and was found to be around

95% for all points with respect to the original solution.

3.2.2. Effect of Catalyst Concentration. The effect of

Rh(CO)2(acac) concentration was studied at 353 K, keeping all

other parameters constant as per standard reaction conditions.

The initial rate of reaction showed first-order dependence on

the concentration of the catalyst, proving that all rhodium atoms

were working as catalyst at the same TOF and that no mass

transfer limitation was present. Plotting of species concentration

as a function of time × wcat (where wcat is the weight of

Rh(CO)2(acac)) also resulted in similar profiles for the different

catalyst loadings (with a maximum of iso-octene found at the

same location).

3.2.3. Effect of Initial Concentration of 1-Octene. The

initial concentration of 1-octene was varied from 0.325 to 0.973

kmol ·morg
-3 (decreasing the weight percentage of decane in the

organic mixture accordingly) while keeping the other parameters

the same. The rate of hydroformylation followed a fractional

dependence of 0.75 with respect to the olefin concentration

(Figure 2a). The variation of TOF was also consistent, showing

a quasi linear increase with 1-octene concentration from 30 to

73 h-1 after 1 h of reaction. The yield toward n-nonanal

(38.2%-37.1%) and the n/iso aldehyde ratio (0.79-0.76)

obtained after the 6 h of reaction remained approximately

unaffected by changing the 1-octene concentration.

As per the mechanism proposed by Deshpande et al.21 for

the aqueous biphasic hydroformylation of 1-octene using the

Rh/TPPTS complex, an increase in olefin concentration will

increase the concentration of acyl complex and hence the rate

of the reaction. However, the addition of olefin to catalytic

species is an equilibrium reaction and at higher concentrations

of olefin the effect of reverse reaction may increase, reducing

the apparent order with respect to olefin. Such behavior was

observed in homogeneous systems with Rh/PPh3 catalyst by

Bhanage et al.22 for 1-dodecene hydroformylation and by Kiss

et al.23 for ethene hydroformylation.

3.2.4. Effect of Hydrogen and Carbon Monoxide Partial

Pressures. To study the effect of hydrogen and carbon

monoxide partial pressures, the cylinder of syngas (H2:CO )

1:1) was replaced by separate feeds of CO and H2. Prior to the

Figure 2. Effect of operating parameters on the initial rate of hydroformylation (other parameters are set according to standard conditions): initial concentration
of 1-octene (a), partial pressures of H2 (b), and CO (c).

Figure 3. Comparison of TPPTS (white 353 K) and sulphoxantphos (gray 353 K and black 373 K) ligands on the basis of TOF (a), yield (bars), and
selectivity (∆) toward the linear aldehyde (b). yield towards linear aldehyde (%) ) [(nn-nonanal - nn-nonanal,0)/n1-octene,0] × 100,
selectivity towards linear aldehyde (%) ) (nn-nonanal/nall aldehyde) × 100. Reaction Conditions: Rh(CO)2(acac) 6.97 × 10-3 kmol ·mIL

-3, TPPTS or sulphoxant-
phos 2.09-3.49 × 10-2 kmol ·mIL

-3 (P:Rh ) 3:1 or 10:1), 1-octene 0.973 kmol ·morg
-3, T 353-373 K, PT ) 40 bar (H2:CO ) 1:1), total liquid volume 100

× 10-6 m3 (organic:IL ) 60:40 v/v), agitation speed 1200 rpm.



reaction, the ballast was filled up with a selected ratio of H2:

CO so as to feed the reactor to the required total pressure with

this gas composition. The ballast was then emptied and filled

up with the equimolar mixture of H2/CO to maintain the desired

ratio in the reactor throughout the reaction, as hydrogenation

of 1-octene was found negligible. While studying the effect of

the partial pressure of a given gas, the partial pressure of the

other one was kept constant at 20 bar. Other operating

parameters corresponded to standard conditions.

Partial Pressure of H2. The initial rate of reaction showed

fractional order (0.46) with respect to hydrogen partial pressure

(Figure 2b). Such a nonlinear effect of H2 pressure is typical

for biphasic hydroformylation and was previously observed by

Deshpande et al.21 and Purwanto and Delmas24 during the

aqueous biphasic hydroformylation of 1-octene using ethanol

as a cosolvent. It could be explained by considering that the

rate controlling step of the hydroformylation mechanism is the

addition of olefin to catalytic species, instead of the well-

accepted addition of hydrogen to the acyl complex.21

It was also observed that the maximum amount of iso-octene

formed was reduced with increasing PH2: while hydroformyla-

tion is positively influenced by PH2, the rate of isomerization is

not expected to be modified by a change in PH2.

Partial Pressure of CO. The reaction rate first increased with

increasing carbon monoxide partial pressure up to about 20 bar

and then decreased with further increase in CO pressure,

exhibiting a clear maximum (Figure 2c). This observation is

again very typical of hydroformylation reactions, observed for

both homogeneous and biphasic systems catalyzed by rhodium

complex with PPh3 or TPPTS as ligands. The increase in PCO

enhances the CO insertion step of the reaction cycle, but at the

same time, it leads to the formation of acyl rhodium di- and

tricarbonyl species which are inactive for hydroformylation

reaction. Thus, a positive order with respect to CO is only found

at low CO pressure while inhibition becomes more and more

severe with increasing CO pressure. The location of the

maximum at a relatively high CO pressure (∼20 bar) as

compared to that observed with ethanol-water mixture21,24

might be due to the lower solubility of CO in [bmim][PF6].

As for H2, the maximum concentration of iso-octene was

higher at PCO ) 5 bar than at PCO ) 20 bar, CO also having

probably no effect on the isomerization rate.

3.2.4. Effect of Temperature. The effect of temperature on

the initial rate of hydroformylation was investigated between

333 and 353 K, standard conditions being applied otherwise.

As expected, the rate was found to increase with temperature

according to the Arrhenius equation. The activation energy was

Table 4. Rate Models Tested to Fit Experimental Data on Hydroformylation of 1-Octene Using [bmim][PF6]: Empirical Models (1-8) and
Mechanistic Models (9 and 10)a

Model 1: R )
kABCD

(1 + KbB)
2

Model 6: R )
kABCD

(1 + KaA + KbB)
2

Model 2: R )
kABCD

(1 + KbB)
3

Model 7: R )
kABCD

(1 + KaA)(1 + KbB)
2
(1 + KdD)

Model 3: R )
kABCD

(1 + KaA)(1 + KbB)
2

Model 8: R )
kABCD

(1 + KaA)(1 + KbB)
3
(1 + KdD)

Model 4: R )
kABCD

(1 + KaA)(1 + KbB)
3

Model 9: R )
kABCD

(1 + KaA + KbAB + KcB
2
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Model 5: R )
kABCD

(1 + KaA + KbB)
Model 10: R )

kABCD

(1 + KaB + KbDB + KcDB
2
+ KdDB

3
)

a A, B, C, and D refer to the concentrations of dissolved H2, dissolved CO, catalyst, and dissolved olefin in the IL phase, respectively. R is the total
hydroformylation rate (based on syngas consumption).

Figure 4. Parity plot of calculated initial rates vs experimental data.

Figure 5. Concentration-time profiles for the main hydroformylation
reaction in standard conditions: Experimental: 1-octene (O), total octene
(b), n-nonanal (0), and total aldehyde (9). Modeling: 1-octene (- - -) and
n-nonanal (s).



found to be E ) 107.9 kJ/mol (25.8 kcal/mol), which is within

the range of values observed for hydroformylation reaction.

3.2.5. Effect of Ligand (Sulfoxantphos vs TPPTS). The

effect of ligand was studied by testing sulphoxantphos under

the same reaction conditions as for TPPTS, but with a higher

P/Rh ratio (10 instead of 3) allowed by the better solubility,

and at two temperatures: 353 and 373 K. Results are compared

on the basis of TOF as well as yield and selectivity toward linear

aldehyde in Figure 3a and b, respectively. The reaction using

sulphoxantphos ligand led to much lower hydroformylation rates

(TOF up to 23 times less than with TPPTS at 353 K), but the

selectivity toward n-nonanal was much higher as expected from

the literature:5 100% (no isomers detected) as compared to that

of 73% with TPPTS for similar yield toward n-nonanal (around

27%).

From the experiments performed at the two temperatures, the

activation energy with sulphoxantphos could be roughly esti-

mated at 21.2 kcal/mol, so similar to that obtained with TPPTS.

4. Kinetic Modeling of Biphasic Hydroformylation

4.1. Modeling of Initial Reaction Rates. Rate equations

proposed by Deshpande et al.21 for the aqueous biphasic

hydroformylation of 1-octene were considered to model the main

reaction kinetics, based on syngas consumption (Table 4). Only

the results obtained with TPPTS were considered. The rate

models consist of both empirical (models 1-8) and mechanistic

models (9-10). All the empirical models (except model 5)

describe the inhibition by CO pressure; models 3-5 add the

nonlinear effect of H2 pressure, while models 7 and 8 also

account for the nonlinear effect of 1-octene concentration. In

models 3-4 and 7-8, the influence of each parameter is

described in separate term. Model 9 considers the olefin insertion

step as the rate limiting step of the reaction cycle, while model

10 assumes that the addition of hydrogen to the acyl rhodium

carbonyl species is the rate determining step.

The concentrations of dissolved CO, H2, and 1-octene in

[bmim][PF6] required in the kinetic modeling were evaluated

from the solubility data reported in section 2.

Detailed optimization work was carried out using Auto2Fit

software which allows testing different numerical methods for

data regression. The criterion for selecting the best model was

based on the sum of squared error (SSE) between the calculated

and experimental initial rates:

The models were eventually simplified so as to ensure the

identifiability of their parameters while keeping same fitting

precision.

After a detailed regression and model discrimination proce-

dure, the following equation derived from mechanistic model

10 was found to be the best model to describe the complete

reaction runs with 1-octene concentration variation, though it

assumes a first order dependence on H2:

with k ) 4064 ((1659) (mIL
3/kmol)3/s and Kd ) 2 323 308

((2 043 443) (mIL
3/kmol)4.

Figure 4 displays the corresponding parity plot.

4.2. Modeling of Concentration-Time Profiles. 4.2.1. Pre-

dictions for Main Hydroformylation Reaction. The aforemen-

tioned rate equation (eq 2) was initially applied without further

modification to predict the concentration-time profiles of

1-octene and n-nonanal under standard conditions assuming no

isomerization would occur.

Corresponding mass balances can be written as follows:

assuming that both gas-liquid and liquid-liquid equilibria are

instantaneous.

These equations were solved using ReactOp Pro software.

The likely variation of the partition coefficient of 1-octene with

time (as more aldehyde is formed, cf. section 2.3.3.) was not

accounted for.

Figure 5 compares these modeled profiles to the experimental

data of 1-octene, n-nonanal, and lumped alkene and aldehyde

species.

The model better matches the experimental profiles of total

aldehyde formed and total octene consumed than those of

n-nonanal and 1-octene respectively, as it was optimized

considering the global rate of hydroformylation at time t ) 0

(based on syngas consumption).

The convenient predictions obtained for these global con-

centrations throughout the reaction suggest that the model

correctly accounts for the dependence of the hydroformylation

rate upon 1-octene concentration and that n-nonanal and iso-

aldehyde should be formed with similar rates.

It can also be noticed that according to the simulation, the

material balance in the organic phase is about 90% due to the

amount of aldehyde solubilized in the IL phase. It is thus a

little bit lower than what is observed experimentally.

4.2.2. Predictions when Accounting for Isomerization.

Then a complete model accounting for 1-octene isomerization

Table 5. Fitted Parameters from Optimization of
Concentration-Time Profiles (Series with Different Initial
Concentrations of 1-Octene and Catalyst), along with Standard
Deviations (Given in Brackets)

k1 (mIL
3/kmol)3/s 4396 (σ ) 1196)

Kd1 (mIL
3/kmol)4 1.023 × 106 (σ ) 1.395 × 106)

k2 (mIL
3/kmol)3/s 3624 (σ ) 768.7)

Kd2 (mIL
3/kmol)4 0 (σ ) 1.778 × 106)

kio (mIL
3/kmol)/s 3.947 (σ ) 0.2625)

Table 6. Fitted Parameters from Optimization of
Concentration-Time Profiles (Series with Different Initial
Concentrations of 1-Octene, Catalyst, and PCOsExcept PCO ) 30
bar), along with Standard Deviations (Given in Brackets)

k1 (mIL
3/kmol)3/s 5374 (σ ) 913.6)

Kd1 (mIL
3/kmol)4 2.195 × 106 (σ ) 1.284 × 106)

k2 (mIL
3/kmol)3/s 2191 (σ ) 289.7)

Kd2 (mIL
3/kmol)4 0 (σ ) 1.42 × 106)

kio (mIL
3/kmol)/s 3.693 (σ ) 0.2911)
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and hydroformylation of 1- and internal octene was built up

considering the following lumped reaction scheme:

It was assumed that the direct formation of iso-aldehyde from

1-octene is negligible. Isomerization was modeled as an

irreversible reaction.

Rate equations were written as follows for the two hydrofo-

mylation reactions:

Partition coefficients of octene and aldehyde isomers were supposed

to be equal to those of 1-octene and n-nonanal, respectively.

The isomerization reaction was assumed to be first order with

respect to both catalyst and 1-octene concentrations and

independent of hydrogen and carbon monoxide partial pressures:

Similar mass balances as written in eqs 3 and 4 were applied

for the four lumped species (1-octene, internal octene, n-nonanal,

and branched aldehyde). The kinetic parameters k1, k2, Kd1, Kd2,

and kio were optimized with the help of ReactOp Pro software

using the time variations of the concentrations measured in

organic phase and recalculated in ionic phase with the equilib-

rium models (cf. eqs 3-7).

Only the experiments for which the initial reaction rate

matches with the value given by the rate model were considered

for optimization. First, the two series investigating the effects

of initial concentration of 1-octene and catalyst concentration

were used as database. Corresponding estimated parameters are

given in Table 5, and comparison between experimental and

predicted profiles is shown in Figure 6.

The concentration-time profiles of all species could be quite

well described by the model (cf. Figure 6), but the applied rate

model might not be so adequate to describe the hydroformylation

of iso-octene (R3), as the optimization software converged

toward the lowest bound of the searching interval for Kd2 (Kd2

g 0). Actually it was found that the regression criteria and

optimized profiles were not much sensitive to the values of Kd1

and Kd2 as confirmed by the large standard deviations obtained

for those parameters.

Figure 6. Experimental and predicted concentration-time profiles for the two experimental series considered (parameters of the optimized model are given
in Table 5). The legend in part a applies to the entire figure: 1-octene (a), n-nonanal (b), iso-octene (c), iso-aldehyde (d).
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When adding data obtained at different PCO (PCO ) 5 and 10

bar), the minimum residual was still obtained for Kd2 ) 0 (Table

6) and the optimized model showed larger discrepancies with

respect to the concentration-time profiles of iso-aldehyde (mean

relative deviation increasing from 14 to 51%).

Further work is thus required to better understand the full

reaction mechanism. More rate models will have to be tested

and probably complementary experiments will also have to be

performed (for instance varying simultaneously PH2 and PCO).

Nevertheless this modeling work is already promising and shows

that such chemical engineering approach could also be useful

to understand hydroformylation mechanism.

5. Conclusion

The kinetics of biphasic hydroformylation of 1-octene was

studied using Rh/TPPTS catalyst and [bmim][PF6] as a catalyst

solvent. The rate of hydroformylation was found to be first-

order with respect to catalyst concentration and partial-order

with respect to both olefin concentration (0.75) and hydrogen

partial pressure (0.43). Its evolution versus CO concentration

exhibited a maximum, indicating an inhibition at higher pres-

sures. The activation energy was found to be 25.8 kcal/mol.

The concentrations of dissolved CO, H2, and 1-octene in

[bmim][PF6] required in the kinetic modeling were evaluated

from solubility data obtained experimentally at different tem-

peratures, using the pressure-drop technique for gas-liquid

equilibrium and multiple headspace gas chromatography as well

as thermogravimetry for liquid-liquid equilibrium. The solubil-

ity of all the components was higher in [bmim][PF6] than in

water, especially for 1-octene whose solubility was higher by

4 orders of magnitude. [bmim][PF6] as a catalyst solvent resulted

in a TOF of the same order (15-75 h-1 after 1 h) as those

observed in biphasic aqueous catalysis with cosolvent for which

comparable enhancement of octene solubility could be

achieved.24

The kinetic data were represented by a simplified rate equation

derived from a classical mechanistic model, excepting the

observed trend with respect to hydrogen. A first simulation

attempt of the concentration-time profiles including isomer-

ization was also proposed.

As the n/iso-aldehyde ratio was quite low with this catalytic

system (from about 3 to less than 1 in some cases), the

sulphoxantphos ligand was tested as well: it resulted into 100%

n-nonanal selectivity, but with much lower TOF.

For an industrial application, such a reaction engineering

approach should be applied to a more efficient reaction medium,

whose chemistry will have been first optimized, regarding for

instance the choice of convenient ligand for both activity and

selectivity and its concentration to achieve stability.
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Notations

Ci,x ) concentration of i in x phase (kmol/m3)

H ) Henry’s constant (bar ·m3/kmol)

k ) reaction rate constant as defined by models 1-10 (mIL
3/kmol)3/s

Ka, Kb, Kc, Kd ) constants derived from equilibrium constants as

defined by models 1-10

Kwnon ) partition coefficient of n-nonanal between the IL phase

and the organic phase at considered equilibrium (kgorg/kgIL)

Kwoct ) partition coefficient of 1-octene between the IL phase and

the organic phase at considered equilibrium (kgorg/kgIL)

PH2 ) hydrogen partial pressure (bar)

PCO ) carbon monoxide partial pressure (bar)

R ) hydroformylation rate (kmol/mIL
3)/s

t ) time (s)

T ) temperature (K)

TOF ) turn over frequency (h-1)

VIL ) volume of ionic liquid phase (m3)

Vorg ) volume of organic phase (m3)

Greek Symbols

F ) density (kg/m3)

Subscripts

cat ) catalyst

CO ) carbon monoxide

H2 ) hydrogen

iald ) iso-aldehyde

IL ) ionic liquid phase

ioct ) iso-octene

nnon ) n-nonanal

1oct ) 1-octene

org ) organic phase
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