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Modulational instabilities play a key role in a wide range of nonlinear optical phenomena, leading, e.g., to the
formation of spatial and temporal solitons, rogue waves, and chaotic dynamics. Here, we experimentally demonstrate
the existence of a modulational instability in condensates of cavity polaritons, quasi-particles arising from the strong
coupling of cavity photons with quantum well excitons. For this purpose, we investigate the spatiotemporal coherence
properties of polariton condensates in GaAs-based microcavities under continuous-wave pumping. The chaotic behav-
ior of the instability results in a strongly reduced spatial and temporal coherence and a significantly inhomogeneous
density. Additionally, we show how the instability can be tamed by introducing a periodic potential so that conden-
sation occurs in negative mass states, leading to largely improved coherence and homogeneity. These results pave the
way to the exploration of long-range order in dissipative quantum fluids of light within a controlled platform.
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1. INTRODUCTION

Modulational instabilities are a widespread feature of nonlinear
wave systems, whereby small perturbations get amplified and
grow exponentially with time. They manifest in numerous
branches of physics ranging from hydrodynamics [1] to nonlinear
optics [2], plasma physics [3], and cold atom gases [4]. In optical
systems such as fibers [2,5], waveguide arrays [6], lasers [7–9], and
amplifiers [10], modulational instabilities have been shown to
deeply affect the temporal or spatial properties of light fields, lead-
ing, e.g., to the breakup of uniform beams into trains of solitons
[6,11], the generation of filaments [12], or the emergence of
extreme intensity fluctuations known as optical rogue waves
[9,13]. Chaotic dynamics related to instabilities have been espe-
cially studied in lasers [9,14] with envisioned applications in
random number generation and optical sensing [8].

Cold atom condensates, where the sign and strength of non-
linearities can be dynamically tuned using Feshbach resonances
[15,16], have also been a fruitful playground for the experimental
investigation of instabilities. A homogeneous cold atom conden-
sate becomes unstable in the presence of attractive interactions,
which make the condensate collapse so as to minimize its

potential energy [17,18]. In the presence of a confining potential,
however, zero-point kinetic energy competes with interactions,
and a condensate can persist up to a given critical density [19]
after which the condensate implodes [16,20] or breaks into a train
of solitons [4,21]. Inspired by dispersion management techniques
used in fiber optics to generate solitons or gap solitons [22–24],
self-bound condensate droplets have also been observed for
repulsively interacting atoms when the atomic effective mass is
turned to negative by means of an optical lattice [25] or of a spin-
orbit coupling [26]. For non-equilibrium systems, however—
such as in the presence of drive and dissipation—the fate of
the instability of bosonic condensates has been little explored
experimentally so far.

Polaritons, arising from the strong coupling of quantum well
excitons and cavity photons [27], are an appealing candidate to
address this question. These quasi-particles indeed combine
non-equilibrium properties with substantial interactions. Direct
interactions between polaritons are of repulsive nature [28],
which should preclude the aforementioned instability scenario.
However, under the widely used non-resonant pumping scheme,
interactions between polaritons and the reservoir cloud of
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uncondensed excitons need also to be considered. This polariton–
reservoir coupling can be shown to give effective attractive
interactions between condensed polaritons [29,30]. When these
effective interactions overcome the direct repulsive interactions
between polaritons, the condensate is expected to enter a modula-
tionally unstable regime [31] characterized by a turbulent steady
state [29,30,32–34]. This behavior strongly contrasts the collapse
scenario of attractively interacting cold atom gases and is another
intriguing example of the rich non-equilibrium physics of driven-
dissipative polariton condensates.

While predicted a decade ago [31] this instability of polariton
condensates has been hindered in previous experimental reports,
except for a recent study using organic cavities under pulsed ex-
citation [35]. Here, we evidence the presence of instabilities in the
most typical case of inorganic cavities and under continuous-wave
(CW) pumping, and we highlight how their signatures are mark-
edly distinct from the ones observed in Ref. [35]. We also dem-
onstrate a method to suppress the polariton instability. For this
purpose, we investigate the coherence properties of polariton con-
densates in 1D and 2D GaAs-based cavities in which the sign of
the polariton effective mass can be changed. When condensation
occurs in a positive mass state, we observe an unstable steady state
regime characterized by a strongly reduced spatial and temporal
coherence, and a sizable density inhomogeneity. When the
cavities are spatially patterned into lattices so that condensation
occurs in negative mass states, the modulational instability is sup-
pressed, and all previous signatures of instability disappear: the
condensates reach a stable steady state with high homogeneity
and coherence. This method for suppressing instabilities
opens avenues for studying the rich phenomenology of driven-
dissipative condensates [36–43], such as Kardar–Parisi–Zhang
(KPZ) universal scalings, in a controlled environment. The pre-
sented results are relevant to a wide range of photonic platforms
sustaining Bose–Einstein-like transitions, such as vertically emit-
ting laser diodes [44], photon condensates [45], and plasmonic
structures embedded in cavities [46]. Moreover, an intense re-
search effort is currently focused on polaritons in 2D electron
gases [47,48] or transition metal dichalcogenides [49,50] em-
bedded in cavities. Our proposal of using negative mass states
to facilitate the establishment of long-range order could prove
useful to achieve stable condensation in these novel platforms.

2. THEORETICAL FRAMEWORK

We start with a theoretical description of polariton condensation
showing the physical origin of the reservoir-induced modulational
instability. Ignoring the spin degree of freedom, the condensate
wavefunction ψ�r, t� can be described by a generalized Gross–
Pitaevskii equation coupled to a rate equation for the exciton
reservoir density nR�r, t� [31]:

iℏ
∂ψ
∂t

�
�
−
ℏ2Δ
2m

� gjψ j2 � 2gRnR �
iℏ
2
�RnR − γ�

�
ψ , (1)

∂nR
∂t

� P�r� − �γR � Rjψ j2�nR , (2)

where P�r� is the pumping rate,m is the effective polariton mass at
the condensate energy, γ and γR are the polariton and exciton
loss rates, and R is the relaxation rate of the reservoir into the
condensate. g and gR are positive and describe the repulsive
polariton–polariton and polariton–reservoir interaction constants.

The widely used adiabatic approximation assumes that the res-
ervoir follows instantaneously the condensate dynamics and is ex-
pected to be accurate if the reservoir decay time γ−1R is the fastest
time scale [51]. Under this condition, Eq. (2) reduces to nR�r� �
P�r�∕�γR � Rjψ j2�. Reinjecting into Eq. (1) yields a modified
Ginzburg–Landau equation [27] in which g is replaced by an
effective interaction constant [29,30]:

g eff � g − 2gR
γ

γR

Pth

P
: (3)

This means that, as far as the condensate dynamics is concerned,
the coupling to the reservoir reduces to an effective interaction
between polaritons. The condensate is then dynamically
stable for repulsive interactions (g eff > 0, defocusing effective
nonlinearity), and dynamically unstable for attractive interactions
(g eff < 0, self-focusing effective nonlinearity).

This polariton instability can be interpreted as a reservoir-
induced modulational instability as follows. A local increase
of polariton density (due to a quantum or thermal fluctuation of
the condensate, or to pump noise) induces a local depletion of the
reservoir density via a spatial hole burning [31,52]. Such a
depletion creates a potential well that further attracts the conden-
sate polaritons, making the initial fluctuation to exponentially
grow in time. This positive feedback loop is eventually broken
by gain saturation and by polariton propagation, so that the den-
sity fluctuation is ejected from its initial position and starts mov-
ing through the condensate. A turbulent behavior results from the
chaotic evolution of several such density fluctuations [30,33,34].

In typical polariton experiments [53–58], g ∼ 0.05–0.5gR
and γ ∼ 10–100γR , so that the stability condition g eff > 0
requires high pump powers P ∼ 40–4000Pth, difficult to achieve
in practice, in particular for large pump spots in a CW regime.
This stability condition can be relaxed by using a relatively small
pumping spot (∼2–10 μm) [33,35,59], as was done in most pre-
vious experimental studies [53–58,60]. In that case, the confine-
ment-induced kinetic energy and, possibly, the outwards flow due
to the overall density profile compete with attractive interactions
so that stable condensates can be achieved even for negative geff .
But this method imposes small condensate sizes, which limits the
capacity of polaritons to serve as a platform for simulating novel
driven-dissipative phenomena [36–43]. A promising alternative
are the large condensates recently demonstrated in cavities with
long lifetimes and reduced wedge [61]. However, the fact that the
condensate is fed by ballistically expanding fast polaritons instead
of (almost) immobile excitons introduces a more complex spatial
dynamics into the reservoir Eq. (2), which is likely to modify the
universal properties of the transition.

In contrast to all these works, here we demonstrate how the
dynamical instability of condensates under CW pumping with a
large spot (≈90 μm) can be tamed by introducing a periodic po-
tential. When condensation occurs in negative mass states, stable
condensates of arbitrarily large size (limited only by the available
total pump power) can be obtained while maintaining a coupling
to an excitonic reservoir of the standard form in Eq. (2), for which
rich KPZ driven-dissipative phase transitions are expected
[38,39,41–43].

3. SAMPLES AND EXPERIMENTAL SETUP

Our microcavities, grown by molecular beam epitaxy,
consist of a λ∕2 Ga0.05Al0.95As layer surrounded by two
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Ga0.8Al0.2As∕Ga0.05Al0.95As Bragg mirrors. To vary the quality
factor, we fabricate two sets of cavities: (1) moderateQ factor with
26 and 30 pairs in the top/bottom mirrors, respectively, yielding a
nominal quality factor Q � 30000; and (2) high Q factor with
28 and 40 pairs in the top/bottom mirrors, yielding nominally
Q � 70000. For both types of cavities, 12 GaAs quantum wells
of width 7 nm are inserted into the structure, resulting in a
15 meV Rabi splitting. The planar cavities are studied as such,
or patterned into ridges or lattices of coupled micropillars, by
e-beam lithography followed with dry etching (down to the
GaAs substrate).

In the experiments described below, polaritons are excited
non-resonantly with a CW monomode laser tuned to 740 nm.
The sample temperature is 6 K and the cavity-exciton detuning
is −10 meV (defined as the difference between the lowest-energy
cavity mode and the exciton resonance). The polariton emission is
collected with a 0.5 numerical aperture objective and focused
on the entrance slit of a spectrometer coupled to a charge-
coupled device camera. Imaging of the sample surface (resp.
the Fourier plane) allows studying polariton properties in real
(resp. reciprocal) space.

4. EXPERIMENTAL RESULTS IN 1D CAVITIES

We first consider 1D cavities, and we investigate polariton con-
densation in positive mass states. A wire cavity [width 3 μm and
length 200 μm, see Fig. 1(a)] of moderate Q factor is excited with
an elliptical spot of length 90 μm (intensity full width at half
maximum). Figure 1(b) shows the far-field emission at very
low pump power [for the transverse magnetic (TM) polarization,
i.e., parallel to the wire axis], evidencing a parabolic-like
dispersion (near k � 0) with an effective mass m ≃ 5 × 10−5m0

(m0 is the free electron mass). When increasing the pump power,
stimulated scattering causes the emission to collapse into a narrow
spectral line [53] centered at k � 0, as seen in the spectrum of
Fig. 1(c) obtained at P � 2Pth. The real-space image of the re-
sulting polariton condensate [Fig. 1(d)] and the corresponding
spatial profile [Fig. 1(f ), black line] reveal inhomogeneity in
the condensate density, with a typical contrast (ratio between

maximum and minimum density) C ≃ 2 at the center of the
pump spot.

To investigate the coherence properties of the condensate, we
employ Michelson interferometry [53]. We superpose the con-
densate image with its mirror symmetric, obtained by reflection
on a retroreflector, so that each point x of the condensate inter-
feres with the point located at −x. The corresponding interfero-
gram is shown in Fig. 1(e), for zero temporal delay (t � 0)
between the two arms of the interferometer. By extracting the
fringe visibility through Fourier analysis, we obtain the first-order
spatial coherence g�1��x, −x, t � 0�, which is plotted in Fig. 1(f )
(red line). The measured coherence extends over a much shorter
length scale than the condensate density, with a coherence length
(at 1∕e) of l c � 6 μm. This short spatial coherence is a first hint
of the presence of an instability and of the consequent turbulent
behavior. To gain further insight into this phenomenon, we in-
vestigate the temporal coherence. Figure 1(l) (green line) shows
the evolution of g �1��x � 0� when scanning the temporal delay t
of the interferometer. The decay is non-monotonic (a revival is
seen near t � 40 ps, see Supplement 1) and the envelope decays
within a coherence time τc ≃ 50 ps.

The density inhomogeneity [Fig. 1(f )] suggests that disorder is
playing an important role in the experiment, leading to a signifi-
cant spatial modulation of the condensate. We expect this effect
to be amplified if the ratio between the disorder amplitude and
the polariton linewidth increases (see discussion at the end of
Section 5). To test this dependence, we perform the same set
of experiments in a wire of high Q factor but similar disorder
strength. The real-space image [Fig. 1(h)] and spatial profile
[Fig. 1(j), black] of a condensate at P � 2Pth indeed reveal a
much stronger density inhomogeneity, with a typical contrast
C ∼ 10: the condensate fragments into distinct lobes. The inter-
ferogram [Fig. 2(i)] and extracted spatial g �1� [Fig. 2(j), red] dem-
onstrate that there is no mutual coherence between the different
lobes of the condensate. Hence, the coherence length is limited to
the lobe size and is of the order of l c � 8 μm, comparable to the
one of the moderate Q condensate of Fig. 1(f ). The coherence
time, on the other hand, is here twice longer with τc ≃ 120 ps
for each lobe [Fig. 1(l), blue line].

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

Fig. 1. (a) Scanning electron micrograph of 1D wire cavities. (b)–(c) Far-field emission (TM polarization) of a moderate Q wire cavity at pump power
(b) below and (c) above the condensation threshold (P � 2Pth). (d) Real space image of the condensate. (e) Interferogram obtained by superposing two
mirror-symmetric images of the condensate in a Michelson interferometer. (f ) Measured and (g) calculated spatial coherence g�1� at t � 0 (red), compared
to the spatial profile of the condensate (black) and of the pump spot (blue). (h)–(k) Same quantities as (d)–(g) obtained in a high Q wire cavity.
(l) Measured and (m) calculated evolution of the x � 0 temporal coherence, for the moderate (green line) and high Q wire cavity (blue line).
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Let us now investigate condensation in negative mass states, as
it can be achieved by patterning the cavity into a lattice [62–64].
Our intuition is here guided by the adiabatic approximation,
which led to the derivation of Eq. (3) for the effective interaction
g eff between polaritons. In this approximation, one can easily
show that, all other parameters kept the same, inverting the sign
of the mass reverses the effect of interactions [22–24], suppressing
the feedback loop at the heart of the modulational instability.

To test this prediction, we fabricate a 1D Lieb lattice of coupled
micropillars [65], as shown in Fig. 2(a). We here present data for a
moderate Q cavity, but we obtained similar results at high Q . Each
pillar has a diameter of 3 μm, and the lattice period is a � 5.8 μm.
The fundamental (s-symmetry) states of the pillars hybridize to form
three bands. For our lattice parameters, the two lowest are super-
imposed within the linewidth, but the upper band is well separated,
as seen in the far-field emission of Fig. 2(b) (TM polarization). This
upper band shows a negative curvature at the center of the second
Brillouin zones (k � �2π∕a, see vertical red arrows), yielding a
negative effective mass m ≃ −4 × 10−5m0 nearly equal to the oppo-
site of the mass of the wire cavities studied above [66]. Figure 2(c)
shows the condensate far-field emission at P � 1.5Pth, which is
concentrated at the top of the upper band. The real-space image
[Fig. 2(d)] and corresponding spatial profile [Fig. 2(f), black] show
that the condensate possesses a regular Gaussian-like envelope, the
disorder inducing only a minor modulation. The spatial coherence
at t � 0, extracted from the interferogram of Fig. 2(e), is shown in
Fig. 2(f) (red circles). As the antisymmetric character of the upper
band makes the condensate density vanish in between neighboring
pillars, we restricted our spatial sampling of the g �1� coherence func-
tion to the center of the pillars. We observe that the spatial coher-
ence extends over the whole condensate, yielding a coherence
length l c ≃ 35 μm, about five times higher than for positive mass
condensates [Figs. 1(f) and 1(j)]. The temporal coherence
g �1��x � 0, t�, shown in Fig. 2(h), reveals a slow and monotonic
decay with a long coherence time τc ≃ 210 ps, four times higher
than the one of the wire cavity of the same Q factor [Fig. 1(l),
green]. This strongly suggests that the condensate is here
dynamically stable.

To verify that the high coherence and homogeneity are due the
negative mass, and not simply to the patterning of the cavity into
micropillars, we also consider condensation in a positive mass
state of the lattice. For this, we use a lattice with slightly reduced
cavity-exciton detuning (−8 meV instead of −10 meV ) so as to
enhance the relaxation of polaritons towards the fundamental
state. In this condition, condensation is triggered at the bottom
of the lower energy band, as shown in the far-field spectrum of
Fig. 3(b) (power P � 1.5Pth, lattice period a � 5.2 μm). This
positive mass condensate is highly inhomogeneous [Figs. 3(c)
and 3(e)] and has short spatial coherence [Figs. 3(d) and 3(e)]
[67], similar to the positive mass condensates observed in 1D
wires (Fig. 1). Furthermore, the coherence time τc ≃ 20 ps
[Fig. 3(f )] is one order of magnitude smaller than for the negative
mass condensate [Fig. 2(h)]. Hence, the patterning of a cavity into
a lattice of micropillars is not sufficient to obtain homogeneous
and highly coherent condensates. These are obtained only when
condensation occurs in negative mass states.

Finally, a further evidence in support of our interpretation is
obtained by comparison to the case of condensation in a flat
energy band, which we have reported previously [65]. Since
the effective mass is infinite, kinetic energy is suppressed in this
case: density fluctuations cannot propagate, and the instability
mechanism described here is quenched. A condensate with homo-
geneous profile is thus obtained, but strongly reduced spatial co-
herence reveals the fragmentation of the condensate into
elementary plaquettes.

5. NUMERICAL SIMULATIONS

To get further physical insight into these condensation behaviors,
let us now compare these experimental results to theoretical pre-
dictions. We start from a linear stability analysis of the time-in-
dependent steady state, assuming a spatially homogeneous
system. Using parameters taken from the experiment, we calculate
the spectrum ω�k� of the elementary (Bogoliubov) excitations
(see Supplement 1). We first consider the adiabatic approxima-
tion, which has been widely used in the literature to describe vari-
ous polaritonic experiments employing small excitation spots.
Figure 4(a) shows the imaginary part of the spectrum for the pos-
itive mass condensate in the moderate Q wire cavity. In the low
wavevector region, the upper Goldstone branch takes positive

(a)

(f)

(d)

(e)

(h)

(i)

(g)

(b)

(c)

Fig. 2. (a) Scanning electron micrograph of a 1D Lieb lattice of micro-
pillars. (b)–(c) Far-field emission (TM polarization) of a moderateQ Lieb
lattice at pump power (b) below and (c) above the condensation thresh-
old (P � 1.5Pth). (d) Real space image and (e) interferogram of the con-
densate. Positions of the micropillars are indicated by black circles.
(f ) Measured and (g) calculated spatial coherence g�1� at t � 0 (red),
compared to the spatial profile of the condensate (black) and of the
pump spot (blue). (h) Measured and (i) calculated evolution of the
x � 0 temporal coherence.

(a)

(b) (e)

(c)

(d)

(f)

Fig. 3. (a)–(b) Far-field emission of a moderate Q Lieb lattice at pump
power (a) below and (b) above the condensation threshold (P � 1.5Pth)
when condensation is triggered into a positive mass state. (c) Real-space
image and (d) interferogram of the condensate. (e) Measured spatial
coherence g �1� at t � 0 (red), compared to the spatial profile of the
condensate (black). (f ) Measured evolution of the x � 0 temporal
coherence.
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imaginary values: perturbations at these wavevectors are exponen-
tially amplified by the system, corresponding to a modulationally
unstable regime of condensation. Figure 4(b) shows the spectrum
calculated for the negative mass condensate in the moderate Q
lattice: here, all excitation modes have a negative imaginary
part and are thus exponentially damped, corresponding to a stable
regime of condensation.

We now go beyond the adiabatic approximation by consider-
ing the full model formed by the coupled Eqs. (1),(2). As seen in
Fig. 4(c), the qualitative shape of the spectrum for the positive
mass condensate remains essentially unchanged, although quan-
titative values of the strength and wavevector for the onset of in-
stability are modified. For the negative mass condensate, however
[see Fig. 4(d)], the spectrum is qualitatively altered compared to
the adiabatic approximation, and a novel instability appears. Such
specifically non-adiabatic instability, not discussed previously in
the literature, is a priori relevant given our experimental param-
eters, but is not observed in our measurements.

Several mechanisms can be invoked to explain the suppression
of this new instability. In particular, in a lattice, the polariton line-
width is expected to be minimum in antisymmetric states [68,69].
In these states, the π phase difference of the wavefunction be-
tween neighboring sites leads to maximum polariton density in
the center of the pillars and zero density in the region in between
micropillars. It is in this region that non-radiative losses arising
from surface defects generated during the etching process present
a higher density. Therefore, antisymmetric states are expected to
have the longest lifetime. In our case [see Fig. 2(b)] condensation
occurs in such antisymmetric states located in the upper band at
the center of the Brillouin zones. The linewidth is then expected
to increase monotonically away from the zone centers as the phase
difference between neighboring sites progressively departs from π,
leading to higher probability density in between micropillars and
thus broader polariton linewidth. In our experiments we can
quantify this phenomenon by extracting the linewidth of

the low-power photoluminescence as a function of the wavevector
k (see Supplement 1, Fig. S5). In the upper band we find an
approximate linear increase of the linewidth, γ�k� � γ0 � γ 0jkj,
with ℏγ0 � 75�130� μeV for high (moderate) Q lattices, and
γ 0∕γ0 ≃ 1.6 μm. When introducing such momentum-dependent
linewidth in the simulations, the instability is indeed suppressed,
as shown in the spectrum of Fig. 4(f ). For the 1D wire
cavities, photoluminescence measurements also reveal a slight
k-dependency of the linewidth, γ 0∕γ0 ≃ 0.7 μm, which could
be linked to energy relaxation effects [70]. For completeness,
we include this effect in the simulations of the positive mass con-
densate as well: as shown in Fig. 4(e), the condensate remains in
the unstable regime.

To go beyond the stability analysis and simulate the spatial and
temporal coherence of the condensate, we now consider the full
nonlinear model of Eqs. (1),(2), including the k-dependent line-
width and the pump profile. We add a Gaussian noise term to
Eq. (1) so as to effectively account for all quantum, thermal, or
pump laser fluctuations, as well as a disorder potential with a stan-
dard deviation of 30 μeV corresponding to the typical disorder
strength of our cavities [65]. The shape of the disorder is adjusted
to fit the experimentally observed condensate density profiles
[e.g., Figs. 1(f ) and 1(j)]. Figures 1(g) and 1(k) show the simu-
lated time-averaged condensate density (black) and spatial coher-
ence at t � 0 (red) for the positive mass condensate, for moderate
and high Q wire cavities. Figure 1(m) shows the corresponding
temporal coherence, all in good agreement with the experiment.

The observed difference between moderate and highQ cavities
can be intuitively understood from the interplay between insta-
bility and disorder. At moderate Q , density fluctuations chaoti-
cally propagate along the condensate, resulting in a strongly
reduced spatial and temporal coherence: the non-monotonicity
in the temporal coherence [Fig. 1(l) and 1(m), green line] arises
from the scattering of density fluctuations on the disorder. At high
Q , on the contrary, due to the higher disorder/linewidth ratio,
density fluctuations are pinned into localized high-density areas,
which strongly constrains their dynamics and thus their ability to
spoil the temporal coherence [Figs. 1(l) and 1(m), blue line]. Note
that a similar interplay between nonlinearity, dissipation, and dis-
order is encountered in the instability of multimode fibers [5] and
random lasers [71].

Now turning to negative mass condensates, we calculate their
spatio-temporal coherence by considering the highest energy
band of the Lieb lattice in the tight-binding limit [69], and
we introduce disorder with the same amplitude as for positive
mass. Figures 2(g) and 2(i) show the spatial coherence at zero de-
lay �g �1��x, 0�� and the time decay of the coherence �g �1��0, t��.
The simulations show a smooth density profile and a high spatial
and temporal coherence, in good agreement with the experimen-
tal results [Figs. 2(f ) and 2(h)].

6. EXPERIMENTAL RESULTS IN 2D CAVITIES

The physical mechanism of the polariton instability is expected to
be independent of the dimensionality of the system (except at 0D,
where any dynamics is quenched) [31]. We have reported above a
complete set of data obtained in 1D systems, motivated by the
convenience in measuring and calculating coherence properties
in these systems, but similar results are expected in 2D cavities.
To test this prediction we have performed spatial coherence mea-
surements in 2D cavities, as reported in Fig. 5. The exciton

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 4. (a)–(b) Imaginary part of the Bogoliubov excitation spectrum
calculated under the adiabatic approximation, for a positive (a) and neg-
ative (b) mass condensate of moderate Q factor, assuming a constant po-
lariton linewidth γ0. (c)–(f ) Same quantities calculated with the full
model of coupled Eqs. (1),(2), with a constant linewidth (c, d) and with
a momentum-dependent linewidth (e, f ). Formulas and parameters are
given in the Supplement 1.
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detuning, polariton mass, and normalized pump power P∕Pth ≈
2 are similar to those used for 1D cavities.

The first two columns of Fig. 5 compare results obtained,
respectively, in planar cavities of moderate and high Q factors,
excited by a circular Gaussian pump spot with 60 μm radius
(we used a smaller size spot than for 1D experiments because of
power density limitation). From top to bottom are shown: the
real-space image of the condensate, the interferogram obtained
by superimposing two mirror-symmetric images, and spatial pro-
files of the condensate density and coherence along the axes in-
dicated by blue horizontal lines.

For the moderate Q planar cavity (first column), the conden-
sate extends on about 25 × 25 μm2 and shows slight density
inhomogeneity [black line in Fig. 5(c)], with a contrast C ≃ 2.
The spatial coherence [red line in Fig. 5(c)] extends on a much
shorter scale (l c ∼ 6 μm) than the condensate density, which in-
dicates the presence of an instability with signatures comparable
to the 1D moderate Q wire cavity studied in Fig. 1(f ).

Now turning to measurements performed in a high Q planar
cavity (second column of Fig. 5), we observe a strong increase of
the density inhomogeneity of the condensate, with a typical con-
trast C ≃ 10. The condensate fragments into distinct lobes, with
no mutual coherence between them [Fig. 5(f ), red]: the coherence
length is on the order of the lobe size, l c ≃ 10 μm. These data
corroborate the evidence for a fragmentation regime of the polar-
iton instability at highQ factors, similar to the 1D case [Fig. 1(j)].

Finally, in the last column of Fig. 5 we investigate condensation
in a negative mass state, by using a 2D honeycomb lattice of

micropillars (high Q factor and interpillar spacing 2.4 μm)
[62]. Condensation here occurs at the top edge of the π⋆ band,
thus in a negative mass quantum state. The honeycomb-shaped
spatial distribution of the condensate reflects the lattice geometry.
Here, we integrate the density and coherence over the three central
pillar rows (see horizontal lines). The envelope slowly decays fol-
lowing a smooth Gaussian-like profile [black points in Fig. 5(i)],
despite the presence of disorder with a similar amplitude as in the
planar cavities. The spatial coherence [red points in Fig. 5(f )]
extends over the whole condensate, with a coherence length
l c ≃ 35 μm about four times higher than for positive mass conden-
sates [Figs. 5(c) and 5(f )], pointing out a stable regime of conden-
sation. Note that the size of the condensates cannot be made larger
in these experiments because of limited available excitation density.

7. CONCLUSION

In summary, we have reported a comprehensive study of polariton
condensation in III-V cavities, by varying the sign of the effective
mass, the dimensionality, and the cavity Q factor. Due to effective
attractive interactions mediated by the exciton reservoir, positive
mass condensates are dynamically unstable as evidenced by a
strongly reduced spatial and temporal coherence and a spatially
inhomogeneous density. Using a lattice to invert the sign of
the polariton mass allows to suppress this instability and prepare
extended condensates with high spatial and temporal coherence.
This method opens exciting possibilities in view of investigating
novel driven-dissipative phenomena [36–43] with bosonic
condensates in a controlled platform.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 5. Condensation in 2D cavities. (a) Real-space image and (b) interferogram of the condensate in a planar cavity with moderateQ factor. (c) Cuts of
the condensate density and of the spatial coherence profiles along the horizontal axis indicated in (a)–(b). (d)–(f ) Similar measurements performed on a
high Q planar cavity. (g)–(i) Similar measurements performed on a high Q honeycomb lattice of coupled micropillars.
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