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Abstract— Renewable energy sources are increasingly 

deployed as distributed generators, restructuring the 

traditional electrical grid toward smart grids. Their 

intermittent power generation makes difficult the 

development of a complete carbon-free MicroGrid. Hence, 

aiming to keep the safe operation of a building MicroGrid 

(BMG) under stochastic variations in the power imbalance 

while respecting the requirements imposed by grid regulation 

to maximise self-consumption, a three-level energy 

management system was designed. The BMG main grid 

interaction aspects are assured by the two upper control level 

throughout a hierarchical model predictive control, whereas 

the power sharing among all electric vehicles is ensured via a 

deterministic state machine. The entire hierarchical control 

structure was tested through simulation in MATLAB under 

different scenarios. Results prove that the proposed control 

allows the BMG to keep its self-consumption index within 

expected boundaries despite environmental disturbances. 

Keywords— Renewable Energy, Model Predictive Control, 

Electricity Market, Power sharing, self-consumption index 

I. INTRODUCTION  

According to [1], buildings represent one-third of global 
final energy consumption. Consequently, numerous policies 
concerning building energy efficiency have been created to 
improve the whole electrical grid performance. The main 
target is to diminish the energy loss in transmission lines by 
reducing electricity exchanges with the main grid [2] and 
foster the transition from the fuel-based grid to a smart grid 
composed mostly of Renewable Energy Sources (RESs) [3].  

To achieve these objectives, the early concept of 
Building MicroGrids (BMGs), in which RESs are 
connected nearby the power consumption has been strongly 
encouraged by government financial incentives. All these 
investments aim to reduce building dependency on the main 
utility and to increase RES exploitation, either using BMG 
communities [4] or by independent BMGs [5]. 

However, BMGs which in one hand can be 
economically and environmentally advantageous, on the 
other hand increase the grid regulation complexity due to 
the subtle rise of electricity market actors (i.e. prosumers). 
Consequently, according to [6], without appropriate grid 
regulations, electricity price speculation and undesired grid 
instability may arise. For this reason, BMGs electricity 
market participation [2] is limited by stringent rules defined 
by regional regulatory commissions to motivate BMGs to 
consume most of its local renewable energy production, 
avoiding exchanging electricity with the main grid. As a 
result, the most important BMG requirement when trading 
in the electricity market is to keep both self-consumption 
(SC) and self-sufficiency (SS) indexes [7] indexes within 
adequate limits, restraining BMG to buy and sell electricity. 

Besides grid regulation constraints, the widespread of 
BMGs is also restrained by power generation and power 
consumption uncertainties which make difficult the 
development of a reliable and profitable Energy 
Management System (EMS). Moreover, all building 
requirements must be handled by a unique EMS, even 
though they are not in the same time scale. In front of this 
problem, the Hierarchical Control (HC) structure has 
demonstrated suitable to manage multivariable systems 
with different time frames [8] as those of BMGs.There are 
many different types of EMS algorithms and most of them 
were critically reviewed in [9]. Among the existent EMS 
algorithms, MPC approach has demonstrated its robustness 
against environmental disturbances, even with linear and 
simplified plant model [10].  

Hence, this paper presents a three-level building EMS, 
composed of two-level Hierarchical Model Predictive 
Control (HMPC) and one deterministic state machine 
module, for managing a BMG equipped with Li-ion 
batteries, a photovoltaic (PV) array and four Plug-in-
Electrical Vehicles (PEVs). The proposed control’s main 
objective is to respect building autonomy indexes 
boundaries defined by grid regulation policies, even with 
uncertainties in both power generation and power 
consumption. The main contribution of this paper is that it 
gives a full description of a hierarchical control capable of: 

• Trading electricity through an aggregator. 

• Responding to electricity price variation. 

• Managing multiple PEV charging stations.  

• Optimising building autonomy indexes (SC and SS).  

The remainder of this paper is structured as follows. 
Section II presents the plant under study by highlighting the 
BMG components and its context. Section III details the 
proposed control strategy with its cost function and 
constraints. Section IV shows the main results of the 
proposed HC in two different scenarios, followed by a brief 
discussion. Finally, Section V concludes the article. 

II. BMG CONTEXT AND OVERVIEW 

The system under study is a grid-connected BMG, 
which interacts with the community aggregator, as depicted 
in Fig. 1. Technical specifications of each BMG component 
are detailed in Table I.  

The building total power generation is provided either 
by the PVs or by purchasing electricity from the main grid. 
If PV power generation is higher than building demand load, 
the BMG can sell its surplus to the main grid according to 
its Levelized Cost of Energy. On the contrary, if a deficit is 
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verified, the BMG can purchase electricity under the 
community aggregator fixed price. 

TABLE I.  MICROGRID COMPONENTS 

Since the main objective of the hierarchical EMS 
(HEMS) is to maximise the BMG SC, the BMG prime 
interest is to exploit as much as possible the PVs and trade 
in the electricity market only in emergency situations. For 
this reason, the PV is always connected to the BMG and is 
controlled via the Maximum Power Point Tracking (MPPT) 
algorithm. Analogously, the EMS is conceived to reduce 
trading electricity with the main grid by 
charging/discharging both the Li-ion’s and PEVs’ batteries 
to match the building power consumption with PV power 
generation. Remarkably, PEVs can support BMG’s needs, 
operating as elastic loads, in which their energetic demand 
must be satisfied within the pre-defined schedule. 
Therefore, through energy storage system management, the 
BMG must respect the limitations in selling and purchasing 
electricity imposed by SC and SC indexes boundaries. 

Additionally, due to the low BMG energy capacity, the 
electricity trade with the main grid is executed indirectly by 
means of a community aggregator. The aggregator 
determines the final electricity price through an algorithm 
that depends on the grid power bids of each of its dependent 
BMGs [11]. Consequently, the community aggregator 
requires that each BMG sends its power bids (i.e. purchase 
and sell electricity) daily and hourly to determine the final 
electricity price of all aggregator’s BMGs and then 
negotiate with the main grid. For this reason, in this paper, 
the BMG aggregator interaction was divided into two 
control levels: one for the daily market (MPC1) and another 
for the intraday market (MPC2). Remarkably, the final 
aggregator price also reflects some grid regulation signals 
coming from market operators, working as demand 
response. In this paper, peak-hours and off-peak-hours 
electricity prices were incorporated in the HC to shave the 
energy demand peak.  

Another constraint that is considered in this paper is that 
the building EMS needs to respect the rules imposed by 
Capacity Allocation and Congestion Management (CACM) 
to avoid electricity price speculation. Therefore, two 
additional rules were taken into account. The first one is that 
only local produced energy can be sold, which means that 
prosumers are forbidden to sell power from their storage 
devices. The second one is to formulate reliable daily 
market (DM) bids to reduce trading in intraday market (IM). 
The reason behind this is that CACM requires faithful one 
day-ahead power exchanged planning from aggregators to 
mitigate the grid instability concerns [4]. Therefore, CACM 

charges additional taxes for short notice trades, making IM 
prices always higher than DM prices. 

III. PROPOSED CONTROL STRATEGY 

Aiming to keep adequate ranges of SC and SS indexes 
under PV power generation and building power 
consumption uncertainties, the EMS was divided into two 
MPCs and one Power Sharing Module (PSM), as illustrated 
in Fig. 1 and explained in paragraphs III-A and III-B, 
respectively.  

A. Two-level hierarchical MPC 

MPC optimises a pre-defined cost function each 

sampling time, taking into account the next state prediction 

to follow a desired trajectory in a future horizon composed 

of 𝑁  samples. In this context, a comprehensive BMG 

model is required to predict the next state and implement 

the MPC. In paragraph III-A1), the battery pack, the PEVs 

batteries, PV power generation and building demand 

models are detailed, whilst in paragraph III-A2) the MPC’s 

objective function and constraints are presented. It is 

noteworthy that the entire BMG was modelled using linear 

equations and the optimization problem was written as a 

Mixed Integer Programming in the MPC1 and Mixed 

Integer Nonlinear Programming in MPC2 solved in 

MATLAB by using the CPLEX framework of IMB®. 

1) Modelling of BMG components 

a) Power generation and power consumption 

The PV array and the building demand load were 
modelled based on prediction data of forthcoming PV power 
generation and total power demand. Typically, the PV 
power generation prediction data are estimated based on 
weather analysis, whereas the power consumption is 
predicted assessing dwellings behaviour.  

In this paper, the prediction data formulation was 
conceived by sampling  measurements from th PVs installed 
in the building of the Laboratory of Informatics and 
Automation for Systems (LIAS) at the University of Poitiers  

 

Fig.  1: Three-level HC structure for a grid-connected BMG. 
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Component Type Electrical specifications 

Photovoltaic array Hybrid solar panel; 𝑃𝑝𝑣𝑔𝑒𝑛
: 107 kWc 

Li-ion battery 

𝐶𝐵𝐴𝑇=120 kWh ; 𝜂
𝑐ℎ

𝐵𝐴𝑇
=0.97; 𝜂𝑑𝑖𝑠

𝐵𝐴𝑇=0.99; Max. 

Max. charge power (𝑃
𝐵𝐴𝑇

𝑀𝐴𝑋𝑠𝑝𝑒𝑐.): 20 kW; 

Max. discharge power (−𝑃𝐵𝐴𝑇
𝑀𝐼𝑁): 20 kW; 

Min. safe SoC (𝑆𝑂𝐶𝐵𝐴𝑇
𝑀𝐼𝑁): 20%; 

Max. safe SoC (𝑆𝑂𝐶𝐵𝐴𝑇
𝑀𝐴𝑋): 80%; 

PEV’s battery 

𝐶𝑃𝐸𝑉𝑖
 = 41 kWh; 𝜂𝑐ℎ

𝑃𝐸𝑉𝑖=0.97; 𝜂𝑑𝑖𝑠
𝑃𝐸𝑉𝑖=0.99; 𝑖 ∈

[1; 4]; Max. charge power (−𝑃𝑃𝐸𝑉𝑖

𝑀𝐴𝑋𝑐ℎ): 7 kW; 

Max. discharge power (𝑃𝑃𝐸𝑉𝑖

𝑀𝐴𝑋𝑑𝑖𝑠): 7 kW; 

Min. safe SoC (𝑆𝑂𝐶𝑃𝐸𝑉
𝑀𝐼𝑁): 20%; 

Max. safe SoC (𝑆𝑂𝐶𝑃𝐸𝑉
𝑀𝐴𝑋): 80%; 



in France and by collecting previous electricity bills of the 
Institute of Advanced Industrial Technologies (ESTIA) 
building. Although these data correspond to real data, they 
were used in the HMPC model as prediction data just for PV 
and building demand modelling purpose. To simulate the 
error in the prediction data, Gaussian disturbances were 

added, as pictured in Fig. 1 (𝜔𝑝𝑣 and 𝜔𝑑). 

b) Li-ion battery pack and PEVs batteries 

The Li-ion battery was modelled based on its State of 

Charge (SoC) as considered in [10]: 

 𝛽𝑐ℎ
𝑗

=
𝜂𝑐ℎ

𝑗
𝑇𝑠

𝐶𝑗
|

𝑗=𝐵𝐴𝑇,𝑃𝐸𝑉

 ; 𝛽𝑑𝑖𝑠
𝑗

=
𝑇𝑠

𝜂
𝑑𝑖𝑠
𝑗

𝐶𝑗

|
𝑗=𝐵𝐴𝑇,𝑃𝐸𝑉

 (1)  

 
𝑆𝑂𝐶(𝑘 + 1) = 𝑆𝑂𝐶(𝑘) − 𝛽𝑐ℎ

𝐵𝐴𝑇𝑃𝐵𝐴𝑇
𝑐ℎ (𝑘)

− 𝛽𝑑𝑖𝑠
𝐵𝐴𝑇𝑃𝐵𝐴𝑇

𝑑𝑖𝑠 (𝑘) (2)  

Where 𝑇𝑠 is the sample time of the SoC battery discrete 
model and 𝐶𝐵𝐴𝑇  is the battery capacity. Since the battery 
charge and discharge are not completely reversible, it was 
considered different efficiencies (𝜂𝑐ℎ and 𝜂𝑑𝑖𝑠)  when 

injecting (𝑃𝐵𝐴𝑇
𝑐ℎ ) or extracting (𝑃𝐵𝐴𝑇

𝑑𝑖𝑠 ) active power. 

Similarly, the PEVs batteries dynamic was calculated 
based on the average SoC of all PEVs, instead of modelling 
each PEV individually. Therefore, their total storage energy 
(𝐸𝑃𝐸𝑉) is calculated as in [12]: 

 

𝐸𝑃𝐸𝑉(𝑘 + 1) =  𝛾(𝑘)𝐸𝑃𝐸𝑉(𝑘) − 𝛽𝑐ℎ
𝑃𝐸𝑉𝑃𝑃𝐸𝑉

𝑐ℎ (𝑘)
− 𝛽𝑑𝑖𝑠

𝑃𝐸𝑉𝑃𝑃𝐸𝑉
𝑑𝑖𝑠 (𝑘)      

+ 𝑆𝑂𝐶𝑃𝐸𝑉
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐶𝑃𝐸𝑉𝑁𝑃𝐸𝑉

𝑎𝑟𝑟 (𝑘)  
(3)  

 𝛾(𝑘) = {
1 − 𝑁𝑃𝐸𝑉

𝑑𝑒𝑝(𝑘) 𝑁𝑃𝐸𝑉(𝑘)⁄ , 𝑖𝑓 𝑁𝑃𝐸𝑉(𝑘) > 0

0                                , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)  

 𝑁𝑃𝐸𝑉
𝑎𝑟𝑟 (𝑘)  and 𝑁𝑃𝐸𝑉

𝑑𝑒𝑝(𝑘)  represent the number of PEVs 

that arrived and departed at instant 𝑘, respectively. These 
two deterministic variables  are calculated from the total 
number of PEVs connected at instant 𝑘 (𝑁𝑃𝐸𝑉(𝑘)).  

2) MPC’s objective functions and constraints 

a) MPC1: Economical Model Predictive Control 

The upper level, named here as MPC1, is mainly 
responsible for determining the amount of energy to be 

traded into the DM in the following day (𝑃𝑔𝑟𝑖𝑑
𝐷𝑀  ). It also 

determines the power reference of charge and discharge of 
the battery pack (𝑃𝐵𝐴𝑇

𝐷𝑀 )  and the average PEVs batteries 
(𝑃𝑎𝑙𝑙 𝑃𝐸𝑉

𝐷𝑀 ) . The MPC1 module receives as input the PV 
power generation (𝑃𝑃𝑉

𝐷𝑀), the resident power consumption 
(𝑃𝑐𝑜𝑛𝑠

𝐷𝑀 )  and the number of PEVs plugged to the BMG 
(𝑁𝑃𝐸𝑉) prediction data with a horizon of 𝑁ℎ

𝐷𝑀. The MPC1 
updates its prediction data at each 𝑇𝑠

𝐷𝑀, which is discretized 
into 𝑇′𝑠

𝐷𝑀. 

The main role of MPC1 is to determine batteries power 
references and the active power grid commitment in the 

daily market (𝜃𝑀𝑃𝐶1
= [𝑃𝐵𝐴𝑇

𝐷𝑀 , 𝑃𝑎𝑙𝑙 𝑃𝐸𝑉
𝐷𝑀 , 𝑃𝑔𝑟𝑖𝑑

𝐷𝑀 ]) ])  for each 

slot time 𝑘2 ∈ [1; 𝑁ℎ
𝐷𝑀] that: 

• 𝑱𝟏: minimize grid energy exchange in the DM. 

• 𝑱𝟐: charge all PEVs before the end of the day.  

• 𝑱𝟑: maximize the self-consumption index (𝛼𝑠𝑐
𝐷𝑀) 

To assure these objectives, in each step time (𝑇𝑠
𝐷𝑀) the 

MPC1 minimises the following cost function: 

 min
𝜃𝑀𝑃𝐶1

𝐽𝑀𝑃𝐶1
= ∑ 𝐽1(𝑘1) + 𝐽2(𝑘1) + 𝐽3(𝑘1)

𝑁ℎ
𝐷𝑀

𝑘1=1
 (5)  

 𝐽1(𝑘1) = 𝜔1
𝐷𝑀,𝑘1  𝑃

𝑔𝑟𝑖𝑑

𝐷𝑀𝑝𝑢𝑟(𝑘1) − 𝜔2
𝐷𝑀,𝑘1  𝑃𝑔𝑟𝑖𝑑

𝐷𝑀𝑠𝑒𝑙𝑙(𝑘1) (6)  

 𝐽2(𝑘1) = 𝜔3
𝐷𝑀,𝑘1𝐸𝑃𝐸𝑉(𝑘1) (7)  

 𝐽3(𝑘1) = 𝜔4
𝐷𝑀,𝑘1 𝛼𝑠𝑐

𝐷𝑀 (𝑘1) (8)  

 Remarkably, the electricity price embedded in 𝐽1 

(𝜋𝑝𝑢𝑟
𝐷𝑀  and 𝜋𝑠𝑒𝑙𝑙

𝐷𝑀 )  reflects the demand response signal 

coming from the aggregator to reduce the power 
consumption in peak hours. Therefore, from 7 AM to 8 PM, 
the electricity price 𝜋𝑝𝑢𝑟

𝐷𝑀  is about 30% more expensive than 

off-peak periods, while 𝜋𝑠𝑒𝑙𝑙
𝐷𝑀  is kept constant all along the 

day. The factors 𝜔1
𝐷𝑀,𝑘1 , 𝜔2

𝐷𝑀,𝑘1 , 𝜔3
𝐷𝑀,𝑘1  and 𝜔4

𝐷𝑀,𝑘1  are to 

normalise the cost functions and guarantee that the pre-
defined multi-objective priority order is satisfied.  

Charging the PEVs is considered a high priority 
objective, followed by maximising SC rate and minimising 
the exchanges with the main grid. Consequently, in the case 
of deficit, it is expected that the BMG purchases electricity 
from the main grid to assure that all PEVs are charged at the 
end of the day, even though it will raise the total energy 
costs and penalise the self-efficiency index.  

The objective function defined in (5) – (8) is subject to 
equality and inequality constraints to respect the grid 
regulation rules previously mentioned. To guarantee the 
BMG safe operation, the power balance must always be 
satisfied. For this reason, equality equations (9) – (13) are 

imposed to MPC1, where 𝑃𝑔𝑟𝑖𝑑
𝐷𝑀𝑠𝑒𝑙𝑙 < 0 and 𝑃

𝑔𝑟𝑖𝑑

𝐷𝑀𝑝𝑢𝑟 > 0 

correspond to the amount of energy to be sold and purchased 
in DM. The prediction of the future state variables, which is 
based on the dynamic model equations (2) and (3), are also 
incorporated in the equality constraints as well as the SC 
rate calculation stated in (13). 

 𝑃𝑖𝑚𝑏
𝐷𝑀 (𝑘1) = 𝑃𝑐𝑜𝑛𝑠

𝐷𝑀 (𝑘1) − 𝑃𝑃𝑉
𝐷𝑀(𝑘1) (9)  

 𝑃𝑖𝑚𝑏
𝐷𝑀 (𝑘1) = 𝑃𝑔𝑟𝑖𝑑

𝐷𝑀 (𝑘1) + 𝑃𝐵𝐴𝑇
𝐷𝑀 (𝑘1) + 𝑃𝑎𝑙𝑙𝑃𝐸𝑉

𝐷𝑀 (𝑘1) (10)  

 𝑃𝑃𝐸𝑉(𝑘1) = 𝑃𝑖
𝑐ℎ(𝑘1) + 𝑃𝑖

𝑑𝑖𝑠(𝑘1)|𝑖=𝐵𝐴𝑇,𝑃𝐸𝑉 (11)  

 𝑃𝑔𝑟𝑖𝑑
𝐷𝑀 (𝑘1) = 𝑃𝑔𝑟𝑖𝑑

𝐷𝑀𝑠𝑒𝑙𝑙(𝑘1) + 𝑃
𝑔𝑟𝑖𝑑

𝐷𝑀𝑝𝑢𝑟(𝑘1) (12)  

 𝛼𝑠𝑐
𝐷𝑀(𝑘1) = 1 + ∑ 𝑃𝑔𝑟𝑖𝑑

𝐷𝑀𝑠𝑒𝑙𝑙(𝑘1)
𝑁ℎ

𝐷𝑀

𝑘1=1
∑ 𝑃𝑃𝑉(𝑘1)

𝑁ℎ
𝐷𝑀

𝑘1=1
⁄  (13)  

Since in the real system, it is not possible to neither 
charge and discharge the battery nor purchase and sell 
electricity at the same time, integer variables were 
incorporated into inequality constraints working as mixed 
logic dynamic constraints as presented in [10]. Still 
considering the BMG safe operation, it is essential to respect 
the electrical component manufacture datasheet 
(summarised in Table I) to extend the lifetime of MG’s 
distributed energy resources. Therefore, for each state and 
control variables 𝑥𝐷𝑀(𝑘1), boundary constraints are written 
as specified in the following general equation. 

 𝑥𝐷𝑀
𝑀𝐼𝑁 ≤ 𝑥𝐷𝑀(𝑘1) ≤ 𝑥𝐷𝑀

𝑀𝐴𝑋 (14)  

b) MPC2: Tracking Model Predictive Control 

 The middle level, called here as MPC2, tries to follow 
both Li-ion and PEV battery power reference calculated by 
MPC1 module. The MPC2 has three output signals. One 



signal is conceived to specify the building IM bids (𝑃𝑔𝑟𝑖𝑑
𝐼𝑀  ) 

and is sent toward the community aggregator. The second 
signal corresponds to the power reference for Li-ion battery 
pack (𝑃𝐵𝐴𝑇

𝐼𝑀 ), that is sent directly to the real system. The last 
signal is the average PEVs batteries power reference 
(𝑃𝑎𝑙𝑙 𝑃𝐸𝑉

𝐼𝑀 ) that is transmitted to the PSM. The MPC2 module 
receives the same inputs as MPC1 (𝑃𝑃𝑉

𝐷𝑀 , 𝑃𝑐𝑜𝑛𝑠
𝐷𝑀  and 𝑁𝑃𝐸𝑉), 

but more periodically (𝑇𝑠
𝐼𝑀) and more short-sightedly (𝑁ℎ

𝐼𝑀) 
than MPC1. As a result, the MPC2 has more accurate data 
than the upper layer, which enables it to correct the power 
references toward the real BMG and reduce the drawbacks 
provoked by data prediction uncertainties. 

The MPC2’s objective is divided into four major 
objectives to determine the corrective control variables 

(𝜃𝑀𝑃𝐶2
= [𝑃𝐵𝐴𝑇

𝐼𝑀 , 𝑃𝑎𝑙𝑙 𝑃𝐸𝑉
𝐼𝑀 , 𝑃𝑔𝑟𝑖𝑑

𝐼𝑀 ])  in each slot time 𝑘2 ∈
[1; 𝑁ℎ

𝐼𝑀]ℎ: 

• 𝑱𝟏: Track Li-ion battery pack power references. 

• 𝑱𝟐: Track PEV’s battery power references. 

• 𝑱𝟑: Minimize grid energy exchange in the IM. 

• 𝑱𝟒: Charge all the PEVs before their departure. 

To accomplish these objectives, the MPC2 minimises at 
each step time (𝑇𝑠

𝐼𝑀) the following cost function. 

 min
𝜃𝑀𝑃𝐶2

𝐽𝑀𝑃𝐶2
= ∑ 𝐽1(𝑘2) + 𝐽2(𝑘2) + 𝐽3(𝑘2)

𝑁ℎ
𝐼𝑀

𝑘2=1
+ 𝐽4(𝑘2)  (15)  

 𝐽1(𝑘2) = 𝜔1
𝐼𝑀(𝑃𝐵𝐴𝑇

𝐷𝑀 (𝑘2) − 𝑃𝐵𝐴𝑇
𝐼𝑀 (𝑘2))

2
 (16)  

 𝐽2(𝑘2) = 𝜔2
𝐼𝑀(𝑃𝑃𝐸𝑉

𝐷𝑀 (𝑘2) − 𝑃𝑃𝐸𝑉
𝐼𝑀 (𝑘2))

2
 (17)  

 𝐽3(𝑘2) = 𝜔3
𝐼𝑀,𝑘2  𝑃

𝑔𝑟𝑖𝑑

𝐼𝑀𝑝𝑢𝑟(𝑘2) − 𝜔4
𝐼𝑀,𝑘2  𝑃𝑔𝑟𝑖𝑑

𝐼𝑀𝑠𝑒𝑙𝑙(𝑘2) (18)  

 𝐽4(𝑘2) = −𝜔5
𝐼𝑀,𝑘2𝐸𝑃𝐸𝑉(𝑘2) (19)  

Where 𝜔1
𝐼𝑀 , 𝜔2

𝐼𝑀 , 𝜔3
𝐼𝑀,𝑘2 , 𝜔3

𝐼𝑀,𝑘2  and  𝜔5
𝐼𝑀,𝑘2 define the 

priority order of the multi-objective cost function, making 
𝐽4 to be satisfied firstly, followed by 𝐽2, 𝐽1 and 𝐽3. In (19), 

the value of 𝜔5
𝐼𝑀,𝑘2  depends on the estimated departure time 

of most of PEVs. The nearer the departure time is from 𝑘2, 

the higher 𝜔5
𝐼𝑀,𝑘2 . 

As in the upper level, the equality constraints are 
fundamental to assure the BMG power imbalance and to 
model the system behaviour. However, the power balance is 
calculated slightly different from the MPC1 because it 
considers the grid commitment in the daily market as an 
energy provider, as formulated in (20) and (21). However, 
the inequality constraints and boundary constraints were 
designed similarly to MPC1. 

 𝑃𝑖𝑚𝑏
𝐼𝑀 (𝑘2) = 𝑃𝑐𝑜𝑛𝑠

𝐼𝑀 (𝑘2) − 𝑃𝑃𝑉
𝐼𝑀(𝑘2) − 𝑃𝑔𝑟𝑖𝑑

𝐷𝑀 (𝑘2) (20)  

 𝑃𝑔𝑟𝑖𝑑
𝐼𝑀 (𝑘2) + 𝑃𝐵𝐴𝑇

𝐼𝑀 (𝑘2) + 𝑃𝑎𝑙𝑙𝑃𝐸𝑉
𝐼𝑀 (𝑘2) = 𝑃𝑖𝑚𝑏

𝐼𝑀 (𝑘2) (21)  

B. Power Sharing Module 

In the lower control level, named here as PSM, a 
deterministic state machine shares the average power 

reference 𝑃𝑎𝑙𝑙 𝑃𝐸𝑉
𝐼𝑀  coming from MPC1 among each PEV 

battery based on their current SoC. The PSM divide 𝑃𝑃𝐸𝑉
𝐼𝑀  

among the four PEVs charging stations so that to charge all 
PEVs at the end of the day. Since the number of equations 

rises according to the 𝑁𝑃𝐸𝑉
𝐼𝑀 , a state machine was developed 

rather than incorporating it into the existent MPC2 module. 
Basically, each PEV power reference is calculated based on 

the current SoC measurement (𝑠𝑖,𝑘 = 𝑆𝑂𝐶𝑃𝐸𝑉𝑖∈𝒞𝑘

𝑘 ) , 

forming the subset 𝒮𝑘 = {𝑠𝑖,𝑘|∀𝑖 ∈ [1; 4]}. Where 𝒞𝑘 is the 

subset containing all the PEVs connected at instant 𝑘. It also 
depends on the average (�̅� = 𝑚𝑒𝑎𝑛(𝒮𝑘)) , maximum 
(𝑣𝑑𝑖𝑠 = 𝑚𝑎𝑥(𝒮𝑘) )and minimum (𝑣𝑐ℎ = 𝑚𝑖𝑛(𝒮𝑘)) of SoC 
of all PEV connected at instant 𝑘. Contrary to MPC2, the 
PSM considers the maximum power allowed for each PEV. 
Therefore, at each step, the PSM updates the maximum and 
minimum power of the MPC2 average power reference 

(𝑃𝑃𝐸𝑉
𝑚𝑎𝑥&𝑚𝑖𝑛 in Fig. 1), by using the equation (22): 

 𝑃𝑃𝐸𝑉𝑖

𝑀𝐴𝑋𝑗
= ∑ 𝑚𝑖𝑛 (𝑃𝑃𝐸𝑉𝑖

𝑀𝐴𝑋𝑗
,  

(𝑣𝑗 − 𝑆𝑂𝐶𝑃𝐸𝑉𝑖

𝑘+1 )

𝛽𝑐ℎ
)

𝑁𝑃𝐸𝑉𝑘

𝑖=1
|
𝑗=𝑐ℎ,𝑑𝑖𝑠

 (22)  

Where 𝑆𝑂𝐶𝑃𝐸𝑉𝑖

𝑘+1  is the estimated 𝑃𝐸𝑉𝑖  SoC at 𝑘 + 1 using 

the 𝑃𝑃𝐸𝑉𝑖
 calculated in the power-sharing state machine 

interaction and the battery model (2). Therefore, the main 
steps of the PSM are: 

1. Measure 𝑁𝑃𝐸𝑉𝑘
 and 𝑠𝑖,𝑘. 

2. Determine 𝑣𝑐ℎ, 𝑣𝑑𝑖𝑠 and �̅�. 

3. Calculate the power reference of each PEV 

(𝒫 = {𝑃𝑃𝐸𝑉∀𝑖∈𝒞𝑘
}) using equations (23) – (27). 

4. Verify the feasibility of the result. If 𝒫 is a valid 

solution (i.e. all 𝑃𝑃𝐸𝑉𝑖

𝑀𝐴𝑋𝑐ℎ ≤ 𝑃𝑃𝐸𝑉∀𝑖∈𝒞𝑘
≤ 𝑃𝑃𝐸𝑉𝑖

𝑀𝐴𝑋𝑑𝑖𝑠  

and all 𝑆𝑂𝐶𝑃𝐸𝑉
𝑀𝐼𝑁 ≤ 𝑆𝑂𝐶𝑃𝐸𝑉∀𝑖∈𝒞𝑘+1

≤ 𝑆𝑂𝐶𝑃𝐸𝑉
𝑀𝐴𝑋) send 

the result to the real system, otherwise repeat steps 
1 to 3 with 𝑃𝑃𝐸𝑉∀𝑖∈𝒞𝑘

boundary limitation. 

The power-sharing of 𝑃𝑃𝐸𝑉
𝐼𝑀  is composed of two parts: a 

common part that is equal for all PEV (𝑃𝑃𝐸𝑉𝑖

𝑐𝑜𝑚 )  and an 

individual part (𝑃𝑃𝐸𝑉𝑖

𝑖𝑛𝑑 ) that depends on the distance either 

between the 𝑆𝑂𝐶𝑃𝐸𝑉𝑖
and 𝑣𝑐ℎ in the charging mode or 

between the 𝑆𝑂𝐶𝑃𝐸𝑉𝑖
 and 𝑣𝑑𝑖𝑠 in discharging mode. 

 𝑃𝑃𝐸𝑉
𝑐𝑜𝑚

𝑖,𝑘
= 𝑃𝑃𝐸𝑉

𝐼𝑀
𝑘(1 − 𝛼𝑘 𝑁𝑃𝐸𝑉𝑘

⁄ ) (23)  

 
𝑃𝑃𝐸𝑉

𝑖𝑛𝑑
𝑖,𝑘

= 𝛼𝑘𝑃𝑃𝐸𝑉
𝐼𝑀

𝑖,𝑘|𝑣𝑗 − 𝑠𝑖,𝑘| ∑ |𝑣𝑗 − 𝑠𝑖,𝑘|
𝑖∈𝒞𝑘

⁄ |
𝑗=𝑐ℎ,𝑑𝑖𝑠

 
(24)  

 𝑃𝑃𝐸𝑉∀𝑖∈𝒞𝑘
= 𝑃𝑃𝐸𝑉𝑖,𝑘

𝑐𝑜𝑚 + 𝑃𝑃𝐸𝑉𝑖,𝑘

𝑖𝑛𝑑  (25)  

 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡,𝑘
𝑘 = �̅� + 𝑃𝑃𝐸𝑉

𝐼𝑀
𝑘

∙ 𝛽𝑗
𝑃𝐸𝑉|

𝑗=𝑐ℎ,𝑑𝑖𝑠
 (26)  

 
𝛼𝑘 =

|𝑣𝑗 − 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑘 |

(𝑃𝑃𝐸𝑉
𝐼𝑀𝑘

∙ 𝛽𝑐ℎ,𝑑𝑖𝑠
𝑃𝐸𝑉 ) −

1
𝑁𝑃𝐸𝑉𝑘

∙
1

−
1

𝑁𝑃𝐸𝑉𝑘
+

(𝑀𝑘 − 𝑚𝑘)

∑ |𝑣𝑗 − 𝑠𝑖
𝑘|𝑖∈𝒞𝑘

||

𝑗=𝑐ℎ,𝑑𝑖𝑠

 
(27)  

IV. SIMULATION RESULTS AND DISCUSSION 

 To demonstrate the robustness of the developed HC, 
47ℎ were simulated under two different scenarios. The first 
one (Case A) is an ideal scenario where no disturbance was 
considered, whereas the second one (Case B) is a more 
realistic case, where uncertainties in data prediction were 
taken into account. Remarkably, in both scenarios, all PEVs 
connections were considered deterministic with well-known 
arrival and departure time. This assumption is aligned with 
the reality because the PEVs charging stations allow PEVs’ 



users to schedule their connections as soon as they plug their 
PEVs to the BMG. 

 The MPC1 horizon is 𝑁ℎ
𝐷𝑀 = 48ℎ , and the data 

prediction is updated each 𝑇𝑠
𝐷𝑀 = 24ℎ. Therefore, 72 ℎ of 

prediction data discretised into 𝑇′𝑠
𝐷𝑀 = 1ℎ  are needed. 

Likewise, MPC2 posses a horizon of 𝑁ℎ
𝐼𝑀 = 6ℎ  and 

optimises its cost function each 𝑇𝑠
𝐼𝑀 = 1ℎ. Fig. 2 shows the 

one-hour-step profile of the PV power generation prediction 
data used in this study, which correspond to a cloudy 
followed by a completely sunny and one partially sunny 
day. Analogously, the building demand is identical during 
the three days, with two energy demand peaks per day : the 
first one from 6 AM to 10 AM, followed by a second peak 
between 4 PM and 7 PM. 

 

Fig. 2: Data prediction of PV power generation (𝑃𝑃𝑉), building power 
consumption (𝑃𝑐𝑜𝑛𝑠) and number of PEVs plugged to the BMG (𝑁𝑃𝐸𝑉). 

 The HC’s main objective is to respect the French’s 
Energy Regulatory Commission recommendation to 
encourage SC for BMGs in France, in which all buildings 
must keep the SC index 𝛼𝑠𝑐 ≥ 80% and the SS index 𝛼𝑠𝑠 ≥
30%. In other words, over a year, the BMG must sell up to 
20% of PV power generation and buy up to 70% of its total 
power consumption. 

A. Case A:HMPC without any disturbance 

 The first case of study is an ideal scenario in which the 
data prediction is completely compliant with the real solar 
irradiation and the real power demand. Furthermore, it was 
considered that all PEVs arrived with a SoC of 20%, as 
shown in Fig. 3a. From Fig. 4c, it can be noted that the 

battery SoC in MPC1 (SOCDM)  is almost the same in 

MPC2(SOCIM). This result is expected because it is an ideal 
case, where the day ahead data prediction is the same as 
those one hour before. Consequently, the MPC2 achieves to 
follow the power references calculated by MPC1 reducing 
the amount of energy traded in IM, leading MPC2 optimal 
solution to be nearly the same as those in MPC1.  

 The small differences between SOCDM  and SOCIM  are 
because the MPC1 does not consider individual PEVs SoC 
boundaries, whereas the MPC2 limits 𝑃𝑃𝐸𝑉

𝐼𝑀 according to 

𝑃𝑃𝐸𝑉
𝑚𝑎𝑥&𝑚𝑖𝑛  from PSM. This situation happened at 35ℎ, 36ℎ 

and 38ℎ, where the 𝑃𝐵𝐴𝑇  and 𝑃𝑃𝐸𝑉 reached their maximum 

( |𝑃𝐵𝐴𝑇| = 20𝑘𝑊  or 𝑃𝑃𝐸𝑉 =  𝑃𝑃𝐸𝑉
𝑚𝑎𝑥&𝑚𝑖𝑛  ). Therefore, the 

MPC2 had to trade electricity in the IM. In Fig. 4, the battery 
packs are charged only in peak-hours energy demand, due 
to the restriction to charge the BMG storage devices only 
from PVs. However, when there is no PV power generation 
and purchasing electricity price is more expensive (peak-
hours), the batteries are discharged to reduce the electricity 
bill, as pictured in Fig.4a and Fig. 4b. 

 Notably, both autonomy indexes were kept within the 
recommended boundaries, i.e. 𝛼𝑠𝑐 ≥ 80%.and 𝛼𝑠𝑠 ≥ 30%,  

 

Fig.  3: State of charge of each PEV. (a) Ideal case without any disturbance 
(Case A). (b) Case with error in data prediction (Case B). 

 

 

Fig.  4: HMPC without any disturbance. (a) MPC1 variables in DM time 
frame. (b) MPC2  variables in IM time frame. (c) Li-ion batteries SoC, 
self-consumption and self-sufficiency index in the two days. 

without discharging or shifting PEVs to support the BMG. 
Although all PEVs are not plugged to the BMG at the same 
time, the PSM achieved to charge all PEVs to 80%. 

B. Case B:HMPC with disturbances 

 To verify the impact of prediction error data in the 
building autonomy indexes, a Gaussian disturbance of mean 
2𝑘𝑊 and a standard deviation of 4 𝑘𝑊 was introduced in 
the PV power generation (𝜔𝑝𝑣). and in the building demand 

(𝜔𝑑). Moreover, the initial PEV battery SoC was modelled 
as a random Gaussian variable with mean 30% and standard 
a deviation of 15 %, as illustrated in the Fig. 3b. 

 Due to differences in the data prediction in MPC1 and 

MPC2, the state variables SOCDM and SOCIM  are no more 
the  same. Each multiple  of  24ℎ,  the MPC1  state  variables 

are updated. For this reason, only the first 23ℎ, the SOCDM 
in Fig. 4c and Fig. 5c are equivalent. Afterward, the MPC1 
updates its knowledge and try to determine the best control 
variables. However, due to the disturbances 𝜔𝑑 and 𝜔𝑝𝑣,the 

MPC2  had  to  purchase  electricity  in  the  IM,  decreasing 



 

 

Fig.  5: HMPC with disturbances. (a) MPC1 variables in DM time frame. 
(b) MPC2 variables in IM time frame. (c) Li-ion batteries SoC, self-

consumption and self-sufficiency index in the two days. 

TABLE II.  HIERARCHICAL CONTROL MAIN RESULTS  

C
a

se
 

 𝜶𝒔𝒄 

[%] 

𝜶𝒔𝒔 

[%] 

Total power 

purchased c  

Total power 

soldc Total 

𝐏𝐕𝐠𝐞𝐧
c 

IM  DM IM DM 

A 
92.7a 

94.7b 

53.4 a 

60.8 b 
4.4 693.4 11.1 222.4 1684 

B 
91.7a 

93.8b 

47.2 a 
54.0 b 

419.4 702.5 19.5 275.4 1583 

aMinimum bAverage c  [kW] 

𝛼𝑠𝑠 slightly, as compared in Table II.  

To reduce exchanging electricity with the main grid, the 
MPC2 did not follow the 𝑃𝐵𝐴𝑇

𝐷𝑀  coming from MPC2. As a 
result, the Li-ion battery pack was less charged, ending the 
day with SoC around 25% instead of 40% in case A. In Fig. 
3b, some PEVs charging schedules were shifted to support 
the BMG. Furthermore, despite the random PEV initial 
SoC, the PSM achieved to charge all the four PEVs to 80%. 

 In Fig. 5c, it can be observed that at 12ℎ, 14ℎ and 16ℎ 
the BMG was obligated to sell electricity in IM market 
because the BMG had an unexpected power surplus that 
neither the Li-ion nor PEV batteries could absorb due to 
either physical constraint of the maximum power rate or full 
batteries charge (SOC = 80%). Since the difference in the 
total electricity sold is insignificant compared to the entire 
PV power production, the 𝛼𝑠𝑐in Case B is pratically equal 
to 𝛼𝑠𝑐  in Case A. In Case B, the BMG had to purchased 
more electricity in the IM, wich lead a reduction of about 
6% in the SC.  

V. CONCLUSION 

 This paper aims to demonstrate the feasibility of a 
hierarchical control structure in a medium-size office 
building MicroGrid. To keep the building autonomy 
indexes within expected boundaries under data prediction 
uncertainties, the energy management system was divided 

into three hierarchical control layers. The economic aspect 
was integrated as the main factor in the two-layer model 
predictive control optimisations, while a state machine 
assures the power-sharing. The results demonstrate that 
under external disturbances, the proposed control is capable 
of keeping the self-consumption index higher than 80% and 
self-sufficiency index greater than 30% during two days of 
simulation. Consequently, if every day both indexes are 
maintained within the recommended limits, the requirement 
during an entire year will also be satisfied. After the 
simulations, it was proved that the proposed hierarchical 
control could also guarantee that all PEVs be charged before 
their departure time, even though some of them were shifted 
in time to support BMG. Further work will focus on keeping 
adequate building autonomy indicator rates along an entire 
year, by adding a hydrogen storage system to cover the 
deficit of energy production during the winter. Additionally, 
modules to soften the effects of data prediction uncertainties 
will be investigated. 
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