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Abstract

Parathyroid hormone (PTH) stimulates hematopoietic cells through mechanisms of action that remain elusive. Interleukin-6
(IL-6) is upregulated by PTH and stimulates hematopoiesis. The purpose of this investigation was to identify actions of PTH
and IL-6 in hematopoietic cell expansion. Bone marrow cultures from C57B6 mice were treated with fms-like tyrosine kinase-
3 ligand (Flt-3L), PTH, Flt-3L plus PTH, or vehicle control. Flt-3L alone increased adherent and non-adherent cells. PTH did not
directly impact hematopoietic or osteoclastic cells but acted in concert with Flt-3L to further increase cell numbers. Flt-3L
alone stimulated proliferation, while PTH combined with Flt-3L decreased apoptosis. Flt-3L increased blasts early in culture,
and later increased CD45+ and CD11b+ cells. In parallel experiments, IL-6 acted additively with Flt-3L to increase cell
numbers and IL-6-deficient bone marrow cultures (compared to wildtype controls) but failed to amplify in response to Flt-3L
and PTH, suggesting that IL-6 mediated the PTH effect. In vivo, PTH increased Lin- Sca-1+c-Kit+ (LSK) hematopoietic
progenitor cells after PTH treatment in wildtype mice, but failed to increase LSKs in IL-6-deficient mice. In conclusion, PTH
acts with Flt-3L to maintain hematopoietic cells by limiting apoptosis. IL-6 is a critical mediator of bone marrow cell
expansion and is responsible for PTH actions in hematopoietic cell expansion.
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Introduction

Parathyroid hormone (PTH) and parathyroid hormone related

protein are pleiotropic factors that operate via endocrine,

paracrine, autocrine and intracrine modes of action. They are

implicated in different processes such as epithelial-mesenchymal

interactions, skeletogenesis and carcinogenesis [1,2,3]. PTH has a

positive impact on hematopoietic stem cells (HSCs), and is

currently being investigated as a potential therapeutic to stimulate

hematopoiesis and enhance bone marrow engraftment [4,5,6].

Despite extensive research on PTH skeletal actions, the mecha-

nisms for the hematopoietic impact are still elusive.

Both direct and indirect actions of PTH on cells of the

hematopoietic lineage have been proposed. PTH has long been

known to activate osteoclasts, cells of hematopoietic origin formed

by the differentiation and fusion of mononuclear monocyte-

macrophage lineage precursors that are responsible for bone

resorption. This activation is widely accepted to be indirect via an

upregulation of RANK-L in cells of the osteoblast lineage [7],

however reports exist of PTH receptors in osteoclasts as well [8,9].

The anabolic actions of PTH in bone have been suggested to be

associated with the differentiation stage of cells in the osteoclast

lineage [10]. Furthermore, other hematopoietic cells have been

proposed as targets of PTH action. T-lymphocytes have PTH

receptors and PTH induces altered responses in a T-cell deficient

background [11,12,13]. Many unanswered questions persist

regarding the impact of PTH on the variety of cells occupying

the bone marrow microenvironment.

PTH regulates several genes associated with hematopoiesis

including interleukin-6 (IL-6) [14]. IL-6 is a multifunctional cytokine

with diverse effects ranging from cell proliferation and differentiation

to apoptosis and cell survival [15]. IL-6 stimulates proliferation of

early hematopoietic progenitor cells (HPCs) [16]. IL-6 null mice are

apparently normal in terms of their survival, development, skeletal

phenotype and response to catabolic PTH [17]. Interestingly, IL-6

deficient mice have decreased numbers of HPCs, defective liver

regeneration and altered susceptibility to arthritis [18].

The purpose of this study was to determine the mechanism by

which PTH acts on cells of the hematopoietic lineage. The central

hypothesis is that PTH acts on bone marrow stromal cells to

stimulate IL-6 production. IL-6 in turn synergizes with fms-like

tyrosine kinase 3 ligand (Flt-3L), to increase hematopoietic cell

numbers. Given that IL-6 is upregulated by PTH and is also a

regulator of hematopoietic stem cells, the PTH induction of IL-6

in stromal cells and its additive effects with Flt-3L results in

hematopoietic cell expansion. We conclude that PTH increases

hematopoietic cells ex vivo via an inhibition of apoptosis in Flt-3L

responsive cells. PTH indirectly increases hematopoietic progen-
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itor cells and does not directly affect osteoclast lineage cells.

Stromal cell derived IL-6 in conjunction with Flt-3L mediates the

PTH activation of hematopoietic cells.

Materials and Methods

Mice
All experimental animal procedures were performed in compli-

ance with institutional ethical requirements and approved by the

University of Michigan Committee for the Use and Care of

Animals. Wild-type (Jackson Laboratory, Bar Harbor, ME, USA)

and IL-6 deficient [19] (kindly provided by Evan Keller, University

of Michigan, Ann Arbor, MI, USA) C57B6 mice at 4–8 wks of age

were used for ex vivo experiments. For in vivo experiments, mice

received subcutaneous injections of vehicle (saline) or 50 mg/kg/day

human PTH (hPTH 1–34, Bachem; Torrance, CA, USA) for three

weeks beginning at 4 days of age, then were sacrificed 48 hours after

the last injection as previously described [20].

Bone marrow cell isolation and ex-vivo cell amplification
Total bone marrow cells from femurs and tibiae were isolated

by extraction of long bone marrow into Iscove’s Modified

Dulbecco’s Medium (IMDM; Invitrogen; Carlsbad, CA, USA)

followed by filtration through a nylon mesh screen (70 mm, BD

Falcon, Franklin Lakes, NJ, USA). The ex vivo amplification

protocol is based on Servet-Delprat’s model system [21]. In brief,

cells were seeded at 1.86105/cm2 in IMDM supplemented with

20% fetal bovine serum, 100 units/ml penicillin, 50 mg/ml

streptomycin and 1% glutamine. At the time of plating, cells

were treated once with Flt-3L (5 ng/ml or 100 ng/ml. Although 2

different concentrations were utilized, they produced the same

biological effect) (Emory University; Atlanta, GA, USA or R&D

Systems; Minneapolis, MN, USA) and/or PTH 10 nM. Ex vivo

experiments were performed on day 8 of culture unless otherwise

specified. Cells were enumerated using a hemocytometer on days

2, 4, 6 and 8 and cell viability was determined by trypan blue dye

exclusion. In similar experiments, C57B6 bone marrow cells were

harvested and treated with 10 ng/ml mIL-6 (R&D Systems) plus

vehicle, PTH, Flt-3L, PTH with Ftl-3L and/or the addition one

hour later of cucurbitacin, a STAT inhibitor, (20 and 40 nM)

(Calbiochem, San Diego, CA, USA).

RNA extraction and quantitative reverse transcriptase-
polymerase chain reaction

Total RNA was collected from non-adherent cells at days 2, 4, 6

and 8 and from fresh bone marrow (used as a positive control).

RNA isolation was performed using Trizol reagent (Invitrogen)

according to the manufacturer’s protocol. Total RNA (0.5 mg) was

reverse transcribed using TaqManH Reverse Transcription

Reagents (Applied Biosystems; Branchburg, NJ, USA) according

to the manufacturer’s protocol. One microliter (1 ng) of reverse

transcribed product was amplified with TaqManH Universal PCR

Master mix (Applied Biosystems) and gene-specific primers

designed by Applied Biosystems (Flt3 Mm00438996_m1 and

GAPDH 4308313). The amplification program was set for 1 cycle

at 50uC for 2 min, 1 cycle at 10uC for 10 min followed by 40

cycles at 95uC, 15 sec; 60uC, 1 min using the Applied Biosystems

7500 Real-Time PCR System. Relative induction was determined

by the 2-DDCt method using GAPDH and the fresh bone marrow

extraction for normalization and comparison [22].

Flow cytometric analyses
Flow cytometric analyses (FACS) of bone marrow extractions

and cultured cells were performed. For the in vivo experiments

bone marrow cells were isolated as described above, rinsed and

resuspended in cold FACS buffer (PBS supplemented with 2 mM

EDTA and 1% FBS). A small aliquot was treated with 1X ACK

Lysis Buffer and enumerated without red blood cells. Cells

(56106/sample) were incubated for 45–60 minutes at 4uC with

appropriate antibodies and protected from light exposure. Cells

were washed with FACS buffer, resuspended and analyzed on a

FACSCalibur (BD Biosciences, San Jose, CA) using the Cellquest-

Pro software (BD Biosciences) to detect specific cell populations.

All antibodies were acquired from BD-Pharmingen and the cell

markers analyzed were Ly-6A/E (Sca1+), CD117 (c-Kit+, 2B8),

CD45R/B220, and Ly-6g and Ly-6C (Lineage-). To analyze

apoptosis the BD-Pharmingen AnnexinV: FITC conjugated

apoptosis assay system was used, following the manufacturer’s

protocol.

Ex vivo experiments were performed to characterize cell

populations, apoptosis and cell cycle. To identify different cell

populations, non-adherent cells were collected at various time

points, pelleted, rinsed with PBS and then incubated with the

appropriate antibody. The following antibodies were utilized:

IL7Ra+, CD192, CD32 (lymphoid progenitor cell) CD45+ (cells

of the hematopoietic lineage excluding erythrocytes), CD11b+

(monocyte/macrophage), GR-1+ (granulocyte), CD3+ (T-cell) and

CD-19+ (B-cell) antibody (BD Biosciences). To analyze apoptosis

the BD-Pharmingen AnnexinV: FITC conjugated apoptosis assay

system was used. Samples were run using the FACSCalibur system

and data was analyzed with Cell Quest Pro software. For cell cycle

analysis cells were fixed in 50% cold ethanol, pelleted then stained

with 10 mg/ml Propidium Iodide (BD Biosciences) and 100 mg/ml

RNAse (Sigma-Aldrich, St. Louis, MO, USA). Data were acquired

using a FACSCalibur system and data analyzed with ModFit

software (Verity Software House, Topsham, ME, USA).

Protein extraction and western analysis
Suspension cells underwent centrifugation and were washed

once with PBS, then resuspended in CelLytic MT mammalian

tissue lysis extraction reagent (Sigma-Aldrich) with 1% Protease

Inhibitor Cocktail (Sigma-Aldrich). After incubation, supernatants

were collected for analysis. SDS-PAGE was performed on 4–20%

gradient acrylamide gels, loading 30 mg/sample. Membranes were

blocked for 1 hour in 5% nonfat milk in TBST, incubated

overnight with cyclin D1 antibody (Cell Signaling Technology,

Danvers, MA, USA), rinsed with TBST and incubated with

secondary antibody (GE Healthcare, Piscataway, NJ, USA). After

rinsing with TBST, membranes were incubated with enhanced

chemiluminescence reagents (Pierce Biotechnology; Rockford, IL,

USA) and exposed to BioMax film. Bands were normalized with

actin, and compared using either ImageJ analysis program (Wayne

Rasband, wayne@codon.nih.gov) or a Chemidoc visualization/

quantification system (Bio-Rad Laboratories; Hercules, CA, USA).

Relative band densities were evaluated using the InStat statistical

analysis program (GraphPad; San Diego).

Osteoclastic cell differentiation
Non-adherent cells that were expanded for 8 days were re-

seeded at 1.86105 cells/well in 24-well-plates with a-MEM

supplemented with 10% fetal bovine serum, 100 units/ml

penicillin, 50 mg/ml streptomycin and 1% glutamine, in the

presence of 50 ng/ml M-CSF (R&D Systems), and 3–30 ng/ml

RANK-L (Peprotech; Rocky Hill, NJ, USA). When osteoclasts

were observed (about 6 days in culture) tartrate resistant acid

phosphatase (TRAP) staining of osteoclasts was performed using a

leukocyte acid phosphatase system (Sigma-Aldrich) performed

according to the manufacturer’s protocol. Osteoclasts per area
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were counted. Using the same protocol, forskolin (a cAMP

activator) and tetrahydrofurfuryl adenine (THFA) (a cAMP

inhibitor) (Sigma-Aldrich) were also used to mimic PTH receptor

signaling.

Immunofluorescence and confocal laser scanning
microscopy

Cells were fixed in 4% paraformaldehyde, pH 7.2 for 10 min,

permeabilized with 0.2% Triton X-100 for 7 min, then incubated

with Anti-vinculin (clone Vin11-5) (Sigma-Aldrich) and F-actin

distribution was revealed with AlexaFluor-546-Phalloidin from

Molecular Probes (Eugene, OR, USA). Cells were imaged with a

confocal Zeiss LSM 510, using a X63 (NA1.4) Plan Neofluor

objective. To prevent contamination between fluorochromes, each

channel was imaged sequentially, using the multi-track recording

module, before merging. Z-cut pictures were obtained using Zeiss

LSM 510 software.

Osteoclast Transmigration Assay
The osteoclast transmigration assay was performed as previ-

ously described[23]. In brief osteoclasts were seeded on MC3T3-

E1 cell layers, treated with control or 0.1–10 nM PTH then fixed.

Cells were stained with phalloidin to visualize actin using confocal

microscopy. Cells were imaged with a confocal Zeiss LSM 510,

using a X63 (NA1.4) Plan Neofluor objective.

Osteoclast function (resorption pits)
To determine osteoclast resorptive activity, non-adherent cells

that were expanded for 8 days were re-seeded at 1.86105 cells/

well into BD BioCoatTM OsteologicTM Discs (BD Biosciences) or

ACC (apatite collagen complexes) coverslips [24] in a-MEM

supplemented with 10% fetal bovine serum, 100 units/ml

penicillin, 50 mg/ml streptomycin and 1% glutamine in the

presence of 50 ng/ml M-CSF and 30 ng/ml RANK-L. Once

multinucleation was initially observed, cells were treated with

vehicle, PTH or calcitonin (Calbiochem, EMD chemicals; Gibbs-

town, NJ, USA) as a control. When resorption pits were observed

(about 6 days in culture), wells/discs were incubated with 10%

sodium hypochlorite for 5 minutes to remove the osteoclasts and

wells/discs were rinsed with water and allowed to dry. The

resorption pit area was calculated using Image-Pro Plus software

(Media Cybernetics; Bethesda, MD, USA) and normalized to the

total area. Experiments were performed in duplicate, and two

different areas were averaged per well. ACCs were prepared using

the method previously described.[24]

Wright-Giemsa Stain
Ex vivo cell amplification was performed as described above.

Non-adherent cells from day 4 ex vivo cultures or freshly extracted

bone marrow were diluted in PBS with 2% bovine serum albumin.

Cells were placed in a cytospin apparatus (Thermo Fischer

Scientific; Waltham, MA, USA) and centrifuged for 10 minutes at

600 rpm. Cells were stained using the Hema-tek automated slide-

stainer (Miles; Elkhart, IN, USA). One hundred cells were scored

per slide. Scoring was performed in duplicate.

Statistical Analyses
All experiments were repeated a minimum of two times in

duplicate. Student’s t-test or ANOVA for independent analyses

were performed using the GraphPad InStat Software Program

(GraphPad Inc., San Diego, CA, USA). The value of p,0.05 was

considered significant.

Results

PTH expands non-adherent and adherent cells ex vivo
An ex vivo hematopoietic amplification system was performed to

elucidate the mechanisms of PTH action on cells of the

hematopoietic lineage. Bone marrow cells were isolated and

treated with a single application of PTH, Flt-3L or a combination

of both. Flt-3L is produced by several cell types, including stromal

cells, and is important for HSC expansion, macrophage survival

and development [21,25].

As expected, Flt-3L increased non-adherent cell numbers over

an 8-day period (Figure 1A) [21]. When the bone marrow cells

were treated with PTH alone, the non-adherent cell pool was not

amplified. Interestingly, when PTH was added in conjunction with

Flt-3L, there was an additive increase in non-adherent cell

numbers compared to Flt-3L alone at day 8, suggesting that

PTH selectively targeted the Flt-3L responsive population.

In the adherent cell population, Flt-3L increased the cell

numbers starting at day 4 of amplification compared to vehicle

Figure 1. PTH augments Flt-3L cell expansion. Whole bone marrow was isolated from C57B6 mice and seeded at 1.86105 cells/cm2 and treated
with vehicle, Flt-3L (100 ng/ml), PTH (10 nM), or a combination of Flt-3L and PTH. Non-adherent (A), and adherent (B), cell populations were
harvested at days 2, 4, 6, and 8, then enumerated using trypan blue exclusion. Data shown are mean 6 SEM of 2 experiments performed in duplicate.
Error bars are present on all data points. * p,0.05 versus vehicle ** p,0.05 versus all other groups.
doi:10.1371/journal.pone.0013657.g001
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(control) (Figure 1B). A single PTH treatment administered to

fresh bone marrow cultures did not increase adherent cell numbers

when compared to control cells. Similar to non-adherent cells,

PTH in combination with Flt-3L significantly increased cell

numbers above those of Flt-3L alone at day 8 of amplification,

reaffirming that PTH effects are additive in the context of Flt-3L.

We observed an increase in adherent hematopoietic cells with Flt-

3L treatment (CD11b+ and CD45+ cells, data not shown).

However, the increase in cell numbers could also be due to an

increase in the stromal cell population.

Indirect effect of the PTH on hematopoietic cells
expansion

Previous reports have demonstrated that cells other than

osteoblasts have PTH receptors [26]. To determine if PTH has

a direct effect on cells of the hematopoietic lineage, bone marrow

cells were treated with PTH and evaluated for their ability to

undergo osteoclastic differentiation. Whole bone marrow cells

were plated and treated with Flt-3L, PTH, or Flt-3L plus PTH at

day 0. At day 8, non-adherent cells were re-plated and cultured in

the presence of M-CSF and RANKL (0–30 ng/ml) to induce

osteoclast differentiation. TRAP+ cells were enumerated after 6

days of culture, and revealed that Flt-3L and Flt-3L combined with

PTH increased osteoclast numbers compared with vehicle treated

cells (Figure 2A). PTH alone did not alter osteoclast numbers;

however, PTH augmented the Flt-3L effect (Figure 2A). Similarly,

pre-treating bone marrow cells with PTH, M-CSF and RANKL

did not alter osteoclast differentiation versus no PTH treatment

(Figure 2B). Furthermore, the PTH signaling agonist forskolin

(FSK) decreased osteoclastogenesis as compared to control, while

the tetrahydrofuryladenine (THFA), a cAMP inhibitor, increased

osteoclast numbers. This suggests that the cAMP pathway has the

ability to directly modulate osteoclastogenesis but in an opposite

manner than would be consistent with PTH receptor signaling.

PTH has no direct effect on osteoclasts and their
precursors

Osteoclasts are highly polarized cells and exhibit several

features, such as podosomes, when they are spread on glass

whereas, when cultured on apatite mineral (ACC), they exhibit

another actin-rich structure, the sealing zone, which seals off the

resorption area [23,27]. To determine whether PTH directly

altered osteoclast spreading, mature osteoclasts were plated on

glass or apatite mineral (ACC) and treated for 15 mins or 2 hours

with PTH (Figure 2C). Confocal imaging of vinculin (in green) and

F-actin (in red), demonstrated no direct effect of PTH on

podosome clusters after 15 min or on podosome belts after

2 hours (Figure 2C). Similarly, the sealing zone formation was not

altered when osteoclasts spread on ACC were treated with PTH

(Figure 2C). Osteoclasts are also highly migratory cells and able to

transmigrate (23). The impact of PTH on osteoclast transmigra-

tion was analyzed. Osteoclasts were seeded on MC3T3-E1 cell

layers, treated with PTH (0.1–10 nM) or vehicle control then fixed

4 or 12 h after treatment and stained with phalloidin to visualize

actin using confocal microscopy. Multinucleated osteoclasts

transmigrated through confluent layers of osteoblastic cells in a

similar manner whether they were treated with PTH or vehicle

control (Figure 2D). Moreover, when osteoclastic cells were treated

with PTH there was no alteration in osteoclast resorption capacity,

as measured by quantification of resorption pits on a mineralized

substrate (Figure 2E). These experiments suggest that PTH does

not act directly on hematopoietic cells destined to the osteoclast

lineage.

PTH in combination with Flt-3L decreases cell apoptosis
Since PTH combined with Flt3-L increased hematopoietic cell

amplification, the implication of PTH and Flt-3L in cell

proliferation and apoptosis was investigated. The mRNA expres-

sion and protein levels of cyclin D1 in the non-adherent cell

populations were analyzed at days 2, 4, 6 and 8. Cyclin D1 mRNA

expression (Figure 3A) and protein levels (Figure 3B) were

increased with Flt-3L but there was no significant additive effect

with PTH treatment. To further analyze the increase in cell

numbers observed in the Flt-3L plus PTH group, cell cycle

analysis was performed at days 2, 4, 6 and 8. Flow cytometric

analyses demonstrated an increase in G1, S (DNA synthesis) and

G2 phases at days 4, 6 and 8; with Flt-3L; however, there was no

statistical difference in cell cycle analyses when Flt-3L was

compared to the combination PTH plus Flt-3L (Figure 3C).

Concomitantly, to determine if the increase in cell numbers

observed through the combination of PTH plus Flt-3L was due to

alterations in cell apoptosis, Annexin V+ Propidium Iodide- cells

were analyzed by flow cytometry at days 2, 4, 6 and 8. Flow

cytometric analyses at day 8 showed a decrease in Annexin V+

Propidium Iodide-, representing early apoptosis in cells treated

with Flt-3L plus PTH compared to those treated with Flt-3L alone

(Figures 4 A & B). To further validate the differences observed at

day 8 with Flt-3L and the combination of PTH plus Flt-3L, flow

cytometric analyses for activated caspase 3 in these two treatment

groups were performed. At day 8, there was a statistical decrease

in the percentage of active caspase 3 in the group treated with

PTH plus Flt-3L compared to the group treated with Flt3-L only

(Figure 4C).

To determine if PTH had the ability to decrease cell apoptosis in

vivo, flow cytometric analyses for Annexin V+ cells were performed.

Wildtype C57B6 mice received 50 mg/kg of PTH or vehicle daily

for 3 weeks as previously described [20]. Bone marrow cells from

PTH treated animals had a reduced percentage of Annexin V+

early apoptotic cells compared to vehicle treated control mice

(Figure 4D). All together, the data suggest a role for PTH in the

survival of bone marrow cells in vivo and also ex vivo when acting in

conjunction with Flt-3L, an important ligand in hematopoiesis.

PTH did not alter the Flt-3L amplified population
Flt-3L is known for its ability to enrich the myeloid cell

population as evidenced by an increase in CD11b+ cells [21]. To

evaluate the phenotype of the non-adherent cells responsive to PTH

in our system, a morphologic analysis was performed on Wright-

Giemsa stained preparations of the non-adherent cell population at

day 4 of culture (Figure 5A). Blast cell numbers were increased in the

presence of Flt-3L, whereas granulocyte numbers were decreased at

day 4 in culture. The number of monocytes, eosinophils,

lymphocytes and erythroid cells in Flt-3L treated groups were not

different compared to vehicle and PTH treated groups (Figure 5B).

PTH did not alter the Flt-3L effects on cell populations at day 4 in

culture (Figure 5B). To further determine the phenotype of the

Flt-3L and the Flt-3L in combination with PTH groups,

flow cytometric analyses for IL7Ra+ CD192 CD32 (lymphoid

progenitor), CD45+(myeloid), CD11b+(monocyte/macrophage),

GR1+(granulocyte), CD3+ (T-cell), and CD19+ (B-cell) cells were

performed in the non-adherent cell populations at day 8 in culture.

Flt-3L significantly increased the CD45+ and CD11b+ cells in the

non-adherent cell population. Flt-3L did not alter the IL7Ra+

CD192 CD32, GR1+, CD3+ nor the CD19+. PTH had no specific

effect on any of the markers in the non-adherent cell population

(Figure 5C). When CD11b+ cells and CD45+ cells were also gated

for Annexin V- cells (live cells), there was an increase in cell numbers

with Flt-3L. However, there was further increase when PTH was

PTH Role on Hematopoietic Cell
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Figure 2. Lack of direct effect of PTH on cells of the osteoclast lineage. (A) Non-adherent cells expanded in the presence or absence of Flt-3L
(100 ng/ml) or PTH (10 nM), a combination of both, or vehicle (control), were counted and plated at equal numbers and allowed to differentiate in
osteoclastogenic media, then induced via RANK-L (0–30 ng/ml) and M-CSF (50 ng/ml). Five days later, multi-nucleated TRAP+ cells were counted.
Data are mean 6 SEM of 2 experiments performed in duplicate. * p,0.05 versus respective vehicle or PTH alone ** p,0.05 versus all other groups in
their respective RANK-L concentrations. The 0 ng/ml RANK-L resulted in no osteoclasts; therefore, the data was not plotted. (B) Cells were expanded
in Flt-3L (5 ng/ml) media for 8 days with or without 10 nM PTH. Cells were counted and plated at equal numbers, then induced via RANK-L (30 ng/ml)
and M-CSF (50 ng/ml) to differentiate with additional treatments of PTH, forskolin or tetrahydrofuryladenine (THFA). Multinucleated TRAP+ cells were
enumerated 5 days later. Data are mean 6 SEM of 2 experiments performed in duplicate. *p,0.05 and **p,0.01 versus vehicle. (C) Visualization of
the cytoskeleton of actin, by confocal microscopy in mature osteoclasts seeded on coverslips or ACC and stained for actin and vinculin at different
time points. All images are the same magnification. (D) Osteoclast transmigration assay: osteoclasts were seeded on MC3T3-E1 cell layers, treated
with 0–10 nM PTH then fixed. Cells were stained with phalloidin to visualize actin under confocal microscopy. Data are mean 6 SEM of number of
osteoclasts that transmigrated compared to the total number of osteoclasts. Experiments were performed a minimum of 3 times. * p,0.05 versus
vehicle or PTH. (E) Osteoclast functional assay: Cells were expanded in the presence of Flt-3L (100 ng/ml). At day 8, they were seeded onto ACC (TRAP
staining) or osteologic disks (resorption pit assay) and induced to differentiate in the presence of 50 ng/ml M-CSF and 30 ng/ml RANK-L. When
osteoclasts started to form, PTH, calcitonin or vehicle (control) were added to the medium. Data are mean 6 SEM of the area of the pit divided by the
total area. Experiments were performed a minimum of 3 times in duplicate. * p,0.05 versus vehicle.
doi:10.1371/journal.pone.0013657.g002
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added in combination with Flt-3L (Figure 5D), suggesting that PTH

decreases apoptosis of myeloid cell populations.

PTH expansion is mediated by IL-6 ex vivo
PTH is well known to increase the production and secretion of IL-

6 [14], a factor which plays an important role in hematopoiesis [28].

To determine if IL-6 is a factor implicated in the ex vivo bone marrow

amplification observed in the presence of PTH and Flt-3L, bone

marrow cells were cultured for 8 days with a single treatment of PTH,

Flt-3L or PTH plus Flt-3L in the presence and absence of IL-6 at the

time of plating. IL-6 alone did not alter cell amplification (Figure 6).

Interestingly, IL-6 had an additive effect on the Flt-3L amplification

of both cell populations (Figure 6A–B), which was similar to that seen

with PTH in the non-adherent and adherent cell populations.

To further validate the IL-6 impact on hematopoietic cell

expansion, bone marrow cells derived from wild-type and IL-6

deficient mice were isolated and cultured with a single treatment of

Flt-3L, PTH or combined treatment for a period of 8 days. At day 8,

adherent and non-adherent cells were enumerated. Flt-3L increased

both populations in cells derived from the wild-type bone marrow

and the combined treatment had an additive effect compared Flt-3L

alone (Figure 6C–D). Interestingly, the amplification of both

populations, with Flt-3L alone or combined with PTH was lower

in the bone marrow cultures derived from the IL-6 deficient mice.

More precisely, no added amplification with PTH was observed for

the non-adherent population (Figure 6C). While a slight increase

was noticed after Flt-3L alone or in combination with PTH in the

adherent cell populations, no additive effect was observed with the

addition of PTH to Flt-3L (Figure 6D). Moreover, when IL-6

signaling was blocked in the non-adherent cell population by

cucurbitacin (a STAT-3 inhibitor)[29], there was a decrease in the

ability of PTH to increase cell numbers in the presence of Flt-3L

(Figure 6E). PTH decreased cell apoptosis in vivo as measured by a

decrease in the percentage of Annexin V+ cells (Figure 4D). To

Figure 3. Increased cell proliferation by Flt-3L but not PTH. Whole bone marrow was isolated from C57B6 mice and seeded at 1.86105 cells/
cm2 in the presence or absence of Flt-3L (100 ng/ml), PTH (10 nM), a combination of both, or vehicle only control. (A) cyclin D1 mRNA levels of non-
adherent cells at days 2, 4, 6, and 8 as determined by real-time PCR. Data are mean 6 SEM of at least 3 experiments, performed in duplicate,
normalized to GAPDH, and represented as treatment over control (T/C). *p,0.05 versus vehicle. (B) Representative western blot analyses of cyclin D1
and b-actin, and graphs of cyclin D1 protein normalized for b-actin in ex vivo cultures at days 2, 4, 6 and 8. Data are mean 6 SEM of 3 experiments
performed in duplicate, and represented as treatment over control (T/C). * p,0.05 vs. vehicle. (C) Flow cytometric analyses of cell cycle ex vivo.
Graphs represent the percentage of non-adherent cells stained for propidium iodide at days 2, 4, 6 and 8 to demonstrate G1, S and G2 phases.
Experiments were performed 4 times in duplicate. *p,0.05 versus vehicle for G1, S and G2 phases.
doi:10.1371/journal.pone.0013657.g003
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determine if IL-6 mediates the PTH ability to decrease cell

apoptosis in vivo, flow cytometric analyses for Annexin V+ cells was

performed. Wildtype and IL-6 deficient mice received 50 mg/kg of

PTH or vehicle daily for 3 weeks. Bone marrow cells from PTH

treated animals had a reduced percentage of Annexin V+ early

apoptotic cells compared to vehicle treated mice. In contrast, PTH

failed to decrease the percentage of apoptotic cells in IL-6 deficient

mice (Figure 6F). These data implicate IL-6 in the PTH pathway

that mediates hematopoietic cell maintenance and amplification.

PTH fails to increase HPCs in IL-6 deficient mice
PTH increases the Lin- Sca-1+ c-Kit+ (LSK) population of

hematopoietic progenitor cells in vivo [5]. Flow cytometric analyses

were performed from bone marrow cells of wildtype and IL-6

deficient mice at baseline day 4 and day 26 to determine if there

were any inherent differences prior to PTH treatment. There were

no baseline or day 26 differences in LSK cells (Figure 7A,B). Four-

day-old-mice received 50 mg/kg of PTH or vehicle daily for 3

weeks as previously described to determine if PTH increased

hematopoietic progenitor cells in a skeletally responsive animal

model [20]. Forty-eight hours after the last PTH injection, bone

marrow cells were isolated and flow cytometric analysis was

performed to measure LSK cells. PTH significantly increased the

percentage of LSK cells after 3 weeks of intermittent PTH

administration in wild-type mice but not IL-6-deficient mice

(Figure 7C).

Figure 4. PTH decreased cell apoptosis in a Flt-3L expanded population. Whole bone marrow was isolated from wild-type mice and seeded
at 1.86105 cells/cm2 in the presence or absence of Flt-3L (100 ng/ml), PTH (10 nM), a combination of both, or vehicle only, (A) Flow cytometric
analyses of Annexin V+ Propidium Iodide- (early apoptosis) cells performed on non-adherent cells. Representative Annexin V histogram from day 8. (B)
Graph of the fold induction for percentage of Annexin V+ cells, (lower right quadrant from histograms represented in A) *p,0.05 versus Flt-3L, **
p,0.01 for vehicle and PTH versus Flt-3L. (C) Graph of the fold induction of active caspase 3+ cells. Data are mean 6 SEM of 4 experiments performed
in duplicate. *p,0.05 versus Flt-3L. (D) Four-day-old wild-type C57B6 mice (n$9/group) were treated daily with 50 mg/kg PTH or vehicle for 3 weeks.
Bone marrow was isolated and flow cytometric analyses of Annexin V+ cells were performed. Graph of the percentage of Annexin V+ cells, *p,0.05
versus vehicle.
doi:10.1371/journal.pone.0013657.g004
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Discussion

PTH increases cells of the hematopoietic lineage, including

hematopoietic progenitor cells [5]. The present study revealed that

PTH increased cells of the hematopoietic lineage by indirectly

decreasing hematopoietic cell apoptosis. Furthermore, IL-6 mediated

the PTH effect on cells of the hematopoietic lineage in vivo and ex vivo.

In the ex vivo expansion amplification model described in this

paper, Flt-3L had direct effects in cells of the hematopoietic

lineage, which would be expected since the receptor for Flt-3L is

expressed in these cells and not in stromal cells [30]. Although Flt-

3L alone is sufficient for hematopoietic cell amplification in vitro

[21], it acts synergistically with other factors including IL-6 leading

to an increase in cell proliferation [31]. In the present study PTH

augmented the Flt-3L increase in hematopoietic cell numbers ex

vivo. Moreover, IL-6, a well known downstream target induced in

osteoblasts by PTH [14] was a mediator of this effect. The ability

of PTH to increase progenitor cells in vivo through IL-6 may

explain the mechanism by which PTH is increasing hematopoietic

progenitor cells. These results may provide insights to the

correlation of CD34+ progenitor cells and PTH levels in patients

with hyperparathyroidism and the increase in regeneration seen

with PTH treatment after myocardial infarction [32,33].

The role of PTH in apoptosis has been extensively documented

in cells that express the PTH-1 receptor such as cells of the

osteoblastic lineage [34,35]. The current experiments demonstrate

an indirect anti-apoptotic effect of PTH on cells of the

hematopoietic lineage. IL-6 has an important role in cell survival

and prevents apoptosis of several hematopoietic cells including T-

cells and early plasma cells [15,36,37]. Data from the present

study suggests that PTH-induced stromal cell-derived IL-6

promotes hematopoietic cell survival.

PTH was capable of expanding the adherent cell population but

only in conjunction with Flt-3L, suggesting that the PTH effect

depends on a stimulus from cells of the hematopoietic lineage. The

increase in adherent cell numbers with Flt-3L and the combina-

tion, Flt-3L plus PTH, could reflect an increase in adherent

hematopoietic cells, an increase in the stromal cell population or

an increase in both. Bone marrow adherent cells are a

heterogeneous population, where it is estimated that 10–20%

are mesenchymal stem cells and approximately 80% are

lymphohematopoietic cells [38]. During normal macrophage

expansion there is also an increase in monocytes in the adherent

cell population, and Flt-3L has been shown to increase the

adherent monocytic population [39,40]. Therefore, the increase in

adherent cell numbers may be due to an increase in adherent

hematopoietic cells, more specifically the monocyte/macrophage

population. Such an increase in may signify a beneficial action of

PTH given that macrophages were recently reported to promote

osteoblastic differentiation [41]. In our model system, the indirect

effect of PTH on stromal cells cannot be ruled out, particularly

since the indirect effect of PTH on cells of the osteoblastic lineage

has been demonstrated [42]. Data from our laboratory

corroborate this finding where it was demonstrated that under

compromised osteoclast differentiation, anabolic actions of PTH

were blocked [20,43]. Taken together, PTH acts on stromal cells

which, in turn, signal to hematopoietic cells. Data from the present

study suggest that these hematopoietic cells then signal back to the

stromal cells. This is an area worthy of future investigation.

The PTH effect on the Flt-3L stimulated cells was mediated

largely by IL-6. IL-6 mimicked the PTH additive effect with Flt-3L

in both the non-adherent and the adherent cell populations.

Moreover, when bone marrow cells from IL-6 deficient-mice were

treated with PTH, they failed to have the additive effect on the Flt-

3L expanded cells. In addition to being a mediator of hematopoiesis

as previously described [44], IL-6 was shown here to be responsible

for hematopoietic cell expansion ex vivo and in vivo. The additive

effect of PTH in combination with Flt-3L on cells of the

hematopoietic lineage can be explained by the synergism of IL-6

with Flt-3L, which results in proliferation of primitive lymphohe-

matopoietic progenitor cells [45]. Another possible mechanism by

which the PTH increase in IL-6 may be influencing cells of the

hematopoietic lineage is by increasing Flt-3L expression, given that

IL-6 in conjunction with its receptor, IL-6R, has the ability to

enhance Flt-3L expression in NIH3T3 cells [46].

The role of osteoblasts in support of hematopoiesis has been

established and the reverse role of hematopoietic cell support of

osteoblasts has also been described [47,48]. In the present study,

the adherent cell population consists in part of pre-osteoblastic

mesenchymal cells. It is likely that PTH induced stromal derived

IL-6 which then acted on cells of the hematopoietic lineage. The

IL-6 receptor is expressed in cells of the hematopoietic lineage and

it is widely accepted that IL-6 acts directly on osteoclasts whereas

the IL-6R is weakly expressed or even absent in stromal/

osteoblastic cells [15,49]. Thus, the direct effect of IL-6 on

osteoblasts would only be possible if soluble IL-6 receptor was

added in vitro [50]. In the experiments presented here, the direct

role of IL-6 on stromal cells is improbable since IL-6 treatment

alone did not increase cell numbers. Moreover, IL-6 deficient mice

have a defect in hematopoiesis that is attributed to the lack of IL-6

in the stromal cell compartment [51]. Therefore, IL-6 does not

directly act on stromal cells but instead targets the hematopoietic

cells. PTH impacts the increase in hematopoietic progenitor cells

indirectly via its regulation of IL-6.

Three weeks of PTH treatment in wildtype mice increased the

Lin-Sca-1+c-Kit+ population of hematopoietic progenitor cells in

vivo. In contrast, PTH failed to increase hematopoietic progenitor

cells in age matched IL-6 deficient mice. IL-6 enhances

proliferation of HPCs [44]. Mice overexpressing IL-6 and sIL6R

show massive extramedullary hematopoiesis in their spleen and

liver [52]. Given that PTH increases IL-6 expression, the

importance of PTH in hematopoiesis is significant. Equally

significant is the failure of PTH to increase HPCs in IL-6-

deficient-mice. Calvi et al. [5] reported that IL-6 was upregulated

in PTH1R-overexpressing-mice, with increased hematopoietic

progenitor cells but there was no definitive link made with PTH,

hematopoiesis, and IL-6 in that study. The present study provides

a mechanistic role for PTH in hematopoiesis.

Figure 5. Flt-3L increased blasts, CD45+ and CD11b+ cells. Whole bone marrow was isolated from wild-type mice and seeded at 1.86105 cells/
cm2 in the presence or absence of Flt-3L (100 ng/ml) or PTH (10 nM), a combination of both, or vehicle (control). (A) Representative Wright-Giemsa
stain 4 days after cells were seeded and treated once with vehicle, PTH, Flt-3L or the combination of PTH and Flt-3L (40X magnification). (B) Graphs
representing the percentage of blasts, granulocytes, monocytes, eosinophils, erythroid cells and lymphocytes that were scored in Wright-Giemsa
stained cells at day 4. Data are mean 6 SEM of 4 experiments performed in duplicate, *p,0.05 versus vehicle. (C) Graphs representing flow
cytometric analyses of the percentage of IL7Ra+ CD192 CD32, CD45+, CD11b+, GR1+, CD3+ and CD19+ cells in the non-adherent cell populations at
day 8. Data are mean 6 SEM of 4 experiments performed in duplicate, *p,0.05 versus vehicle. (D) Graphs representing flow cytometric analyses of
the fold induction (T/C) of CD45+ Annexin V2 cells and CD11b+ Annexin V2 cells in the non-adherent cell population at day 8. Data are mean 6 SEM
of 2 experiments performed in triplicate, *p,0.05 versus vehicle, ** p#0.05 versus all other groups.
doi:10.1371/journal.pone.0013657.g005
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Figure 6. IL-6 mediates the ex vivo and in vivo PTH effects. (A–B) Whole bone marrow was isolated from wild-type (WT) mice and seeded at
1.86105 cells/cm2 in the presence or absence of Flt-3L (100 ng/ml) or PTH (10 nM), a combination of both, or vehicle only control, with and without
IL-6 (10 ng/ml). Non-adherent (A), and adherent (B), cells were harvested and enumerated using trypan blue exclusion at day 8. Data are mean 6 SEM
of 2 experiments performed in duplicate *p,0.05 versus vehicle/vehicle, ** p,0.05 versus vehicle/Flt-3L. (C–D) Whole bone marrow was isolated
from wild-type or IL-6 deficient mice (IL-6 KO) and seeded at 1.86105 cells/cm2 in the presence of Flt-3L (100 ng/ml), PTH (10 nM), a combination of
PTH and Flt-3L, or vehicle only control. Non-adherent (C) and adherent (D) cells were harvested and enumerated using trypan blue exclusion at day 8
of culture. Data are mean 6 SEM of 2 experiments performed in duplicate. *p,0.05 versus vehicle (wild-type cells) **p,0.05 versus Flt-3L (wild-type
cells) ***p,0.05 IL6-KO cells versus wild-type cells of the respective treatment group. Whole bone marrow was isolated from wild-type mice and
seeded at 1.86105 cells/cm2 in the presence or absence of Flt-3L (100 ng/ml) or PTH (10 nM), a combination of both. One hour after cells were plated
vehicle (control) or a STAT-3 inhibitor, cucurbitacin (20 nM) was added to the culture. Non-adherent cells were harvested and enumerated using
trypan blue exclusion at day 8 of culture (E). Data are mean 6 SEM, from one of two experiments performed with similar results, *p,0.05 versus
vehicle of the respective group, **p,0.05 versus Flt-3L of the respective group, ***p,0.05 vehicle versus cucurbitacin in the combined Flt-3L and
PTH groups. (F) Four-day-old wild-type and IL-6-deficient mice (n$5/group) were treated daily with 50 mg/kg PTH or vehicle for 3 weeks. Bone
marrow was isolated and flow cytometric analyses of Annexin V+ cells were performed. Fold induction of Annexin V+ cells measured as treatment
over vehicle (control) of the respective phenotype. *p,0.05 versus vehicle of the respective phenotype.
doi:10.1371/journal.pone.0013657.g006

PTH Role on Hematopoietic Cell

PLoS ONE | www.plosone.org 10 October 2010 | Volume 5 | Issue 10 | e13657



In summary, PTH increases hematopoietic cells ex vivo via an

inhibition of apoptosis in Flt-3L responsive cells. PTH indirectly

increases hematopoietic progenitor cells and does not directly

affect osteoclast lineage cells. Stromal cell derived IL-6 in

conjunction with Flt-3L mediates the PTH activation of

hematopoietic cells (Figure 8).
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