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Université de Lorraine, France

Email: dominique.mery@loria.fr

Abstract—Refactoring, successfully used in the field of pro-
gramming, can be used in maintenance and restructuring of the
large and complex models. In this paper, we present a novel
approach for model refactoring and a set of modelling patterns
that are applicable for refinement-based formal development.
In order to carry out this study, we investigate the previously
developed large and complex model and required ontology to
develop a domain model and a refactored system model. Further,
we use the Rodin tools to check the internal consistency with
respect to the desired functional behaviour and the required
safety properties. Our main contributions are: to develop a
refactoring technique related to the correct by construction
approach; to use the domain specific knowledge in a system
model explicitly; to define a set of modelling patterns; and to
define a restructuring mechanism in the formal development.
Finally, this proposed approach is evaluated through a complex
medical case study: ECG clinical assessment protocol.

Keywords-Refactoring, refinement and proofs, ontologies, do-
main theories, Event-B.

I. INTRODUCTION

In order to reduce the development cost and maintenance

cost, the formal modelling of complex systems and adaptation

of new changes according to the newly added or modified

requirements is a demanding task. In particular, if a system

is developed using a correct by construction approach then

the original structure of the formal model does not accommo-

date the new changes and newly added requirements without

restructuring and modularizing the formal model.

On the other hand, in general, the system development

process does not handle the domain knowledge explicitly. Such

knowledge is always encoded implicitly during the system

development considering some assumptions. For example,

in the flight management system, the flight speed can be

represented in Kilometres per hour (kph) or Miles per hour

(mph) when modelling the collected data from the speed

sensors. The sensed speed must be displayed on the pilot

screen or the passenger screen according to the selected unit.

From this modelling, if any miscalculation results in the unit

and thus in the expected value then it can lead to the grave

consequences. This situation is due to: (1) the absence, in the

designed models, of explicit resource to model units explicitly

in the existing modelling languages; (2) the computation runs

(e.g. addition of two floats) are formalized in the implicit

semantics of the modelling language, without handling the

explicit semantics related to units (addition of speed in miles

and speed in kilometres). The explicit semantics can be used to

associate the unit information with the given numerical values

(i.e. speed) by defining it explicitly.

It is highly desirable to define the domain knowledge

with a system in an explicit way to improve the quality

of the development process and to accommodate the new

changes in the system requirements by restructuring the formal

model [1]. To consider the domain knowledge in the software

engineering practices has been considered an important step in

the area of system modelling and analysis. The triptych [2],

[3], [4] approach covers three main phases of the software

development process: domain description, requirements pre-
scription and software design. D,S −→ R expresses a formal

notation, in which D represents the domain concepts in form

of properties, axioms, relations, functions and theories; S
represents a system model; and R represents the intended

system requirements. This notation states that the given do-

main description (D) and the system model (S) are correct

with respect to the given requirements (R). In similar vein,

Jackson’s structure [2] E ,S � R describes the requirements

appropriately. In this structure E is the given environment, S is

the specification that is optative description of a condition over

the shared phenomena at the interface between the machine

and the environment; and R is the requirement. The proposed

structure must respect the distinction between system and the

physical environment, and the environment properties must be

achieved by the modelled system [2].

In this paper, we investigate a novel approach for model

refactoring that is applicable for refinement based formal

development. In order to use the domain knowledge in an

explicit manner in a large formal model, we focus on a

popular approach refactoring [5]. The proposed approach uses

ontologies to define the domain-specific concepts explicitly

and redefines the required behaviour and properties in form

of patterns that can be reused in the system modelling to

describe the required functional behaviour. Note that the

proposed refactoring approach restructures the formal model

and introduces domain knowledge explicitly in a system

model without changing the refinement strategy. In other

words, handling the explicit semantics in formal development

does not affect the original formal development, in fact it

strengthens them by allowing such a facility. This approach

has several benefits, such as modularity, integration of domain

knowledge, reusability, maintainability, preserving the required

safety properties by proving the refactored model, and the

development of modelling patterns.



We use the Event-B language for modelling the domain

model and system model. Our main contributions are: (1)

to develop a refactoring technique related to the correct by
construction approach; (2) to use the domain specific knowl-

edge in a system model explicitly; (3) to define the modelling

patterns; and (4) to define a restructuring mechanism in the

formal development.

We demonstrate the usability of the proposed approach

through revisiting the formal development of the ECG pro-

tocol [6]. In this development, we refactor the whole model

by preserving the required safety properties and functional

behaviour through integrating the domain knowledge, such

as heart and ECG. Moreover, we also demonstrate the other

benefits as enumerated above during the model development.

The structure of the article is as follows. In Section II,

we review preliminary material: refactoring, ontology and

the modelling framework. Section III presents a refactoring

methodology for developing the domain model and refactored

system model. Section IV illustrates an application of the

refactoring methodology: the ECG clinical assessment pro-
tocol. Section V discusses the paper. Section VI presents the

related work and in Section VII, we conclude the paper and

discuss the future work.

II. PRELIMINARIES

A. Refactoring

Refactoring is one of the popular approaches in the field

of programming that allows us to restructure the source code

without modifying the functional behaviour of a system. This

technique helps to clean up the developed code systematically

by replacing the complex instructions with simple instruc-

tions, minimising the risks of introducing bugs, introducing

modularity, and improving the readability and maintainability

of the code [5], [7], [8]. In our work, we plan to use

the refactoring techniques to the developed complex formal

model [9], in which the formal model is developed using

a correct by construction approach. Our main motivation

to use the refactoring approach is to introduce the domain

knowledge explicitly in a system model, minimising the com-

plexity of proof structures, improving the maintainability of

the developed formal model and improving the readability

of the developed model. Note that the model refactoring

allows us to restructure the developed formal model without

modifying the functional behaviour and the characterization

of the system/environment state at the abstract level and the

refined levels. It means that all the defined safety properties

for the given model must be proved. In addition, this approach

has some other benefits that allow extracting the modelling

design patterns, proof patterns, expose of an existing bug,

separation of the domain model and system model, simplifying

the proof strategies and to increase the proof automation.

Moroever, all these benefits are derived from the proposed

refactoring approach that allows us to refactor a system model

applying modelling patterns and to introduce domain concepts

explicitly. A set of modelling design patterns and restructuring

of models related to refactoring can help to reduce the proof

efforts. This reduction results from the factorization, at the

domain model DM or context of domain properties proved

many times at the system model SM level. Developing a

domain model separately helps to identify any possible bugs

of the old model due to the underspecification hidden by the

implicit semantics carried by the modelling language.

B. Ontology

Ontology - “science of being” - is originated in philosophy,

which is defined as “hierarchal structuring of knowledge about
concepts by sub-classing them according to their properties
and qualities” [10]. Alternatively, It is also defined as “a
declarative model of a domain that defines and represents
the concepts existing in that domain, their attributes and the
relationships between them” [10], [11].

Another definition relies on the notion of a dictionary.

[12] considers a domain ontology as a formal and consen-
sual dictionary of categories and properties of entities of a
domain and the relationships that hold among them. Here,

an entity represents any concept belonging to the considered

domain. dictionary entails two major concepts. First, it makes

explicit the existence, through a constructive definition or

declaration, of entities in the domain under consideration and

second any entity or relationship described in this ontology

is directly referenceable independently of other entities or

relationships. Reference is carried by a symbol defining an

identifier. This identification symbol may be either a language-

independent identifier, or a language-specific set of words.

However, whatever this symbol is, and unlike in linguistic

dictionary, it directly denotes a domain entity or relationship.

Each description of each entity or relationship is formally

stated using an ontology modelling language equipped with

a formal semantics. It allows automatic reasoning and consis-

tency checking.

In our work, we use the ontology to model the domain-

specific knowledge explicitly. In fact, the construction of a

domain model allows us to refactor the previously developed

system model. The development of domain model has several

benefits: (1) to share knowledge in the same domain; (2)

to reuse the existing domain model for any other system

model; (3) to provide an explicit list of domain assumptions;

(4) to separate the domain knowledge from the operational

knowledge; and (5) to perform domain-specific methodical

analyses.

C. The Modelling Framework: Event-B

This section describes the essential components of the

modelling framework. In particular, we will use the Event-B

modelling language [13] for modelling a complex system in

a progressive way. There are two main components of Event-

B: context and machine. A context is a formal static structure

that is composed of several other components, such as carrier
sets, constants, axioms and theorems. A machine is a formal

dynamic structure that is composed of variables, invariants,
theorems, variants and events (see Table I). A machine and a

context can be connected with sees relationship.



CONTEXT MACHINE
ctxt id 2 machine id 2

EXTENDS REFINES
ctxt id 1 machine id 1

SETS SEES
s ctxt id 2

CONSTANTS VARIABLES
c v

AXIOMS INVARIANTS
A(s, c) I(s, c, v)

THEOREMS THEOREMS
Tc(s, c) Tm(s, c, v)

END VARIANT
V (s, c, v)

EVENTS
Event evt

any x
where G(s, c, v, x)
then

v : |BA(s, c, v, x, v′)
end

END

TABLE I: Model structure

Theorems A(s, c) ⇒ Tc(s, c)
A(s, c) ∧ I(s, c, v)

⇒Tm(s, c, v)
Invariant A(s, c) ∧ I(s, c, v)
preservation ∧G(s, c, v, x)

∧BA(s, c, v, x, v′)
⇒I(s, c, v′)

Event A(s, c) ∧ I(s, c, v)
feasibility ∧G(s, c, v, x)

⇒∃v′.BA(s, c, v, x, v′)
Variant A(s, c) ∧ I(s, c, v)
progress ∧G(s, c, v, x)

∧BA(s, c, v, x, v′)
⇒V (s, c, v′) < V (s, c, v)

TABLE II: Proof obligations

Domain
Modelling

System
Modelling

Model 
Annotation

Model
Verification

Fig. 1: Four step modelling methodology

An Event-B model is characterized by a list of state
variables possibly modified by a list of events. Events play

an important role for modelling the functional behaviour of

a system. An event is state transition that contains two main

components: guard and action. A guard is a predicate based

on the state variables that defines a necessary condition for

enabling the event. An action is also a predicate that allows

modifying the state variables when the given guard becomes

true. A set of invariants defines required safety properties that

must be satisfied by all the defined state variables. There

are several proof obligations, such as invariant preservation,

non-deterministic action feasibility, guard strengthening in

refinements, simulation, variant, well-definedness, that must

be checked during the modelling and verification process (see

Table II).

Event-B modelling language allows us modelling a complex

system gradually using refinement. The refinement enables us

to introduce more detailed behaviour and the required safety

properties by transforming an abstract model to a concrete

version. At each refinement step, the events can be refined by:

(1) keeping the event as it is; (2) splitting an event into several

events; or (3) refining by introducing another event to maintain

state variables. Note that the refinement always preserves

a relation between an abstract model and its corresponding

concrete model. The newly generated proof obligations related

to refinement ensures that the given abstract model is correctly

refined by its concrete version. Note that the refined version

of the model always reduces the degree of non-determinism

by strengthening the guards and/or predicates. The modelling

framework has a very good tool support (Rodin [14]) for

project management, model development, conducting proofs,

model checking and animation, and automatic code generation.

There are numerous publications and books available for an

introduction to Event-B and related refinement strategies [13].

D. OntoEventB Plug-in

In [15], the OntoEventB plug-in tool is developed to gen-

erate Event-B domain models from ontologies models, such

as OWL [16] or PLIB [17]. This tool is integrated in the

Rodin [14] platform that allows to generate the domain models

applying shallow or deep approach on the ontology description

file. Note that this tool is successfully applied in our work to

generate the domain models from the given ontologies.

III. METHODOLOGY

A. Modelling Methodology

This section presents a modelling methodology (see Fig. 1),

which contains the different modelling steps: domain mod-
elling, system modelling, model annotation and model verifica-
tion [1], [18]. These modelling steps are described as follows:

1) Domain Modelling. The required information related

to a domain may be modelled as a domain ontology

through defining concepts, entities, relationships, con-

straints and rules. In this work for modelling the domain

model, we choose the Event-B modelling language to

formalize the required domain concepts derived from the

domain ontology, which can be described as theories in

Event-B. Note that Event-B theory plugin1 can be used

for this purpose.

2) System Modelling. For developing a safe system con-

sidering all the required functionalities is a challenging

problem. A system can be described using axioms, con-
stants, variables and events. In this work for modelling

the system model, we also choose the Event-B modelling

language.

3) Model Annotation. Model annotation is used to link

the domain model and the system model explicitly

by describing the relationships between design model

entities and ontology concepts. As a consequence, the

annotated design model is enriched by the domain

properties expressed in the ontology.

4) Model Verification. This last step is performed when

the system model is annotated with the domain model.

Two verification steps are envisioned. The first one is

1http://wiki.event-b.org/index.php/Theory Plug-in#Standard Library
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Fig. 2: Generic Refactoring Methodology

conducted on the designed system model before annota-

tion (maybe no longer correct after annotation) to check

the consistency and then the second one must be con-

ducted on the designed system model after annotation

to check the overall consistency considering the domain

knowledge. Note that in the second step, the verification

also allows us for checking new emerging properties due

to the integration of domain model and system model

using annotations.

B. Refactoring Methodology

A common way of restructuring, introducing modularity,

minimising the complexity of proof structures, and improving

the maintainability and readability of a formal specification is

to use the refactoring techniques, which allow changing the

structure of a model without changing the system functional-

ities and the behavioural objectives of the model [5], [7], [8].

In general, two kinds of refactoring techniques are identified:

structural refactoring and behavioural refactoring. The struc-

tural refactoring changes the structure of a formal model and

preserves its behaviour without changing the reachable states.

Note that this structuring mechanism allows a developer to

transfer the same safety properties to the new refactored model

because this refactoring ensures the observability equivalence.

The behavioural refactoring may change the behaviour of

a formal model. In fact, applying this approach there are

partly reachable states comparing to the formal model before

refactoring [19]. Our work sets up the structural refactoring.

We propose to handle explicitly domain knowledge in

a formal model using structural refactoring. Fig. 2 depicts

a graphical layout of the input and output of the defined

structural refactoring moving source models to target ones.

The upper part of this figure denotes the source models (system

models (SM ) and ontology).

We consider that ontology2 is available but it is not used

by the system models SM since they do not explicitly

refer to the domain model (ontology). The lower part of

the Fig. 2 represents the target models composed of domain

models (DM ) obtained from the ontology, and the refactored

system models (SM ′). The horizontal lines define model

2Several ontologies and domain models have proposed by several organi-
zations, standards, companies, etc. The process of building these ontologies
is out of scope of this paper.

dependencies (e.g. visibility, extension) between models while

the vertical lines describe refactoring operations. For example,

the target domain models (DM ) are developed by formalising

the ontologies. The target system models (SM ′) are refactored

from the source system models SM .

A set of refactoring operations is identified. The approach

we propose consists in analysing whether a refactoring oper-

ation can be applied to any complex formal model developed

progressively using a correct by construction approach and

the conceptual knowledge related to a domain is formalized

implicitly in a system model. Each refactoring operation can

be seen as a before-after predicate that preserves the properties

of the source models while making explicit domain knowledge

in the target models (refactored models).

To support system models SM refactoring, we have identi-

fied a set of structural development operations corresponding

to specific model mappings. These mappings shall fulfill the

characteristics attached to ontologies, in particular, the unique

referencing mechanism. We have identified the following

operations.

• Formalize DM. The definition of DM consists in pro-

ducing a domain model by selecting the relevant ontolo-

gies associated to the studied system. This DM may be

formalized as a context or a theory depending on the used

formal method. The consistency of DM shall be ensured

(axioms providing definitions of domain concepts shall

be inhabited).

• Factorise SM 2 DM. The operation moves from the

system model SM , the definitions of concepts (e.g.

definitions related to variables, invariants or theorems)

of SM , to the ontology or DM . If not available, these

concepts are raised at ontological level else they are added

as redundant concepts (derived concepts using ontology

modelling operators).

• Transform SM 2 SM’ A target system model SM ′ is

produced from a source system model SM by adding re-

lationships to the DM model, i.e. adding direct references

to the DM concepts, or adding mappings between SM
and DM concepts. This operation may require rewriting

both static (axioms, theorems, etc.) and behavioural con-

cepts (guards, before-after predicates, substitutions, etc.).

Remark. In this case, it should be noted that the new

emerging invariants and theorems may be expressed in the

SM ′ model. They are entailed by the domain knowledge

explicitation.

The previous operations mention the notion of mapping

between models. Ontology engineering provides with several

kinds of mappings like equivalence, subsumption, algebraic

mappings which can be formalized in Event-B.

Finally, once refactoring is performed, the SM models shall

be submitted to a new verification process.

IV. DEVELOPMENT IN MEDICAL DOMAIN: CLINICAL

ASSESSMENT OF ECG

We adopt our generic refactoring methodology for devel-

oping the domain model and system model together using
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the Event-B modelling language. Fig. 3 depicts an extended

graphical layout of the generic refactoring methodology to

show the different components of the Event-B models. In the

extended figure, the system model SM is composed of the

context model CM and machine model MM . Similarly, in

the refactored system model SM ′ is also composed of the

context model CM ′ and machine model MM ′.
The formal model of the ECG clinical protocol [9] is

revisited to apply the proposed refactoring approach. Here,

we recall the ECG protocol and then we develop the domain

model, context model and system model progressively.

A. Electrocardiogram

An electrocardiogram (EKG or ECG)3 [6] signal presents

an electrical activity of the human heart in continuous form

to show the depolarisation and repolarisation phenomena. A

typical cycle of ECG (see Fig. 4) represents a sequence of

waves and intervals, which is denoted as P-QRS-T-U. These

waves and intervals are defined as: P-wave - a small deflection

caused by the depolarisation of atria before contraction to

show an electrical wave propagation from the SA node through

the atria; PR interval - an interval between the beginning of

the P-wave to the beginning of the Q-wave; PR segment- a flat

segment between the end of the P-wave and the start of the

QRS interval. QRS interval - an interval between the P-wave

and T-wave with greater amplitude to show the depolarization

of the ventricles; ST interval - an interval between the end

of the S-wave and the beginning of the T-wave; ST segment
- a flat segment starts at the end of the S-wave and finishes

at the start of the T-wave; T-wave - a small deflection caused

by the ventricular repolarisation, whereby the cardiac muscle

is prepared for the next cycle of ECG; and U-wave - a

small deflection immediately following the T-wave due to

repolarization of the Purkinje fibers.

B. The Medical Domain modelling

A medical domain is characterised by the abundance knowl-

edge of medical science collected from various sources. On-

tology has played a significant role in representing medical

3The interested reader is referred to [6] for the detailed information on the
ECG signal and the ECG clinical assessment protocol.

Fig. 4: ECG Deflections

knowledge systematically in an independent format to share

and reuse across other biomedical domains. The medical

ontology framework provides the common medical concepts,

relationships, properties, and axioms related to the biomedical,

disease, diagnosis, treatment, anatomy, pharmacology, clinical

procedure and so on. There are several medical ontologies,

such as GALAN, OpenCyc, WordNet, UMLS, SNOMED-CT

and FMA developed by researchers, industries and medical

centers.

According to our proposed refactoring methodology, we

develop a domain model derived from the available ontologies,

and the existing system model. To our knowledge, there are

several databases and ontologies to represent the ECG. For de-

scribing the conceptual knowledge of biological process of the

ECG, we use the OBO (Open Biomedical Ontologies) Process

Ontology [20], classified as the fundamental relation, spatial

relation, temporal relation and participation relation [20]. In

the current work, the two main fundamental used relations are

is a and part of .

A is a B = ∀x[inst(x,A) ⇒ inst(x,B)]
A part of B = ∀x[inst(x,A) ⇒ ∃y(inst(y, B) & x part of inst y)]

The is a relation states that every instance of class A is an

instance of class B and the second relation states that A part of
B holds if and only if: for every individual x, if x instantiates A
then there is some individual y such that y instantiates B and

x is a part of y. In the previous definitions, inst is a relation

between a class instance and a class which it instantiates and

the part of inst is a relation between two class instances.

Other relations are defined in ontology modelling languages.

All of them are rigorously defined.

The whole concepts of the ontology modelling language

need to be formalized in the used formal modelling language,

Event-B in our case. The fundamental relations, is a and

part of , are defined in an Event-B context using axioms

(axm1 - axm5). axm2 and axm3 define is a relation and

part of relation, respectively. Other axioms (axm1, axm4 and

axm5) are used to support the formal definition of the defined
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Fig. 6: Human heart chamber ontology

relations. This axiomatization defines the semantics of the

ontology modelling operators. Other definitions are possible

according to the chosen semantics.

axm1 : HAS INSTANCES = CLASS ↔ INSTANCE
axm2 : IS A = {IsA|IsA ∈ CLASS ↔ CLASS ∧ (∀x, y·(x ∈ CLASS∧

y ∈ CLASS ∧ x 	→ y ∈ IsA⇔
union({r·r ∈ HAS INSTANCES|ran({x} � r)}) ⊆
union({r·r ∈ HAS INSTANCES|ran({y} � r)})))}

axm3 : PART OF = {PartOf|PartOf ∈ CLASS ↔ CLASS∧
(∀x, y·(x ∈ CLASS ∧ y ∈ CLASS∧
x 	→ y ∈ PartOf ⇔ ∀p·p ∈ union({r·r ∈
HAS INSTANCES|ran({x} � r)})⇒
(∃q·q ∈ union({r·r ∈ HAS INSTANCES|ran({y} � r)})∧
p 	→ q ∈ PartOf Inst)))}

axm4 : PartOf Inst ∈ INSTANCE ↔ INSTANCE
axm5 : (∀p·p ∈ INSTANCE ⇒ p 	→ p ∈ PartOf Inst)∧

(∀p, q·p ∈ INSTANCE ∧ q ∈ INSTANCE∧
p 	→ q ∈ PartOf Inst ∧ q 	→ p ∈ PartOf Inst⇒
p = q) ∧ (∀p, q, r·p ∈ INSTANCE ∧ q ∈ INSTANCE∧
r ∈ INSTANCE ∧ p 	→ q ∈ PartOf Inst∧
q 	→ r ∈ PartOf Inst ⇒ p 	→ r ∈ PartOf Inst)

These defined relations are used to model the domain

knowledge for developing the ECG protocol using a correct by

construction approach. The domain model of the ECG relies

on existing work [6], [21], [22], [23]. It is based on several

sub ontologies, organised in a subsumption hierarchy, such

as human heart, blood circulation, bioelectric phenomena and

ECG (see Fig. 5). The initial set of axioms are defined by

applying the Formalize DM refactoring operation (see Fig. 2

and Fig. 3).

Fig. 6 describes a very high level description that contains

four chambers: left atrium, right atrium, left ventricle and right

ventricle organised using the part of and is a relationships.

The OBO relationships are defined in axioms (axm1-axm4)

according to Fig. 6. The next axiom (axm5) defines a set

of possible physical units, which can be associated with

variables and constants (axm6 - axm8). The next remaining

axioms (axm9 - axm11) are used to define the normal

and abnormal heart rate. All these axioms are defined by

applying the refactoring operations using Formalize DM and

Factorize SM 2 DM (see Fig. 2 and Fig. 3).

axm1 : partition(CLASS, {Heart}, {Heart Chamber}, {Atrium},
{V entricle}, {Left Atrium}, {Right Atrium}, {Left V entricle},
{Right V entricle})

axm2 : {Atrium 	→ Heart Chamber} ∈ PART OF∧
{V entricle 	→ Heart Chamber} ∈ PART OF

axm3 : {Left Atrium 	→ Atrium} ∈ IS A∧
{Right Atrium 	→ Atrium} ∈ IS A

axm4 : {Left V entricle 	→ V entricle} ∈ IS A∧
{Right V entricle 	→ V entricle} ∈ IS A

axm5 : partition(UNIT, bpm,mm, cm,mu m)
axm6 : F UNIT ∈ UNIT → P(Z)
axm7 : HEART RATE ∈ {Heart} ↔ F UNIT
axm8 : HEART RATE = {Heart 	→ (bpm 	→ 1 .. 300)}
axm9 : NORMAL HEART RATE ∈ {Heart} ↔ F UNIT
axm10 : NORMAL HEART RATE = {Heart 	→ (bpm 	→ 60 .. 100)}
axm11 : ABNORMAL HEART RATE =

HEART RATE \ NORMAL HEART RATE

Fig. 7 presents a high level description of the ECG using the

OBO relations for deflections known as waves and segments.

The elementary concepts are represented using the is a and

part of relationships (axioms axm1-axm13). The remaining

axioms (axm14-axm52) characterise the ECG signal. They

are derived from the existing ontologies and the previously

developed ECG model [9] by applying the refactoring opera-

tions Formalize DM and Factorise SM 2 DM (see Fig. 2 and

Fig. 3).

axm1 : partition(CLASS, {ElementaryForm}, {Waveform}, {Wave},
{Segment}, {Cycle}, {P Wave}, {QRS Wave}, {T Wave}, {U Wave},
{PQ Segment}, {ST Segment}, {Q Wave}, {R Wave}, {S Wave})

axm2 : {Wave 	→ ElementaryForm} ∈ IS A
axm3 : {Segment 	→ ElementaryForm} ∈ IS A
axm4 : {Cycle 	→ Waveform} ∈ PART OF
axm5 : {P Wave 	→ Wave} ∈ IS A ∧ {P Wave 	→ Cycle} ∈ PART OF
axm6 : {QRS Wave 	→ Wave} ∈ IS A
axm7 : {T Wave 	→ Wave} ∈ IS A ∧ {T Wave 	→ Cycle} ∈ PART OF
axm8 : {U Wave 	→ Wave} ∈ IS A ∧ {U Wave 	→ Cycle} ∈ PART OF
axm9 : {PQ Segment 	→ Segment} ∈ IS A∧

{PQ Segment 	→ Cycle} ∈ PART OF
axm10 : {ST Segment 	→ Segment} ∈ IS A∧

{ST Segment 	→ Cycle} ∈ PART OF
axm11 : {Q Wave 	→ QRS Wave} ∈ PART OF∧

{Q Wave 	→ Cycle} ∈ PART OF
axm12 : {R Wave 	→ QRS Wave} ∈ PART OF∧

{R Wave 	→ Cycle} ∈ PART OF
axm13 : {S Wave 	→ QRS Wave} ∈ PART OF∧

{S Wave 	→ Cycle} ∈ PART OF

axm14 : RR Int equidistant ∈ {Cycle} × LEADS → BOOL
axm15 : P Positive ∈ {P Wave} × LEADS → BOOL
. . .
. . .
. . .
axm52 : QRS AxisState ∈ {QRS Wave} × LEADS → QRS direcstions

C. The Context Refactored Model (ECG Protocol)

In this section, we revisit the developed ECG protocol [9]

to apply the proposed refactoring approach. Fig 8 describes

the stepwise development of the domain model and system

model covering the given requirements. This is a generic

development where the domain model and system model

evolve progressively.

axm1 : partition(State, {OK}, {KO})
axm2 : partition(SState, {Y es}, {No})
axm3 : HState ∈ {Heart} → State
axm4 : HSState ∈ {Heart} → SState

CS1 : ClinicalProp1 = (λx 	→ y·x = Cycle ∧ y = P Wave∧
((∃l·l ∈ {II, V 1, V 2} ∧ PP Int equidistant(x 	→ l) = TRUE∧
RR Int equidistant(x 	→ l) = TRUE ∧ RR Interval(x 	→ l) =
PP Interval(x 	→ l)) ∧ P Positive(y 	→ II) = TRUE)|TRUE)

CS2 : ClinicalProp2 = (λx 	→ y·x = Cycle ∧ y = P Wave∧
((∀l·l ∈ {II, V 1, V 2} ⇒ PP Int equidistant(x 	→ l) = FALSE}∨
RR Int equidistant(x 	→ l) = FALSE ∨ RR Interval(x 	→ l) �=
PP Interval(x 	→ l)) ∨ P Positive(y 	→ II) = FALSE)|TRUE)

Fig. 9 depicts a standard clinical procedure for analysing

the ECG. The initial assessment step allows us to check the

sinus rhythm and the heart rate (state of the heart), formally

defined in the abstract model using domain knowledge and
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Fig. 9: Basic Diagram of Assessing Rhythm and Rate [6]

some new axioms (axm1-axm4). These axioms are defined to

specify the heart state (HState) and the sinus state of the heart

(HSState). For developing the ECG protocol, the abstract

model defines two clinical properties CS1 and CS2. These

clinical properties use the domain knowledge to specify the

ECG assessment protocol. These clinical properties are intro-

duced in the context model using the refactoring operations

Transform SM 2 SM’ (see Fig. 2 and Fig. 3). Note that these
properties were introduced implicitly in the previous model of
the ECG protocol [9].

D. The Machine Refactored Model (ECG Protocol)

In the abstract model, we define three variables, Sinus -

sinus state of the heart, Heart Rate - heart rate limit, and

Heart State - normal or abnormal heart state, in inv1-inv3.

A set of safety properties (saf1-saf6) is introduced: saf1 -

if the positive visualization of P-wave in lead II is FALSE,

then there is no sinus rhythm; saf2 - if the sinus is yes than

the clinical property ClinicalProp1 must be TRUE; saf3 -

if the clinical property ClinicalProp2 is TRUE then there

is no sinus rhythm; saf4 - if the heart rate belongs to the

range of the normal heart rate and the sinus rhythm is yes

then the heart state is OK; saf5 - if the heart rate belongs

to the abnormal heart rate and the sinus rhythm is yes then

the heart state is KO; and saf6 - if the heart rate belongs

to the normal heart rate and there is no sinus rhythm then

the heart state is KO. These set of properties are modified

by using the refactoring operation Transform SM 2 SM’ (see

Fig. 2 and Fig. 3). Note that the defined clinical properties

(ClinicalProp1 and ClinicalProp2) are used to state the safety

properties.

inv1 : Sinus ∈ HSState
inv2 : Heart Rate ∈ HEART RATE
inv3 : Heart State ∈ HState
saf1 : P Positive(P Wave 	→ II) = FALSE ⇒ Sinus = Heart 	→ No
saf2 : Sinus = Heart 	→ Y es ⇒ ClinicalProp1(Cycle 	→ P Wave) = TRUE
saf3 : ClinicalProp2(Cycle 	→ P Wave) = TRUE ⇒ Sinus = Heart 	→ No
saf4 : Heart Rate ∈ NORMAL HEART RATE ∧ Sinus = Heart 	→ Y es

⇒Heart State = Heart 	→ OK
saf5 : Heart Rate ∈ ABNORMAL HEART RATE ∧ Sinus = Heart 	→ Y es

⇒Heart State = Heart 	→ KO
saf6 : Heart Rate ∈ NORMAL HEART RATE ∧ Sinus = Heart 	→ No

⇒Heart State = Heart 	→ KO

The abstract model of the ECG protocol contains

three events, Rhythm test TRUE, Rhythm test FALSE and

Rhythm test TRUE abRate to assess the heart state by

analysing the heart rhythm and the normal or abnormal heart

rate. These events have used the domain model knowledge and

the given clinical properties to specify the required behaviour.

In these events, the guards are modified by applying the

refactoring operation Transform SM 2 SM’ (see Fig. 2 and

Fig. 3). The first guard of these events annotated with clinical



properties is refactored in the context model as CS1 or CS2.

The second guard of these events annotates the heart rate that

is explicitly defined in the domain model.

EVENT Rhythm test TRUE
ANY rate
WHEN

grd1 : ClinicalProp1(Cycle 	→ P Wave) = TRUE
grd2 : rate ∈ NORMAL HEART RATE

THEN
act1 : Sinus := Heart 	→ Y es
act2 : Heart Rate := rate
act3 : Heart State := Heart 	→ OK

END

EVENT Rhythm test FALSE
ANY rate
WHEN

grd1 : ClinicalProp2(Cycle 	→ P Wave) = TRUE
grd2 : rate ∈ HEART RATE

THEN
act1 : Sinus := Heart 	→ No
act2 : Heart Rate := rate
act3 : Heart State := Heart 	→ KO

END

EVENT Rhythm test TRUE abRate
ANY rate
WHEN

grd1 : ClinicalProp1(Cycle 	→ P Wave) = TRUE
grd2 : rate ∈ ABNORMAL HEART RATE

THEN
act1 : Sinus := Heart 	→ Y es
act2 : Heart Rate := rate
act3 : Heart State := Heart 	→ KO

END

The abstract model is further enriched by introducing the

essential assessment steps progressively in a sequence of

refinements, which corresponds to the standard analysis step

of the ECG protocol [6].

Note that the new refactored models are different from the

old models. For example, below we show an event equivalent

to the refactored event Rhythm test TRUE. In the old event,

the guards and other domain properties are defined implicitly,

while in the new refactored model the required properties are

defined only once in the domain model (such as ClinicalProp1)

and it is used in the system model. Note that such refactoring

approach has increased the proof automation.

EVENT Rhythm test TRUE
ANY rate
WHEN

grd1 : (∃l·l ∈ {II, V 1, V 2} ∧
PP Int equidistant(l) = TRUE ∧
RR Int equidistant(l) = TRUE ∧
RR Interval(l) = PP Interval(l)) ∧
P Positive(II) = TRUE

grd2 : rate ∈ 60 .. 100
THEN

act1 : Sinus := Y es
act2 : Heart Rate := rate
act3 : Heart State := OK

END

Fig. 10: Taken from the old ECG model [9]

Due to space constraints, we omit the rest of the develop-

ment. A detailed formal development of this ECG protocol is

available on the website4.

E. Model Verification

In this section, we describe the proof statistics of the

developed model using refactoring approach. As we know

that this development is based on the Event-B modelling

language, which allows us to check the consistency checking
and refinement checking. Table III presents the proof statistics

4http://singh.perso.enseeiht.fr/Conference/ICECCS2018/ECGModels.zip

of the progressive development of the old ECG model and

the refactored ECG model. In this development applying the

proposed refactoring approach, we achieve 543 (100%) proof

obligations, in which 391 (73%) POs are proved automatically,

and the remaining 152 (27%) are proved interactively using the

Rodin provers, while the old development has more POs. Note

that the generated POs of new refactored model also include

other possible POs related to refactoring operations. The old

model has more POs, including more manual interactions, due

to the complex predicates and implicit domain knowledge.

This refactoring approach has simplified the modelling con-

structs and development process that allows us to automate

the several proof strategies of the refactored model. Moreover,

the interactive proof obligations are also very simple that are

proved with the help of SMT solver.

First, we mention that our approach has been deployed on

a non trivial development issued from the medical domain.

Note that the obtained new refactored model of ECG is simple

compared to the old model of ECG. Some of the states and

behavioural properties, previously defined implicitly in the old

model of ECG, are defined explicitly in the new refactored

model of ECG. Shared ontological definitions are referenced

in the new obtained model.

Moreover, according to the Table III, the proof efforts

have been decreased comparing with the old model [9]. In

particular, the number of interactive proofs is significantly

decreased. Indeed, the domain model properties are proved

once for all in DM and are used as hypotheses to prove the

properties of the system model SM .

The results shown in Table III indicate that the use of

refactoring approach with explicit domain knowledge has

improved significantly the process of formal development and

has produced the new simplified proof strategies.

V. ASSESSMENT

The explicitation of domain knowledge in system modelling

leads to the expression of properties absent in the old system

model due to implicit or lack of domain knowledge. For

example, the heart rate is represented in a pair of unit (bpm)

and value that must comply whenever heart rate is modified.

Note that in our old model, there was no unit (bpm) for

representing the heart rate, and thus this property was absent.

The proposed refactoring approach restructures the formal

model and introduces domain knowledge explicitly in the sys-

tem model. The approach reduces the system complexity, proof

efforts and improves the model consistency. For example, the

clinical properties (CS1 and CS2) are defined once in the

context model using the domain concepts borrowed from DM.

These properties have been used later in the SM’ to define

safety properties (see saf2 and saf3) and guards (grd1 in all

three events).

Due to model refactoring, the developed DMs can be reused

for any other system model SM in relation with this domain.

Moreover, due to separation of concerns, these refactored

models are easily maintainable and can be used for further

designs or analyses. For example, we have developed the DM



Model Old Model Refactored Model
Total number Automatic Interactive Total number Automatic Interactive

of POs Proof Proof of POs Proof Proof
Abstract Model 41 33(80%) 8(20%) 43 22(52%) 21(48%)
First Refinement 61 54(88%) 7(12%) 49 36(74%) 13(26%)
Second Refinement 41 38(92%) 3(8%) 39 32(82%) 7(18%)
Third Refinement 51 36(70%) 15(30%) 47 39(83%) 8(17%)
Fourth Refinement 60 35(58%) 25(42%) 50 36(72%) 14(28%)
Fifth Refinement 43 22(51%) 21(49%) 36 29(81%) 7(19%)
Sixth Refinement 38 14(36%) 24(64%) 30 22(74%) 8(26%)
Seventh Refinement 124 29(23%) 95(77%) 114 74(65%) 40(35%)
Eighth Refinement 52 30(57%) 22(43%) 53 33(63%) 20(37%)
Ninth Refinement 21 9(42%) 12(52%) 15 12(80%) 3(20%)
Tenth Refinement 67 43(64%) 24(36%) 65 54(84%) 11(16%)
Total 599 343(58%) 256(42%) 543 391(73%) 152(27%)

TABLE III: Proof Statistics

of ECG used here for analysing the medical protocol. The

same ECG DM can be used for developing any other medical

system.

Note that the total number of refinements for both the old

model and the newly refactored model is identical. The use

of refactoring has great impact on reducing the proof efforts

by restructuring and decomposing the complex model. The

number of automated proofs has been increased. For example,

the old model of ECG [9] has 58% automated POs while

the new model of ECG has 73% of automated POs due to

the availability of new hypotheses in the DM. Moreover, the

interactive POs of the new model is simpler than the old ECG

model.

VI. RELATED WORK

The use of ontology in software engineering for designing

a complex system has great interest by several researchers to

consider the domain knowledge explicitly. Zayas et al. [24]

proposed a methodology to interoperate existing heteroge-

neous design models to make them complete and precise with

shared domain knowledge. In [1], [25], authors proposed a new

approach for handling domain knowledge in design models. In

this work, the domain models are developed using ontologies

that can be used further during the system development ap-

plying annotation mechanism. Hacid et. al. [18] have used the

similar approach to develop a domain model based on ontology

for developing a system model using stepwise development.

In [15], authors proposed a generic approach to integrate the

domain description formalized by ontologies into an Event-B

development process.

The initial idea of refactoring was proposed by Opdyke [7]

and Griswold [26] in their dissertations. Fowler et al. [5]

described the code refactoring approaches, methods and as-

sociated tools. Refactoring is defined as, ”Refactoring is the
process of changing a software system in such a way that it
does not alter the external behaviour of the code yet improves
its internal structure”. Mens and Tourwé [27] compared and

discussed different criteria related to the refactoring activities,

specific techniques and formalism that can be used for reduc-

ing software complexity using restructuring. Bois et al. [8]

proposed quality matrix to describe the impact of refactoring.

They developed a set of guidelines used to improve the

coupling and cohesion characteristics. Several tools, such as

Eclipse5, IntelliJ IDEA6, have been developed for source code

refactoring.

Refactoring approaches are not limited to programming

languages. They have been adopted by the formal specification

modelling languages: [28] for Event-B, [29] for ASM, [30] for

Alloy, and [31] for Object-Z. Whiteside et al. [32] proposed

a proof script refactoring approach for constructing, restruc-

turing, and maintaining the development of formal proofs to

support complex proofs. Kobayashi et al. [28] proposed the

refactoring approach to restructure the refinements in Event-

B. The main contribution is refinement decomposition based

on a slicing strategy of a large model. The objective of our

proposed refactoring approach is different from others. The

main objective is to steer refactoring by modelling explicitly

domain knowledge in a system model, minimising the com-

plexity of proof structures, improving the maintainability of

the developed formal model, exposing of any existing bug and

improving the readability of the developed model.

VII. CONCLUSION

This paper has presented a refactoring approach that allows

us to refactor a complex formal model, where the formal

model is developed using a correct by construction approach

and the domain concepts have been modelled implicitly. We

have proposed a set of operations that allows us to refactor a

system model considering domain specific knowledge in form

of ontology to produce the domain model and system model

through preserving the correctness of functional behaviour of

the system. We have highlighted these refactoring operations

for automation. In the current work, we have applied all

these operations manually. The semantical description of the

operations is beyond the scope of this paper. Due to the

modelling complexity and variety of refinement laws, we

do not claim completeness of the refactoring operations at

this stage. Our results showed that the proposed refactoring

5http://www.eclipse.org
6https://www.jetbrains.com



operations can largely be automated to produce a simplified

formal model with an explicit domain model.

In order to apply the refactoring approach, we selected

the Event-B modelling language, which allows incremental

refinement based on a correct-by-construction approach, for

generating formal models. Further, the Rodin tools have been

used to verify formally the produced refactored model. To

assess the effectiveness of our proposed refactoring approach,

we have revisited the formal development of the ECG pro-

tocol. We have developed the domain model and refactored

system model in Event-B by using ontology and revisiting

the developed formal model of ECG. In this development, we

have refactored the whole model by preserving the required

safety properties and functional behaviour through integrating

the domain knowledge, such as the ECG. In order to guarantee

the ‘correctness’ of the system behaviour, we have used a list

of safety properties in the refactored model. Each refactored

model was proven to guarantee the preservation of those safety

properties.

Our future goal is to provide a semantical description

and formalisation of the proposed refactoring operations

(Transform X 2 X and Factorise X 2 X ). In the cur-

rent work the total number of refinements is identical for both

the old model and the newly refactored model. Thus, our new

challenge in future will be to modify the refinement strategy

for restructuring the formal development and optimising the

refinement levels. In addition, studying the reusability of the

proofs performed on the source models for the refactored

target models is not addressed in this paper. We also plan to

investigate this point in our future work. Moreover, we want

to develop a tool based on the proposed refactoring operations

to automate the process of refactoring the complex formal

models.
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[1] Y. Ait-Ameur and D. Méry, “Making explicit domain knowledge in
formal system development,” Sci. Comput. Program., vol. 121, no. C,
pp. 100–127, Jun. 2016.

[2] M. Jackson and P. Zave, “Domain descriptions,” in Proceedings of IEEE
International Symposium on Requirements Engineering, RE 1993,, pp.
56–64.

[3] P. Zave and M. Jackson, “Four dark corners of requirements engineer-
ing,” ACM Trans. Softw. Eng. Methodol., vol. 6, no. 1, pp. 1–30, 1997.

[4] D. Bjørner, “Manifest domains: analysis and description,” Formal Asp.
Comput., vol. 29, no. 2, pp. 175–225, 2017.

[5] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1999.

[6] M. G. Khan, Rapid ECG Interpretation. Humana Press, 2008.
[7] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. disser-

tation, Champaign, IL, USA, 1992, uMI Order No. GAX93-05645.
[8] B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring ” improving

coupling and cohesion of existing code,” in Proceedings of the 11th
Working Conference on Reverse Engineering, ser. WCRE ’04. IEEE
Computer Society, 2004, pp. 144–151.
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