
Any correspondence concerning this service should be sent to the
repository administrator:

staff-oatao@listes-diff.inp-toulouse.fr

To link to this article : DOI:10.1007/978-3-030-04771-9_19

URL : https://doi.org/10.1007/978-3-030-04771-9_19

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 23579

To cite this version: Geniet, Romain and Singh, Neeraj Kumar
Refinement Based Formal Development of Human-Machine Interface.
(2018) In: 7th International Workshop on Formal Methods for Interactive
Systems (FMIS), 25 June 2018 (Toulouse, France)

mailto:staff-oatao@listes-diff.inp-toulouse.fr
https://doi.org/10.1007/978-3-030-04771-9_19
http://oatao.univ-toulouse.fr/
http://www.idref.fr/159807883

Refinement Based Formal Development
of Human-Machine Interface

Romain Geniet1 and Neeraj Kumar Singh2(B)

1 Université de Rennes 1, Rennes, France
romain.geniet@laposte.net

2 INPT-ENSEEIHT/IRIT, University of Toulouse, Toulouse, France
nsingh@enseeiht.fr

Abstract. Human factors have been considered as the most common causes of
accidents, particularly for interacting with complex critical systems related to
avionics, railway, nuclear and medical domains. Mostly, a human-machine inter-
face (HMI) is developed independently and the correctness of possible interac-
tions is heavily dependent on testing, which cannot guarantee the absence of run-
time errors. The use of formal methods in HMI development may assure such
guarantee. This paper presents a methodology for developing an HMI using a
correct by construction approach, which allows us to introduce the HMI compo-
nents, functional behaviour and the required safety properties progressively. The
proposed methodology, generic refinement strategy, supports a development of
themodel-view-controller (MVC) architecture. The whole approach is formalized
using Event-B and relies on the Rodin tools to check the internal consistency with
respect to the given safety properties, invariants and events. Finally, an industrial
case study is used to illustrate the effectiveness of our proposed approach for
developing an HMI.

Keywords: Human-machine interface (HMI) · Formal methods
Model-view-controller (MVC) · Refinement and proofs · Event-B
Verification · Validation

1 Introduction

The complexity of critical systems constantly increases and it is important to handle
such complexity by addressing several aspects, such as system and user interface, of
the system development to reduce the rate of system failure. Note that to design a safe
interface that enables a user to interact with system unambiguously may help to reduce
the rate of system failure. Developing a human-machine interface (HMI) is a difficult
and time-consuming task due to complex system characteristics and user requirements,
which allows anticipating human behaviour, system components and operational envi-
ronment. An interactive system is composed of two main components: functional core
and interface. An interface enables a user to communicate with a system.

©c Springer Nature Switzerland AG 2018
M. Mazzara et al. (Eds.): STAF 2018 Workshops, LNCS 11176, pp. 240–256, 2018.
https://doi.org/10.1007/978-3-030-04771-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04771-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-04771-9_19

Our work is focused on the development of HMI for checking the correctness of
possible HMI behaviours. There are two main HMI concepts: user-oriented concepts
and designer-oriented concepts [11]. Here, in our work, we use the designer-oriented
concepts. In this work, our main objective is to investigate the formal development of
HMI using a correct-by-construction approach in Event-B, particularly for the MVC
architecture. As far as, we know that there is no MVC model in the field of HMI, which
is formally developed using a correct-by-construction approach.

In this paper, we propose a generic development of HMI based on the MVC archi-
tecture in order to design and implement complex HMI progressively and then derive a
set of patterns of design and proof that can be used in the HMI development. Here, we
begin by formalizing the interaction behaviour and possible modes of an HMI. Then,
we formalize the notion of controller and manipulation functions, and finally, we finish
by adding the elements of the view component. All these modelling steps are applied
progressively through satisfying the required safety properties. Moreover, this devel-
opment also reflects modelling concepts for handling the problem of communication
between HMI components. An incremental development of the MVC architecture for
HMI preserves the required behaviour in an abstract model as well as in the refined
models. The Event-B language is supported by the Rodin [5] platform, which provides
a set of tools for developing, proving and managing the formal specifications. We use
the ProB model checker tool [26] to analyse and validate the developed models of HMI.

The remainder of this paper is organized as follows. Section 2 presents the required
background. In Sect. 3, we propose a methodology for developing a formal model of
HMI based on the MVC architecture. Section 4 presents an overview on the selected
case study. In Sect. 5, we present a formal development of the case study in Event-B. In
Sect. 6, we discuss the results of our work and Sect. 7 presents the related work. Finally,
Sect. 8 concludes the paper with future work.

2 Background

2.1 HMI Architecture

Seeheim and ARCH. Initially, this model was appeared in 1983 [25]. Seeheim archi-
tecture is a model with four components depicted in Fig. 2. These four components
are: (1) Presentation - this component handles in/out data from a system; (2) Dialog
control - this component creates a link between the presentation and interface, and a
controller translates a set of interactions of a user in machine instructions; (3) Interface
- this component allows operations on the data of an application; and (4) Switch - this
component allows a feedback of that actions which are meaningless for an application.

In 1991, the Seeheim architecture was extended to develop the ARCH architec-
ture [25]. For developing the ARCH architecture (see Fig. 1), two new components
are introduced in the Seeheim architecture. These two new components make a link
between the three existing components from Seeheim architecture, and the switch
is removed in this model. The component presentation logic avoids contradictions
between the presentation and dialog controller. The functional core is fully indepen-
dent of the interface. It makes a link to the machine part of HMI (see Fig. 1). The
main advantage of the ARCH model as compared to Seeheim is the improvement of

the decoupling between components thanks to adapter layers [25]. The adapters enable
more flexibility during the evolution of a system, while the other expresses an existence
of the functional core for an application.

Interaction

Presentation

Dialog
Controler

Domain
Adaptater

Functionnal
Core

User Machine

Interaction object

Inputs/Outputs

Presentation
Object

Adaptated
domain object

Domain
Objects

Machine inputs/ Machine outputs

Fig. 1. ARCH architecture [1]

Switch

Dialog
Controler Interface

User Functional
Core

Interaction

Translation

Feedback

Operation

Presentation

Fig. 2. Seeheim architecture [1]

ViewController

Model

UpdatesManipulates

Renders

Send Request

Fig. 3.MVC architecture

MVC. MVC architecture, proposed in 1979, is the most used architecture in the
HMI development (see Fig. 3) [34]. There are three main components of this architec-
ture that are described as follows: (1) Model - this is the central component of the MVC
architecture that allows the management of data, logic and rules of an application; (2)
View - this component allows the management of an interface display, and the used data
is provided by the model; and (3) Controller - this component allows the management
of data during an input activity from an interface (such as keyboard, mouse, voice...).
In our work, we use this architecture to design an HMI.

2.2 HMI Properties

Usability Principles. According to Dix et al. [20], there are three main categories:
Learnability-the easy with which new can begin effective interaction and achieve max-
imal performance; Flexibility-the multiplicity of ways the user and system exchange
information; and Robustness-the level of support provided to the user in determin-
ing successful achievement and assessment of goal-directed behaviour. Learnability
covers the properties of predictability, synthesizability, familiarity, generalizability,
and consistency of possible interactions. Flexibility focuses on the dialog initiative,
multi-threading, task migratability, substitutivity, customizability. Finally, Robustness
addresses the properties of observability, recoverability, responsiveness and task con-
formance.

CARE. It is a simple framework for reasoning about the multimodal interaction of HMI
from both the system and user perspectives [19,29]. A modality is a way of commu-
nication that is used by an interface. For example, an interactive map uses the display
modality to communicate information with users. The main four properties are: Com-
plementarity - a set of modalities must be used in a complementary way to realize a
goal; Assignation - there is a unique modality to realize a goal; Redundancy - a set of
modalities is used redundantly if all the modalities have same expressiveness to real-
ize a goal; and Equivalence - a set of modalities is equivalent if anyone modality is
sufficient to realize a goal.

2.3 Event-B

The Event-B modelling language is developed by Abrial [4,37], in which most of the
constructs are borrowed from the B-method [3]. This modelling language is based on
the first-order logic and set theory. The goal of this language is to design a complex sys-
tem using a correct-by-construction approach. The correct-by-construction approach
allows us to introduce different system behaviours and properties in successive refine-
ments. The development begins with a very high level of abstraction. The refinement
enables us to introduce more detailed behaviour and the required safety properties by
transforming an abstract model to a concrete version. The final concrete model can be
used to produce the source code in any programming language. Note that the refinement
always preserves a relation between an abstract model and its corresponding concrete
model. The newly generated proof obligations related to refinement ensures that the
given abstract model is correctly refined by its concrete version.

There are two main components of Event-B: context and machine. A context is
composed of several elements, such as set, constant, and axiom. The set and constant
elements are defined to state the type definitions and constant definitions to describe
the system behaviour. The axioms are some logical propositions that cannot be proved
but these axioms are used as the base of mathematical reasoning. A context may be an
extension of another context. Note that all the elements of the extended context exist
in a new context without being declared. A context may also contain some theorems in
form of logical properties that can be deducted from the existing axioms.

An Event-B model is characterized by a list of state variables that are modified by
a list of events to model the changing behaviour of a system with respect to the given
conditions. In general, an event can be described in the following form:

e � any var where grd then act end

where var is a list of local variables, grd is a set of guards in form of the conjunction
of predicates, and act is a set of parallel actions. Any event can be enabled if the given
guards are true. If more than one event enables simultaneously then any event can be
selected for execution non-deterministically, and if none of the events becomes enabled
then the system becomes deadlocked. An event can be always enabled if the event is
not guarded. In general, a set of actions of an event is a composition of assignments
that execute simultaneously, in which a variable assignment can be either deterministic
or non-deterministic. The deterministic assignment can be denoted as x := expr(var),

where x is a state variable and expr(var) is an expression over the state variable var.
The non-deterministic assignment can be denoted as x :∈ S or x : |P (var, x′), where
S is a set of values and P (var, x′) is a predicate. In x :∈ S, x can obtain any value
from S and in x : |P (var, x′), x can obtain any value that can be satisfied by the
predicate P (var, x′). Invariants of a machine define the type definition of variables
and the required safety properties that must be satisfied during the system execution. In
Event-B, there are three type of events: ordinary event, convergent event and anticipated
event. The ordinary event has not any constraints. By default, all the events are ordinary
events. The convergent event always associates with a variant that models the converg-
ing behaviour of a system. An anticipated event is a new event which is not convergent
yet but should become convergent in the subsequent refinement.

The foundational semantic of the Event-B language is grounded on before-after
predicates [4]. The before-after predicate shows a relation between the system states
before and after execution of an event. To verify the correctness of an Event-B model,
we need to show that the initialization and events preserve the defined invariants. It can
be expressed as follows:

A(s, c), I(s, c, x), Ge(t, s, c, x), BAe(t, s, c, x, x
′) � I(s, c, x′)

A(s, c), BAinit(s, c, x
′) � I(s, c, x′)

Event-B proof obligations (POs) also allow verifying the event feasibility to show
that whenever an event is enabled then there is always a reachable state after the event
activation. It can be defined as follows:

A(s, c), I(s, c, x), Ge(t, s, c, x) � ∃x′.BAe(t, s, c, x, x
′)

In the above formulas, A(s, c) is a set of axioms, I(s, c, x) is a set of invariants,
Ge(t, s, c, x) is a set of guards and BAe(t, s, c, x, x′) is set of before-after predicates
for an event and BAinit(s, c, x′) is a before-after predicate for the initial event using
constants c, carrier sets s and variables x.

To verify the correctness of a refinement step, we need to discharge the generated
proof obligations for a refined model. There are several POs, which are detailed in [4].
An abstract model AM with state variable x and invariant I(x) is refined by a concrete
model CM with variable y and gluing invariant J(x, y). e and f are events of the
abstract model AM and the concrete model CM , respectively, where event f refines
event e.BAe(t, s, c, x, x′) andBAf (t, s, c, y, y′) are before-after predicates of events e
and f , respectively. The simulation PO (SIM) shows that the new modified action in the
refined event is not contradictory to the abstract action and the concrete event simulates
the corresponding abstract event. This SIM PO can be defined as follows:

A(s, c), I(s, c, x), J(s, c, x, y), Gf (s, c, x, y), BAf (t, s, c, y, y
′) � BAe(t, s, c, x, x

′)

Similarly, in the refined events, we can strengthen the abstract guards to specify
more concrete conditions. The generated POs ensure that if a concrete event is enabled
then the corresponding abstract event will also be enabled. This PO is defined as fol-
lows:

A(s, c), I(s, c, x), J(s, c, x, y), Gf (s, c, x, y) � Ge(s, c, x)

Rodin [5] is an open source tool based on the Eclipse framework for developing
a formal model in the Event-B language. This is the collection of different tools that
includes the project management, model development, refinement and proof assistance,
model checking and code generation.

3 Methodology

For developing an HMI based on the MVC architecture using a correct by construction
approach, we propose a generic development depicted in Fig. 4. On the upper part of
the figure, we show the classical scheme of MVC with possible interaction protocol.

ViewControllerModel

Updates

Manipulates

Renders

Send Request

Abstract
Model

Rk
Rk+1

Rm
Rm+1

Rn
Rn+1

Concrete
Model

Fig. 4.MVC based refinement strategy

On the bottom part of the
figure, we sketch the pos-
sible refinement strategy.
In this refinement strategy,
each triangle corresponds
to the formal development
of the MVC components,
such as model, controller
and view. Note that these
triangles are overlapped with
each other due to some
shared variables and func-
tional behaviours.

According to the proposed refinement strategy, first, we formalize the model com-
ponents, which describe a very high level of abstraction of HMI in form of system
modality. Note that this abstract model can be used in different refinement layers to
introduce the complete modality of HMI, and we can also introduce the required safety
properties in each refinement level to guarantee the correctness of the modes transitions
of HMI. The next step of the development is to introduce the controller components
and the required controller behaviour. In this phase of the development, we introduce
the controller components and their static and dynamic properties. The static properties
related to the controller can be defined by extending the context of the model, while
the controller components and dynamic properties can be defined by introducing a set
of new events and by refining the abstract events. For modelling the controller, we can
also use different refinements to reduce the complexity of the controller modelling. All
the required safety properties must be introduced in these refinements. The last com-
ponent of the MVC architecture is view, which should be integrated in the previously
developed models. In this last phase of the development, we introduce the components
and the required properties of the view. The view can also be defined as similar to our
previous development in several layers of refinements. By adding the view components,
we can prove the correctness of the request functions and responses of the controller.
In this step of the development, we implement the behaviours of different elements of
HMI. When all the elements are designed and integrated, we introduce the interaction

properties for each component to check the correctness of the interaction behaviour of
the developing HMI. Note that the formal development related to the view is complex,
and we need to add several guards in different events to meet the desired properties of
interaction behaviour for each view component of the HMI.

4 Case Study

In this section, we describe an industrial case study of HMI to understand the modelling
and designing concepts, and interaction behaviour of different components. Figure 5
depicts a simple HMI that contains a set of graphical components in form of widgets. In
this HMI, we have three modes stop mode, limit mode and control mode. These modes
always appear on the top left corner of the HMI that shows an actual modality of the
physical system. The stop mode indicates that the physical system connected with HMI
is stopped, the limit mode represents that the speed of the physical system is limited, and
the control mode indicates that the speed of the physical system is controlled. The HMI
shows the selected speed, current speed and current mode. The speed of the vehicle is
bounded (selected speed and current speed). The selected speed can be modified using
widget components like slider and buttons (‘+’ and ‘−’).

Fig. 5. Graphical view of the case study

A set of informal requirements of HMI
is defined as: R1: the selected speed
is bounded; R2: the current speed is
bounded; R3: only one button can be
pressed at a time; R4: the slider can be
moved only if no button is pressed; R5:
the default mode of HMI is stopped; R6:
the limit mode and control mode can be active.

5 Formalization of HMI

To develop a formal model of the selected case study, we use the Event-B modelling
language [4] that supports an incremental refinement to design a complete system in
several layers (i.e. model, controller and view), from an abstract to a concrete specifi-
cation. Firstly, the initial model captures the basic behaviour of the HMI in an abstract
way. Then subsequent refinements are used to formalize the concrete behaviour for the
resulting HMI that covers the different elements of the HMI. Note that, in this develop-
ment, we follow the HMI development similar to our proposed methodology.

5.1 Abstract Model: Model

To model the HMI case study,
Power O

Stop

shutdown

DRIV

SUSP

DRIV

SUSP

suspendedstatus

drivingstatus

suspendedstatus

drivingstatus

selectControl

selectStop

selectLimit

selectControl

selectLimit

selectStop

ControlLimit

powering

Power On

Fig. 6. Automata of an abstract model

we choose the MVC architec-
ture. An abstract behaviour of the
HMI is depicted in Fig. 6. This
figure shows an automaton that
models the changing states of
the controller. When the system
is in the stop mode then it can
switch either in the limit mode
or in the control mode. There
are several possible interactions
defined in this abstract automata
to describe the model of HMI. In
the context of the initial model,
we define three enumerated sets:
MODES - a set of different con-
troller modes; POWERED - on
and off power states; and STATUS - driving status and suspended status.

axm1 : partition(MODES, {STOPPED}, {CONTROL}, {LIMIT})
axm2 : partition(POWERED, {ON}, {OFF})
axm3 : partition(STATUS, {DRIV ING}, {SUSPENDED})

An abstract model is used to show the operating modes by observing the sys-
tem interaction. The machine model formalizes the dynamic behaviour of the HMI.
To define the dynamic properties, we introduce three variables selectedmode, powered
and status. The variable selectedmode represents the current state of the HMI, the next
variable powered represents the power status of the HMI and the last variable status
indicates the current status of the system. Four interesting safety properties are defined
using safety invariants (saf1-saf4). The first safety invariant (saf1) expresses that the
currently selected mode is not in the stopped mode then the power is on. The next safety
property (saf2) states that if the current mode is stopped then the status is suspended.
The next safety property (saf3) states that when the system is in driving state then the
selected mode is either in the control mode or in the limit mode. The last safety property
(saf4) states that when the system is off then the system must be in the stopped mode.

inv1 : selectedmode ∈ MODES
inv2 : powered ∈ POWERED
inv3 : status ∈ STATUS
saf1 : selectedmode �= STOPPED ⇒ powered = ON
saf2 : selectedmode = STOPPED⇒

status = SUSPENDED
saf3 : status = DRIV ING ⇒ selectedmode =

CONTROL ∨ selectedmode = LIMIT
saf4 : powered = OFF ⇒ selectedmode = STOPPED

EVENT powering
WHEN
grd1 : powered = OFF

THEN
act1 : powered := ON

END

In this abstract model, we introduce seven events: powering - to present the power
status of the HMI; shutdown - to indicate the shutdown status of the HMI; selectStop
- to select the stop mode; selectControl - to select the control mode; selectLimit - to

select the limit mode; drivingstatus - to show the driving status; and suspendedstatus -
to show the suspended status. The event powering specifies the power on behaviour of
the system. The guard of this event shows that the current power status is OFF and the
action of this event sets the current power status as ON .

The next event selectControl is used to set the control mode and driving status, when
system power is ON and the currently selected mode is not in the CONTROL mode.
Similarly, the last event drivingstatus is also used to set the driving status, when the
system power is ON , the currently selected mode is not stopped and the system is in
suspended status. Rest of the events are modelled in a similar way, and all these events
behave similar to the given abstract level automata (see Fig. 6).

EVENT selectControl
WHEN
grd1 : powered = ON
grd2 : selectedmode �= CONTROL

THEN
act1 : selectedmode := CONTROL
act2 : status := DRIV ING

END

EVENT drivingstatus
WHEN
grd1 : powered = ON
grd2 : selectedmode �= STOPPED
grd2 : status = SUSPENDED

THEN
act1 : status := DRIV ING

END

5.2 First and Second Refinements: Controller

There two different successive refinements for introducing the controller components.
In both refinements, we introduce the controller behaviour according to the MVC archi-
tecture. In order to design the controller, we introduce the initial speed (vinit), maxi-
mum speed (vmax), and bounded speed (SPEED) using axioms (axm1 - axm4) in
the first refinement. Note that the axiom axm3 states that the maximum speed must be
greater than the initial speed.

In the first refinement, we only introduce a new variable SelectedSpeed, which is
defined as SelectedSpeed ∈ SPEED. In this refinement, we introduce a new event
ChangeSpeed for modifying the selected speed non-deterministically. This event will be
refined in the next refinement to add more precise controller behaviour of the system.

axm1 : vinit ∈ N

axm2 : vmax ∈ N

axm3 : vmax ≥ vinit
axm4 : SPEED = 0..vmax

EVENT ChangeSpeed
WHEN
grd1 : powered = ON

THEN
act1 : SelectedSpeed :∈ SPEED

END

In the second refinement, we introduce a new constant STEP defined as STEP ∈
N. This constant is used in the refined model to change the selected speed through inter-
acting several HMI components, such as buttons and sliders. In this second refinement,
we introduce two new events, IncreaseSpeed - to increase a value of the selected speed;
and DecreaseSpeed - to decrease a value of the selected speed, which are the refine-
ments of the abstract event ChangeSpeed. The guards of the IncreaseSpeed state that
the system power is ON , the choice of step value (x) is either 1 or default STEP, and
the sum of the selected speed and the choice of step value (x) must be less than or equal
to the maximum speed (vmax). The action of this event states that the selected speed
increases by the step value (x).

EVENT IncreaseSpeed REFINES ChangeSpeed
ANY x
WHEN
grd1 : powered = ON
grd2 : x = 1 ∨ x = STEP
grd3 : SelectedSpeed + x ≤ vmax

THEN
act1 : SelectedSpeed := SelectedSpeed + x

END

EVENT DecreaseSpeed REFINES ChangeSpeed
ANY x
WHEN
grd1 : powered = ON
grd2 : x = 1 ∨ x = STEP
grd3 : SelectedSpeed − x ≥ vmax

THEN
act1 : SelectedSpeed := SelectedSpeed − x

END

The eventDecreaseSpeed is also formalised similar to the event IncreaseSpeed. The
guards of theDecreaseSpeed state that the system power isON , the choice of step value
(x) is either 1 or default STEP, and the subtraction of the choice of step value (x) from
the selected speed must be greater than or equal to the maximum speed (vmax). The
action of this event states that the selected speed decreases by the step value (x).

5.3 Third and Fourth Refinements: View

This is the last phase of our development according to our proposed methodology,
which allows us introducing the view components of the MVC architecture using sev-
eral refinements. In the third refinement, we introduce a set of HMI elements, such
as buttons and slider, and possible interactions between HMI components, for exam-
ple, click and dblclick operations of buttons, and moving and sliding operations of
slider. In order to design the selected case study, we introduce a slider and two but-
tons (‘+’ and ‘−’) to modify the selected speed. In this development, we also introduce
a set of buttons to represent the Toggle, Lim, Ctrl, Curr and Off buttons. We introduce
three enumerated sets SLIDERMODE, SLIDERDIRECTION and PRESSED in axioms
(axm1 – axm3). A set of axioms (axm4 – axm5) is defined to represent the possible
slider positions according to the changing speed of the system. An additional axiom
(axm6) is defined to state that the maximum speed is equivalent to the maximum value
of the slider position. It means that whenever the speed changes, the slider position also
updates accordingly.

axm1 : partition(SLIDERMODE, {Y ES}, {NO})
axm2 : partition(SLIDERDIRECTION, {NONE}, {INCR}, {DECR})
axm3 : partition(PRESSED, {NOTPRESS}, {Y ESPRESS})
axm4 : POSITION = 0 .. xmax
axm5 : speed ∈ POSITION → SPEED ∧ speed = id
axm6 : xmax ∈ N ∧ vmax = speed(xmax)

In this refinement, we introduce ten new variables using invariants (inv1 – inv5).
All these variables represent the different states of the HMI components in form of
PRESSED, SLIDERMODE or SLIDERDIRECTION .

inv1 : pressedP lus ∈ PRESSED ∧ pressedMinus ∈ PRESSED
inv2 : pressedCur ∈ PRESSED ∧ pressedToggle ∈ PRESSED
inv3 : pressedOff ∈ PRESSED ∧ pressedLim ∈ PRESSED
inv4 : pressedCtrl ∈ PRESSED ∧ slidermode ∈ SLIDERMODE
inv5 : sliderdirection ∈ SLIDERDIRECTION ∧ sliderposition ∈ POSITION

Several new safety properties (saf1–saf10) are introduced in this development.
The first safety property (saf1) states that when the button (‘+’) is pressed then the rest

of the buttons are not pressed. Similar to the first safety property, next eight safety prop-
erties (saf2 – saf9) are introduced, which always guarantee that if the selected button
is pressed then the other buttons are not pressed. The next safety property (saf10) states
that when the slider direction is NONE then the sliding mode is active. The last safety
property is a gluing invariant to establish a relation between abstract variable selected-
speed and concrete speed function speed.

saf1 : pressedP lus = Y ESPRESS ⇒ (pressedLess = NOTPRESS∧
pressedToggle = NOTPRESS ∧ pressedOff = NOTPRESS∧
pressedLim = NOTPRESS ∧ pressedCtrl = NOTPRESS)

saf2 : ...
...
...
saf9 : ...
saf10 : sliderdirection �= NONE ⇒ slidermode = Y ES
glu1 : ∀p·p ∈ POSITION ∧ p = sliderposition) ⇒ selectedspeed = speed(p)

In this development, we introduce 14 new events to describe the functional
behaviour of the different HMI components. A new event pressPlus is defined to show
the functional behaviour of the button (‘+’). The guards of this event state that the
power is ON , slider mode is not active, current button pressedP lus is not pressed and
the other remaining buttons are also not pressed. If all the given guards are true then
the action states that the current button can be pressed. The next event unpressPlus is
defined to model the button (‘+’) when this button is no more active to press. The guards
of this event state that the power is on, the button is in the press state and the slider posi-
tion is greater than the maximum speed. The action of this event states that the button
will be switched in theNOTPRESS mode. The other events are used in similar fash-
ion to model the rest of the HMI components. Note that we have also introduced extra
guards in other events to model the desired behaviour of the HMI.

EVENT pressPlus
WHEN
grd1 : powered = ON ∧ slidermode = NO ∧ pressedP lus = NOTPRESS
grd2 : pressedMinus = NOTPRESS ∧ pressedCur = NOTPRESS∧

pressedToggle = NOTPRESS ∧ pressedOff = NOTPRESS∧
pressedLim = NOTPRESS ∧ pressedCtrl = NOTPRESS

THEN
act1 : pressedP lus := Y ESPRESS

END

The fourth refinement is also the part of view component according to the MVC
architecture. In this refinement, we introduce the current speed of the system which
is produced by the physical system and its application. The development of the main
physical system is beyond the scope of this work because we are mainly interested to
design an HMI using a correct by construction technique. However, we introduce a
new variable currentspeed as currentspeed ∈ SPEED and a new event to model
an interface between the HMI and physical system. The current speed is defined as
similar to the selected speed. The new event updatecurrentspeed is defined to capture
the current actual speed of the system.

EVENT unpressPlus
WHEN
grd1 : powered = ON
grd3 : pressedP lus = Y ESPRESS
grd4 : sliderposition + STEP > vmax∨

sliderposition + 1 > vmax
THEN
act1 : pressedP lus := NOTPRESS

END

EVENT updatecurrentspeed
ANY v
WHEN
grd1 : v ∈ SPEED
grd2 : v �= currentspeed
grd3 : powered = ON

THEN
act1 : currentspeed := v

END

A complete formal development of the HMI case study is available on our website1.

5.4 Model Validation and Analysis

This section summarises the proof statistics of the generated proof obligations in each
refinement. The Event-B supports mainly consistency checking andmodel analysis. The
consistency checking shows that all the events always preserve the defined safety prop-
erties, and the refinement checking checks the correctness of the refinement process.

Table 1. Proof statistics

Model Total number
of POs

Automatic
proof

Interactive
proof

Abstract model 25 25(100%) 0(0%)

First refinement 5 5(100%) 0(0%)

Second refinement 3 3(100%) 0(0%)

Third refinement 233 219(94%) 14(6%)

Fourth refinement 31 25(81%) 6(19%)

Total 297 277(94%) 20(6%)

The model analysis is performed
using ProB [26] model checker,
which can be used to explore
traces of Event-B models. The ProB
tool supports automated consistency
checking, constraint-based checking
and it can also detect the possible
deadlocks. Table 1 summarises the
generated proof obligations for each
refinement steps.

The stepwise development results in 297(100%) proof obligations, in which
277(94%) are proved automatically, and the remaining 20(6%) are proved interactively
using the different Rodin provers, such as SMT solvers and standard B prover. Note that
the third refinement has the highest number of proof obligations because, in this devel-
opment, we introduce all the HMI components with required functional behaviour. To
validate the developed HMI model, we use the ProB tool for animating the models. This
validation approach refers to gaining confidence that the developed models are consis-
tent with requirements. The ProB animation helps to identify the desired behaviour of
the HMI model in different scenarios. In particular, this tool assists us in finding poten-
tial problems, and to improve the guard predicates of events. Moreover, we have also
used the ProB tool as a model checker to prove the absence of errors (no counterex-
ample exists) and deadlock-free. It should be noted that the ProB uses all the described
safety properties during the model checking process to report any violation of safety
properties against the formalized system behaviour.

In this development, the main derived properties from the usability principles, such
as consistency, observability and task conformance, are considered. A set of invariants
in form of safety properties is introduced equivalent to the subset of the HMI usabil-
ity principles. Note that these properties are also validated using ProB model checker
through animation. For example, in the abstract model, we check the behaviour of the

1 http://singh.perso.enseeiht.fr/Conference/FMIS2018/HMI Models.zip.

http://singh.perso.enseeiht.fr/Conference/FMIS2018/HMI_Models.zip

model components; in the second and third refinements, we check the behaviour of
the controller components; and in the last third and fourth refinements, we check the
behaviour of the view components.

6 Discussion

Stepwise refinement played an important role in our work for developing the HMI pro-
gressively. A stepwise refinement is a suggestive approach from a long time in order to
design a complex system. As we have mentioned before that the refinement is a core
concept in Event-B development. It is crucial, how to decide on what to introduce in a
new refinement level. There may be no universally ‘correct’ pattern to follow. However,
building on experience in HMI development we identified the order of: (1) Introduce
the model components of MVC (possible modes of HMI); (2) Introduce the controller
components of MVC; (3) Introduce the view components of MVC.

Note that the adopted notion of MVC allows us to build a complex HMI model
systematically and this approach also allows us to do reasoning steps systematically
considering usability principles. Due to the complex nature of HMI, we do not claim
that the proposed modelling approach (see Fig. 4) can be a standard approach for han-
dling any HMI. In fact, our results showed that the proposed modelling approach can be
used to model most of the HMI models. To demonstrate the practicality of the identified
modelling pattern based on the MVC (see Fig. 4), we have developed the selected HMI
case study using a correct by construction approach. We described the system require-
ments using set-theoretical notations abstractly, that can be further refined incremen-
tally to reach a concrete level similar to code. Event-B has a very good tool support that
allows us to prove the given properties (mostly) automatically. Other formal modelling
tools like VDM, Z, Alloy can be used in place of the Event-B modelling language.

As far as we know, there is no work related to the formal development of HMI based
on the MVC architecture using progressive refinement. We used informal descriptions
of the MVC architecture as a basis for this work. We also identified a list of safety
properties in the refinement process to verify the correctness of overall formalized sys-
tem behaviour, including newly introduced features. These safety properties guarantee
that all possible executions of the system are safe if the generated proof obligations are
successfully discharged – and if our list of safety properties is correct and complete.
We have considered only the main safety properties related to modes and interaction of
the view components. These properties are derived from the usability principles, such
as learnability, flexibility and robustness. We can introduce the additional HMI prop-
erties in form of safety properties in different refinements to meet the goal of usability
principles. Note that the presented case study does not cover the whole set of usabil-
ity principles. In particular, the current work is focused on consistency, observability
and task conformance. In addition, the use of the model checker allows us the validate
the developed model with respect to the given safety properties. In summary, we can
conclude that the some of the interesting critical properties of the HMI are proved and
checked but other remaining properties can be checked during the testing process.

7 Related Work

There are several works related to the formal development of HMI, but most of them
use different methods such as Petri net [31], process algebra [22] and model check-
ing [2]. Bowen et al. [15] present a refinement approach for designing UI, and [14]
describes models and techniques to incorporate the design artefacts into a formal devel-
opment process of HMI to specify the system behaviour. [35] describes a refinement
process to demonstrate that the given requirements of a device must be satisfied by the
specification. Compos et al. [16] propose a framework for checking the HMI system
for a given set of generic properties using model checkers. Combefis et al. [18] present
a formal approach based on bisimulation to analyse the HMI mechanism. Navarre et
al. [30] propose a framework for analysing the interactive systems, particularly for
the combined behaviour of user task models and system models to check whether a
user task is supported by the system model. [27] describes an approach for generat-
ing formal designs of HMI behaviour from task-analysis models and then the results
are demonstrated through different case studies. [17] presents the use of formal tech-
niques for the analysis of human-machine interactions. Michael et al. [23] present a
formal approach and methodology for the analysis and generation of user interfaces.
Palanque et al. [32,33] propose the development of HMI using Interactive Cooperative
Objects (ICO) formalism, in which the object-oriented framework and possible func-
tional behaviour are described with high-level Petri-nets. Bolton et al. [12,13] propose
a framework to analyse human errors and system failures by integrating the task mod-
els and erroneous human behaviour with formal techniques to check the required safety
properties.

Ameur et al. [8,9] propose an incremental development of an interactive system
using Bmethods. The proposed approach targets the important problems of HMI related
to reachability, observability and reliability. A global development approach for devel-
oping a software for human-computer interaction is proposed in [6,7] that can be used
from the abstract model to the code generation. Silva et al. [36] propose an approach to
generate user interface software, particularly in Java, from a declarative description in
the Teallach MB-UIDE. CARE properties are defined using the first order logic in [10].
A new tool-supported approach from specification to the implementation is proposed
in [24]. This approach is based on CAV architecture, which is a hybrid model of the
MVC and PAC models. The Event-B language is also used for developing the multi-
model interactive system using a correct by construction approach in [10]. The ARCH
architecture [29] is used during the development of the multi-model interactive system.
In addition, several safety properties are introduced to verify the required multi-model
interactive behaviour.

In this paper, our approach is different from existing works. The proposed approach
allows us to develop a formal model of an HMI based on the MVC architecture using
a correct by construction approach by analysing the system requirements, modes and
interaction mechanism. The use of refinement approach helps to introduce several prop-
erties in a progressive way and to verify the correctness of the HMI model under the
given safety properties, which can be derived from the usability principles. Moreover,
we can use progressive reasoning step in a complex model to cover the different HMI
properties. In addition, the progressively developed model can be used for validating

the specified system requirements using the model checker and animation. Note that
the final concrete model of the HMI can be used to generate source code in many pro-
gramming languages using EB2ALL [21,28] in a prototype development or simulating
a user interface.

8 Conclusion

This paper presents a generic methodology for developing a formal model of HMI using
incremental refinement. In particular, the proposed methodology focused on the MVC
architecture of HMI to analyze an interactive behaviour of a system under the given
safety properties. We used the Event-B modelling language, together with its associated
tools, to develop the proof-based formal model of HMI using a correct by construction
approach. Our incremental development of HMI based on the MVC architecture reflects
the complexity and modelling challenges in the area of HMI.

The proposed methodology is a generic solution of the HMI development that can
help to certify the HMI software. Our goal is to integrate formal models in the develop-
ment of HMI for verifying the desired behaviour under the relevant safety properties and
be able to guarantee the correctness of the functional behaviour. The proposed generic
methodology is used to develop the HMI case study for designing a safe interface pro-
gressively and checking the correctness of interactive behaviour.

Our future work intends on the proof of specification and their logical translation
in order to create templates to conceive and prove the development of HMI in Event-
B. Note that the current work does not cover the several HMI properties and CARE
properties, so we plan to include these properties in the process of HMI development.
Another important goal of this work is to validate the possible interaction using an
interface. Thus, our new challenges in the future will be to develop a set of patterns like
Dwyer’s pattern in order to validate the model through animation and tests. Moreover,
we plan to develop a set of libraries of HMI components in Event-B using ontology
relations, so that it can be used later in the development of HMI.

References

1. https://tel.archives-ouvertes.fr/file/index/docid/48279/filename/2 2modelesinterface
referen.html

2. Abowd, G.D., Wang, H.M., Monk, A.F.: A formal technique forautomated dialogue devel-
opment. In: Proceedings of the 1st Conference on Designing Interactive Systems: Processes,
Practices, Methods, & Techniques, DIS 1995, pp. 219–226. ACM, New York (1995)

3. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
New York (1996)

4. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn. Cambridge
University Press, New York (2010)

5. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open
toolset for modelling and reasoning in event-b. Int. J. Softw. Tools Technol. Transf. 12(6),
447–466 (2010)

6. Ameur, Y.A.: Cooperation of formal methods in an engineering based software development
process. In: 2000 Proceedings Second International Conference Integrated Formal Methods,
IFM 2000, Dagstuhl Castle, Germany, 1–3 November, pp. 136–155 (2000)

https://tel.archives-ouvertes.fr/file/index/docid/48279/filename/2_2modelesinterface_referen.html
https://tel.archives-ouvertes.fr/file/index/docid/48279/filename/2_2modelesinterface_referen.html

7. Ameur, Y.A., Aı̈t-Sadoune, I., Mota, J., Baron, M.: Validation et vérification formelles de
systèmes interactifs multi-modaux fondées sur la preuve. In: Proceedings of the 18th Inter-
national Conference of the Association Francophone d’Interaction Homme-Machine, Mon-
treal, Quebec, Canada, 18–21 April 2006, pp. 123–130 (2006)

8. Ameur, Y.A., Girard, P., Jambon, F.: A uniform approach for specification and design of
interactive systems: the B method. In: Design, Specification and Verification of Interactive
Systems 1998, Supplementary Proceedings of the Fifth International Eurographics Work-
shop, 3–5 June 1998, Abingdon, United Kingdom, pp. 51–67 (1998)

9. Ameur, Y.A., Girard, P., Jambon, F.: Using the B formal approach for incremental spec-
ification design of interactive systems. In: Engineering for Human-Computer Interaction,
IFIP TC2/TC13 WG2.7/WG13.4 Seventh Working Conference on Engineering for Human-
Computer Interaction, Heraklion, Crete, Greece, 14–18 September, pp. 91–109 (1998)

10. Ameur, Y.A., Sadoune, I.A., Baron, M.: Etude et comparaison de scénarios de
développements formels d’interfaces multi-modales fondés sur la preuve et le raffinement.
RSTI- Ingénierie des Systèmes d’Informations 13(2), 127–155 (2008)

11. Baron, M., Lucquiaud, V., Autard, D., Scapin, D.L.: K-made: Unenvironnement pour
le noyau du modèle de description del’activité. In: Proceedings of the 18th Conference
onL’Interaction Homme-Machine, IHM 2006, pp. 287–288. ACM, New York (2006)

12. Bolton, M.L., Siminiceanu, R.I., Bass, E.J.: A systematic approach to model checking human
- automation interaction using task analytic models. IEEE Trans. Syst. Man Cybern. - Part
A: Syst. Hum. 41(5), 961–976 (2011)

13. Bolton, M.L., Bass, E.J.: Building a formal model of a human-interactive system: insights
into the integration of formal methods and human factors engineering. In: First NASA For-
mal Methods Symposium - NFM, California, USA, 6–8 April, pp. 6–15 (2009)

14. Bowen, J., Reeves, S.: Formal models for user interface design artefacts. Innov. Syst. Softw.
Eng. 4(2), 125–141 (2008)

15. Bowen, J., Reeves, S.: Refinement for user interface designs. Electron. Notes Theor. Comput.
Sci. 208, 5–22 (2008)

16. Campos, J.C., Harrison, M.D.: Systematic analysis of control panel interfaces using formal
tools. In: Graham, T.C.N., Palanque, P. (eds.) DSV-IS 2008. LNCS, vol. 5136, pp. 72–85.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70569-7 6

17. Combéfis, S., Giannakopoulou, D., Pecheur, C., Feary, M.: Learning system abstractions
for human operators. In: Proceedings of the International Workshop on Machine Learning
Technologies in Software Engineering, MALETS 2011, pp. 3–10. ACM, New York City
(2011)

18. Combéfis, S., Pecheur, C.: A bisimulation-based approach to the analysis of human-computer
interaction. In: Proceedings of the 1st ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS 2009, pp. 101–110. ACM, New York (2009)

19. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.M.: Four easy pieces
for assessing the usability of multimodal interaction: the care properties. In: Nordby, K.,
Helmersen, P., Gilmore, D.J., Arnesen, S.A. (eds.) Human-Computer Interaction. IFIP
Advances in Information and Communication Technology, pp. 115–120. Springer, Boston
(1995). https://doi.org/10.1007/978-1-5041-2896-4 19

20. Dix, A., Finlay, J.E., Abowd, G.D., Beale, R.: Human-Computer Interaction, 3rd edn.
Prentice-Hall Inc., Upper Saddle River (2003)

21. EB2ALL: An automatic code generation tool from Event-B (2011). http://eb2all.loria.fr/
22. Eijk, P.V., Diaz, M. (eds.): Formal Description Technique Lotos: Results of the Esprit Sedos

Project. Elsevier Science Inc., New York (1989)
23. Heymann, M., Degani, A.: Formal analysis and automatic generation of user interfaces: app-

roach, methodology, and an algorithm. Hum. Factors 49(2), 311–330 (2007)

https://doi.org/10.1007/978-3-540-70569-7_6
https://doi.org/10.1007/978-1-5041-2896-4_19
http://eb2all.loria.fr/

24. Jambon, F.: From formal specifications to secure implementations. In: Proceedings of the
Fourth International Conference on Computer-Aided Design of User Interfaces III, Valenci-
ennes, France, 15–17 May 2002, pp. 51–62 (2002)

25. Lecrubier, V.: A formal language for designing, specifying and verifying critical embedded
human machine interfaces. Theses, INSTITUT SUPERIEUR DE L’AERONAUTIQUE ET
DE L’ESPACE (ISAE); UNIVERSITE DE TOULOUSE, June 2016. https://hal.archives-
ouvertes.fr/tel-01455466

26. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45236-2 46

27. Li, M., Wei, J., Zheng, X., Bolton, M.L.: A formal machine-learning approach to generating
human-machine interfaces from task models. IEEE Trans. Hum.-Mach. Syst. 47(6), 822–833
(2017)

28. Méry, D., Singh, N.K.: Automatic code generation from event-b models. In: Proceedings of
the Second Symposium on Information and Communication Technology, SoICT 2011, pp.
179–188. ACM, New York (2011)

29. Mohand Oussaı̈d, L.M.O.: Formal modelling and verification of multimodal human com-
puter interfaces : output multimodality. Theses, ISAE-ENSMA Ecole Nationale Supérieure
de Mécanique et d’Aérotechique - Poitiers, December 2014. https://tel.archives-ouvertes.fr/
tel-01127547

30. Navarre, D., Palanque, P., Paternò, F., Santoro, C., Bastide, R.: A tool suite for integrating
task and system models through scenarios. In: Johnson, C. (ed.) DSV-IS 2001. LNCS, vol.
2220, pp. 88–113. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45522-1 6

31. Palanque, P., Bastide, R., Sengès, V.: Validating interactive system design through the veri-
fication of formal task and system models. In: Bass, L.J., Unger, C. (eds.) EHCI 1995. IFIP
Advances in Information and Communication Technology, pp. 189–212. Springer, Boston
(1996). https://doi.org/10.1007/978-0-387-34907-7 11

32. Palanque, P.A., Bastide, R.: Petri net based design of user-driven interfaces using the interac-
tive cooperative objects formalism. In: Paternó, F. (ed.) Interactive Systems: Design, Speci-
fication, and Verification Focus on Computer Graphics (Tutorials and Perspectives in Com-
puter Graphics), pp. 383–400. Springer, Berlin (1995). https://doi.org/10.1007/978-3-642-
87115-3 23

33. Palanque, P., Bastide, R.: Verification of an interactive software by analysis of its formal
specification. In: Nordby, K., Helmersen, P., Gilmore, D.J., Arnesen, S.A. (eds.) Human—
Computer Interaction. IFIP Advances in Information and Communication Technology, pp.
191–196. Springer, Boston (1995). https://doi.org/10.1007/978-1-5041-2896-4 32

34. Reenskaug, T.M.H.: The original MVC reports (1979)
35. Ruksenas, R., Masci, P., Harrison, M.D., Curzon, P.: Developing and verifying user interface

requirements for infusion pumps: a refinement approach. ECEASST, 69 (2013). ISSN: 1863-
2122

36. Pinheiro da Silva, P., Griffiths, T., Paton, N.W.: Generating user interface code in a model
based user interface development environment. In: Proceedings of the Working Conference
on Advanced Visual Interfaces, AVI 2000, pp. 155–160. ACM, New York (2000)

37. Singh, N.K.: Using Event-B for Critical Device Software Systems. Springer, Heidelberg
(2013)

https://hal.archives-ouvertes.fr/tel-01455466
https://hal.archives-ouvertes.fr/tel-01455466
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-540-45236-2_46
https://tel.archives-ouvertes.fr/tel-01127547
https://tel.archives-ouvertes.fr/tel-01127547
https://doi.org/10.1007/3-540-45522-1_6
https://doi.org/10.1007/978-0-387-34907-7_11
https://doi.org/10.1007/978-3-642-87115-3_23
https://doi.org/10.1007/978-3-642-87115-3_23
https://doi.org/10.1007/978-1-5041-2896-4_32

	Refinement Based Formal Development of Human-Machine Interface
	1 Introduction
	2 Background
	2.1 HMI Architecture
	2.2 HMI Properties
	2.3 Event-B

	3 Methodology
	4 Case Study
	5 Formalization of HMI
	5.1 Abstract Model: Model
	5.2 First and Second Refinements: Controller
	5.3 Third and Fourth Refinements: View
	5.4 Model Validation and Analysis

	6 Discussion
	7 Related Work
	8 Conclusion
	References

