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Abstract. We aim to develop sound and effective techniques to auto-
mate formal modelling and refinement from tabular expressions using a
correct-by-construction approach. In this work, we present a refinement
strategy to generate formal models from tabular expressions, as they
can be used in the Event-B modelling paradigm. The proposed refine-
ment strategy permits us to develop an abstract model using tabular
expressions and a series of Event-B models using refinement from the
set of tabular expressions. Further the proofs associated with the refine-
ment strategy used to generate the model are examined through the
Rodin tools. Our work is an important step towards eliciting patterns of
automatic refinement for Event-B models from tabular expressions and
to meet the properties of completeness and disjointness in a rigorous
manner. To assess the effectiveness of our proposed approach, we use a
medical device case study: the Insulin Infusion Pump (IIP).

Keywords: Tabular expression · Event-B · Refinement · Formal meth-
ods · Verification · Validation · Insulin Infusion Pump

1 Introduction

Requirement engineering (RE) provides a framework for a better understand-
ing of system requirements by simplifying system complexity using formal and 
informal techniques. It plays an important role in analyzing system requirements, 
and functional and non-functional system behaviours to achieve the properties 
of consistency, unambiguity and completeness. Tabular expressions [1] support a 
technique for requirement engineering that uses (potentially complex) relations 
for documenting and analysing system requirements, in order to define them 
precisely and concisely. It is a visual representation of functions in a tabular 
layout that has a precise semantics and a formal notation. Moreover, this tab-
ular representation of system requirements satisfies the important properties of 
disjointness and completeness.
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On the other hand, formal methods have been applied successfully to design
and develop critical systems, such as avionics, medical and automotive [2,3]. In
particular, formal methods have been used to check functional requirements and
safety requirements by developing system models. In formal modelling, refine-
ment plays an important role for handling a large complex system by developing
the whole system incrementally, in which each incremental step can be used to
introduce new functionalities while preserving the required safety properties.

Practicalities of performing automatic refinements are largely an open prob-
lem. It is, clearly, unrealistic to carry out such refinements entirely by hand,
which is well illustrated by the complexity of the examples in [4,5]. Some refine-
ment steps are, however, inherently difficult to automate. Our work highlights
how automation is feasible to guide the refinement process.

Our primary contribution in this paper is to propose a refinement strategy
that can help automate the process of formalizing system requirements from
tabular expressions using a correct-by-construction approach. We show how the
refinement strategy can be used to transform tabular expressions into formal
models that aid in determining the correctness of functional behaviour, and the
modelling structure of a system. The refinement approach allows us to build
a formal model incrementally, where the first model represents only abstract
behaviour, and the incremental models are enriched by more concrete behav-
iours. The generated formal models are used later to define safety properties
and to check system consistency using formal verification. To achieve our goal,
we select the Event-B modelling language that allows incremental refinement
based on a correct-by-construction approach for generating formal models from
tabular expressions.

To assess the proposed incremental refinement strategy in Event-B, we apply
it to design and to formally specify an Insulin Infusion Pump (IIP). First, the
informal IIP requirements are described in tabular expressions that are used
later for producing the formal models. In the IIP case study, we verify func-
tional behaviours including various system operations, that are required to main-
tain insulin delivery, user profile management, and the calculation of required
amounts of insulin. The complete formal development builds incrementally-
refined models of IIP, formalizing the required functional behaviour by preserving
its required safety properties. We also use the Rodin [6] tools to check the gener-
ated formal models. The added contributions of this article can be summarised
as follows: (1) proposing a refinement strategy for generating formal models from
tabular expressions; (2) discussing in detail opportunities and ramifications for
automating the application of the refinement strategy; (3) presenting validation
of the proposed refinement strategy by discharging the proof obligation of the
generated models using Rodin tools; and (4) applying the refinement strategy
to the Insulin Infusion Pump (IIP) case study.

The structure of the article is as follows. In Sect. 2, we review preliminary
material: tabular expression and the modelling framework. Section 3 presents a
refinement strategy for generating the formal models from tabular expressions.
Section 4 presents an example that illustrates the application of the refinement



strategy: the Insulin Infusion Pump (IIP), including model analysis. Section 5
presents related work, and in Sect. 6, we conclude the paper and discuss with
future work.

2 Preliminaries

2.1 Tabular Expressions

In the late 1970s, Parnas et al. [1,7] used tables to specify the software system
requirements for expressing complex behaviours through organizing the relation
between input and output variables. These tables were used simply to describe
system requirements unambiguously. Parnas formally defined ten different types
of tables for different purposes using functions, relations, and predicates [1].
Parnas also called these tables tabular expressions because the tables use math-
ematical expressions and recursive definitions. Some foundational works reported
on formal semantics, table transformation, and composition of tables [8,9]. The
formal semantics of tables specify the precise meaning that helps to maintain
the same level of understanding when tables are used by various stakeholders.
Similarly, table transformation can be used to derive a desired system behaviour
under various system situations, and the composition of tables can be used to
integrate different tables to obtain the final complex behaviour. These tables
have been used in several safety-critical projects such as by Ontario Hydro for
the Darlington Nuclear Shutdown Systems [10,11], and the US Naval Research
Laboratory [12], etc.

Tabular expressions [7] are not only effective visually and as a simple app-
roach to documenting system requirements by describing conditions and rela-
tions between input and output variables, they also facilitate preserving essential
properties like completeness and disjointness, which are described as follows:

– Disjointness: requires that the conditions ( ci) in columns (rows) do not
overlap, which can be formalised as ∀i,∀j(i �= j ⇒ ¬(ci ∧ cj)).

– Completeness: requires that the conditions in columns (rows) cover all the
input possibilities, which can be formalised as (c1 ∨ c2 . . . ∨ cn) ≡ TRUE.

In our work, for generating formal models from tabular expressions using our
refinement strategy, we use horizontal condition tables (HCT). An HCT table
contains of a group of columns for input conditions and a group of columns for
output results. However, the input column may be sub-divided to specify multi-
ple sub-conditions. The tabular structure highlights the structure of predicates,
and adjoining cells are considered to be ANDed so that can be interpreted in
the tabular structure as a list of “if-then-else” predicates.

2.2 The Modelling Framework

In this section, we summarize the Event-B modelling language [13]. The Event-B
language has two main components: context and machine. A context describes



the static structure of a system, namely carrier sets and constants together with
axioms and theorems stating their properties. A machine defines the dynamic
structure of a system, namely variables, invariants, theorems, variants and
events. Terms like refines, extends, and sees are used to describe the relation
between components of Event-B models. Events are used in a machine to mod-
ify state variables by providing appropriate guards.

Modelling Actions over States. The event-driven approach of Event-B is
borrowed from the B language [14]. An Event-B model is characterized by a
list of state variables possibly modified by a list of events. An invariant I(x)
expresses required safety properties that must be satisfied by the variable x
during the activation of events. An event is a state transition in a dynamic
system that contains guard(s) and action(s). A guard, a predicate built on the
state variables, is a necessary condition for enabling an event. An action is a
generalized substitution that describes the ways one or several state variables are
modified by the occurrence of an event. There are three ways to define an event
e. The first is BEGIN x : |(P (x, x′) END, where the action is not guarded
and the action is always enabled. The second is WHEN G(x) THEN x :
|(Q(x, x′)) END, where the action is guarded by G, and the guard must be
satisfied to enable the action. The last is ANY t WHERE G(t, x) THEN x :
|(R(x, x′, t)) END, where the action is guarded by G, and it depends on the
local state variable t for describing non-deterministic events. Event-B supports
several kinds of proof obligations like invariant preservation, non-deterministic
action feasibility, guard strengthening in refinements, simulation, variant, well-
definedness etc.

Invariant preservation (see INV1 and INV2 below) ensures that each invariant
is preserved by the INITIALIZATION event Init(x) and other model events
BA(e)(x, x′); non-deterministic action feasibility (FIS) shows the feasibility of
the event e with respect to the invariant I; guard strengthening in a refinement
ensures that the concrete guards in a refining event are stronger than the abstract
ones; and simulation ensures that each action in a concrete event simulates the
corresponding abstract action.

INV 1 : Init(x) ⇒ I(x)
INV 2 : I(x) ∧ BA(e)(x, x′) ⇒ I(x′)
FIS : I(x) ∧ Grd(e)(x) ⇒ ∃y.BA(e)(x, y)

Model Refinement. A model can be refined to introduce new features or more
concrete behaviour of a system. The Event-B modelling language supports a step-
wise refinement technique to model a complex system. The refinement enables us
to model a system gradually and provides a way to strengthen invariants thereby
introducing more detailed behaviour of the system. This refinement approach
transforms an abstract model to a more concrete version by modifying the state
description. The refinement process extends a list of state variables by refin-
ing each abstract event to a corresponding concrete version, or by adding new



events. These refinements preserve the relation between an abstract model and
its corresponding concrete model, while introducing new events and variables to
specify more concrete behaviour of the system. The abstract and concrete state
variables are linked by gluing invariants. The generated proof obligations ensure
that each abstract event is correctly refined by its concrete version. For instance,
an abstract model AM with state variable x and invariant I(x) is refined by a
concrete model CM with variable y and gluing invariant J(x, y). e and f are two
events of the abstract model AM and concrete model CM , respectively. Event f
refines event e. BA(e)(x, x′) and BA(f)(y, y′) are predicates of the events e and
f , respectively. This refinement relation generates the following proof obligation:

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ ∃x′ · (BA(e)(x, x′) ∧ J(x′, y′))

A set of new events introduced in a refinement step is viewed as hidden
events, which are not visible to the environment of the system being modelled.
These introduced events are outside of the control of the environment. Newly
introduced events refine skip and are not observable in the abstract model. Any
number of executions of an internal action may occur in between each execu-
tion of a visible action. This refinement relation generates the following proof
obligation:

I(x) ∧ J(x, y) ∧ BA(f)(y, y′) ⇒ J(x, y′)

The refined model reduces the degree of non-determinism by strengthening
the guards and/or predicates. The refinement of an event e by an event f means
that the event f simulates the event e, which guarantees that the set of traces of
the refined model contains (up to stuttering) the traces of the resulting model.
The Rodin platform provides a set of tools to support project management,
model development, proof assistance, model checking, animation and automatic
code generation.

3 Refinement Strategy

A common way of constructing a formal specification is to start from a very
simple abstract model that captures only basic system behaviour, and to add
new features or system requirements to the abstract model to develop a con-
crete system by satisfying the additional requirements. An extension is a set of
new features and system requirements that always zoom into a detailed system
behaviour without changing the original abstract behaviour. We refer to this
type of modelling method as superpositioning [15].

Superposition seems to be a good candidate in the field of formal modelling,
because it allows us to construct a complicated formal specification by incremen-
tal refinement steps. Each new refinement step always focuses on a single design
decision. In other words, it permits us to tackle one issue at a time, rather than
having to make a joint design decision and settle a number of interrelated design
questions [15].



Here, we describe a refinement strategy for generating formal models from
documented system requirements. Our objective is to formalize tabular expres-
sions and then define safety properties for the developed models to verify the doc-
umented system requirements. To produce formal models from tabular expres-
sions is not an easy task due to no refinement relation among the tables, lack of
techniques to support table compositions and implicit information about correct
ordering of system behaviour. In order to produce formal models from tabular
expressions, we propose a refinement strategy that allows us to construct a model
progressively by traversing tabular requirements using a correct-by-construction
approach. The proposed strategy can be suitable for any formal language that
can support refinement based development. As mentioned, we use the Event-B
modelling language, which supports refinement based progressive development.
A formal definition of the transformation rule for the proposed refinement strat-
egy is given below.

Definition 1. Let T be a set of tabular expressions, in which each tabular
expression satisfies the properties of disjointness and completeness. Then a trans-
formation rule R is a function producing a new formal model M , defined accord-
ing to the syntax of Event-B models for a given input model:

R : T × C → M

where C contains a set of possible configurations (i.e., with/without refinement)
of the transformation rule R.

Note that R is defined as a total function, i.e., it produces a new model
for each input model t of tabular expressions and configurations c, i.e., when
(t, c) ∈ dom(R).

Figure 1 depicts a graphical layout of the refinement strategy. The refinement
strategy for producing formal models from tabular expressions considers system
requirements defined in tabular expressions to construct an abstract model and
successive refinement models. A formal definition of the transformation rule using
the refinement strategy for producing a formal model M from tabular expressions
is defined below.

Fig. 1. Refinement strategy



Definition 2. A refinement strategy is a transformation rule R : T × C →
M that constructs a model M for input tabular expressions and configuration
(with/without refinement). The generated model M is defined as,

M = AM 
 CM1 
 CM2 
 · · · 
 CMn

AM = t1 ∈ T ∧ Πc1..n,res(t1)
CM1 = AM ∪ (t2 ∈ T ∧ Πc1..n,res(t2))
CM2 = CM1 ∪ (t3 ∈ T ∧ Πc1..n,res(t3))
. . .
CMn = CMn−1 ∪ (tm ∈ T ∧ Πc1..n,res(tm))

where AM is an abstract model, CM1, CM2, . . . , CMn are a series of concrete
models, Π is a projection relation to select a table’s column, t1, t2, t3, . . . , tm are a
set of tables, c1..n is a set of columns of the table T , res is a set of output columns
and 
 denotes a refinement relation. It is important to know that each table t
of T contains a set of required variables, including type definitions, to describe
system requirements in tabular form, which can be used during the process of
model generation (AM,CM1 . . . CMn).

The generated formal model is composed of an abstract model and a list of
refinement models. An abstract model is important because it tells us exactly
what the system is supposed to do without telling us how. In this refinement
strategy, we can start to design an abstract model from any tabular expres-
sion, and then we can select other tabular expressions in a sequential order
to introduce a new system behaviour by applying refinement laws, and pre-
serving abstract behaviour. In Fig. 1, each tabular expression is introduced at
a new refinement level that is defined in Definition 2 as CM1 = AM ∪ (t2 ∈
T ∧ Πc1..n,res(t2)). The skip refinement allows us to introduce other events to
maintain state variables. Importantly, a new refinement level allows to intro-
duce a set of new events. In this refinement strategy, we do not use any guard
strengthening and action simulation refinement laws. By using skip refinement,
we introduce a new set of events corresponding to the tabular expressions. To
design a formal model from tabular expressions, we traverse a tabular expres-
sion, in which condition columns are used for defining the guard predicates and
output columns are used for defining actions of the events. Each row of a tabular
expression creates an event. For example, we can select a row from Table 2 to
create the first event, and the second event can be created from the second row
of Table 2. In fact, in both rows the first row of the condition column is com-
mon and can be used as a common guard for both events. At each refinement
level, we always select a new tabular expression to introduce new features and
system requirements. It should be noted that the total number of refinements
will depend on the total number of tabular expressions, and sometimes a few
tables can be formalized together. Moreover, to satisfy the refinement relation
between two consecutive models, to develop a consistent model, and to prove
all the generated proof obligations related to refinement, we need to identify a
dependency order between the tables that can be used further to generate the
formal models.



4 Case Study: The Insulin Infusion Pump

To assess the proposed refinement strategy for producing formal models from
tabular expressions, we select a medical device case study: the Insulin Infusion
Pump (IIP). An insulin pump is a complex and software-intensive medical device
that delivers an appropriate amount of insulin to patients whenever required. An
insulin pump is an integration of several hardware components: a physical pump,
a disposable reservoir, and a disposable infusion set. The pump system is made
of a controller and a battery. The disposable infusion set includes a cannula for
subcutaneous insertion, and a tubing system to interface the insulin reservoir
to the cannula. An insulin pump can be programmed to release small doses of
insulin continuously (basal), or a one shot dose (bolus) before a meal, to control
the rise in blood glucose.

As far as we know, there are no published system requirements for an IIP,
but several research publications provide informal requirements [16,17]. We used
such informal descriptions as a basis for this work to identify the system require-
ments by formulating use cases and hazard analysis. These system requirements
focus on the functional behaviour of an IIP without addressing design require-
ments, and human computer interaction (HCI) requirements.

4.1 Generating Tabular Expressions

In this section, we describe how tabular expressions can be produced from the
informal requirements. The IIP system requirements are described in several
tabular expressions that are used to check the important properties of com-
pleteness and disjointness. Note that the tabular expressions for IIP are derived
manually from the given informal requirements. In this development, we define
49 tabular expressions, that are further grouped into eight main functionali-
ties: power status, user operations, basal profile management, temporary basal
profile management, bolus management, bolus delivery, reminder management,
and insulin output calculator. These main functionalities form a group of several
small sub-functions, that are also defined using tabular expressions. For instance,
Tables 1 and 2 describe power status and power on self test (POST), in which
condition columns contain required conditions and the results columns show
associated outputs of the variables. In Table 1, we use natural language descrip-
tions for describing the required conditions and in Table 2 the first condition
column depends on the previous state of the variable c_pwrStatus. Similarly,
in Table 2 the result column defines the value of control variable c_pwrStatus.
We derive several tabular expressions from informal requirements to specify the
system requirements so as to meet the properties of disjointness and complete-
ness. Note that, in our tabular expression, we used a naming convention that
uses prefixes to distinguish different types of variables to improve readability of
the developed tabular expressions.



Table 1. Tabular expression for
POST

Result
Condition POST

{ POST completed without problem } Pass
{ POST completed and problems are detected } Fail

Table 2. Tabular expression for power status

Result
Condition c_pwrStatus

c_pwrStatus−1 = Standby EXIST[ M_pwrReq ] POST
! EXIST[ M_pwrReq ] NC

c_pwrStatus−1 = POST [ POST ] = Pass Ready
POST = Fail Standby

c_pwrStatus−1 = Ready EXIST[ M_pwrReq ] OffReq
! EXIST[ M_pwrReq ] NC

c_pwrStatus−1 = OffReq M_pwrResp = Accept Standby
M_pwrResp = Cancel Ready

4.2 Formalizing the Insulin Infusion Pump

In the IIP case study, we use the refinement strategy to produce formal models
from tabular expression requirements. In this development approach, we initially
ignore most of the system complexity, including various functional behaviours.
All the tabular expressions are progressively modelled using the refinement strat-
egy, by providing required safety properties to make the operations safe. Note
that sometimes there is no specific order required in which to apply the refine-
ments. In this case, any order can be chosen after developing an abstract model.
However, sometimes this is not true due to dependency between tables. In fact,
we need to choose a specific order of tables during the system development. Each
table of the system requirements is introduced in a new refinement level. In this
article, we include all elementary steps for describing the model development
and refinement steps of an IIP and the complete formal specification is available
for inspection in the appendix of a report [18], which is more than 1500 pages
long.

Abstract Model: Power Status. Our abstract model of the IIP specifies only
power status and related functionalities that control the power status, i.e., turn-
ing the system on/off. The tabular expressions of power status and power on
self test (POST) are defined in Tables 1 and 2, which are used for modelling an
abstract model of IIP. In order to start the formalization process, we need to
define static properties of the system. An Event-B context declares three enu-
merated sets e_pwrStatus, e_basicResp, and e_postResult defined using axioms
(axm1–axm3) for power status.

axm1 : partition(e_pwrStatus, {Standby_pwrStatus}, {POST_pwrStatus},
{Ready_pwrStatus}, {OffReq_pwrStatus})

axm2 : partition(e_basicResp, {Accept_basicResp}, {Cancel_basicResp})
axm3 : partition(e_postResult, {Pass_postResult}, {Fail_postResult})

An abstract model declares a list of variables defined by invariants (inv1–
inv5 ). A variable POST_Res is used to state the result of power-on-self-test
(POST), where the result ‘pass’ (Pass_postResult) means system is safe to turn
on, and the result ‘fail’ (Fail_postResult) means system is unsafe to start. The
next variable post_completed is used to show successful completion of POST of
an IIP. The variable c_pwrStatus shows the current power status of the system.



inv1 : POST_Res ∈ e_postResult
inv2 : post_completed ∈ BOOL
inv3 : c_pwrStatus ∈ e_pwrStatus
inv4 : M_pwrReq_A ∈ BOOL
inv5 : M_pwrResp ∈ e_basicResp

The variable M_pwrReq is used to model
a request for power on/off from the user,
and the last variable M_pwrResp is used
for modelling user responses to system
prompts.

We introduce 10 events (derived from Tables 1 and 2) for specifying a desired
functional behaviour for controlling the power status of the IIP. These events
include guards for enabling the given actions, and the actions that define the
changes to the states of power status (c_pwrStatus) and power-on-self-test
(POST_Res). Here, we provide only two events related to the power status
and power-on-self-test in order to demonstrate the basic formalization process.
An event POST_Completed is used to assign the pass result (Pass_postResult)
to POST_Res, when post_completed is TRUE. This event is generated from
Table 1. The light grey colour of the condition and result columns of Table 1
shows the conditions and actions that are translated equivalently to event
POST_Completed.

EVENT POST_Completed
WHEN
grd1 : post_completed = TRUE

THEN
act1 : POST_Res := Pass_postResult

END

EVENT PowerStatus1
WHEN
grd1 : c_pwrStatus = Standby_pwrStatus
grd2 : ∃x·x ∈ BOOL ∧ x = M_pwrReq

THEN
act1 : c_pwrStatus := POST_pwrStatus

END

Similarly, another event PowerStatus1 is used to set POST_pwrStatus to
c_pwr-Status, when power status is standby, and there exists a power request
from the user. The light grey colour of the condition and result columns of
Table 2 presents the conditions and actions that are translated equivalently to
event PowerStatus1. The remaining events are formalized in a similar way and
are translated from the rows of Tables 1 and 2.

Since we do not have space for the detailed formalization, we summarise each
refinement step of the IIP development in the following section.

4.3 A Chain of Refinements

For developing the whole system applying our refinement strategy, we used 7
main progressive development steps, which are defined as follows:

First Refinement: User Operations. This refinement introduces a set of
operations, such as create, remove, activate and manage the basal profile, bolus
profile, and reminders, performed by the user to program the IIP for deliver-
ing insulin. In this development, we cover all user interactions with the system,
including user initiated commands and system responses. The formalised oper-
ations enable the delivery of a controlled amount of insulin according to the
physiological needs of a patient.

Second Refinement: Basal Profile Management. This refinement intro-
duces basal profile management to maintain a record and to store basal profiles
defined by the user. In particular, we focus on the following operations: create a



basal profile; remove a basal profile; check the validity of a selected basal profile;
activate a basal profile; and deactivate a basal profile. Note that whenever a new
basal profile activates, then the old basal profile deactivates automatically.

Third Refinement: Temporary Basal Profile Management. This refine-
ment introduces temporary basal profile management that is similar to the basal
profile management, which allows for activating, deactivating and checking the
validity of a selected temporary basal profile.

Fourth Refinement: Bolus Preset Management. This refinement intro-
duces bolus preset management, which includes creating and checking the valid-
ity of a new bolus preset, removal operation of an existing bolus preset, and
activation of the selected bolus preset.

Fifth Refinement: Bolus Delivery. In this refinement, we introduce a bolus
delivery mechanism that allows us to start bolus delivery, to calculate the
required dose for insulin delivery, and to check the validity of the calculated
bolus and manually entered bolus. Moreover, this refinement also ensures that
the IIP always delivers a correct amount of bolus at the scheduled time.

Sixth Refinement: Reminder Management. In this refinement, we intro-
duce reminder management that allows us to create and validate a new reminder,
and to remove an existing reminder. This refinement covers all the necessary ele-
ments for describing the reminder management, and to verify the requirements
of reminder management.

Seventh Refinement: Insulin Output Calculator. The last refinement mod-
els the insulin output calculator. It calculates the insulin required over the course
of the day, the appropriate time segment, and the time steps for delivering the
insulin. It also keeps track of the insulin delivered within the time segment. The
infusion flow rate can be 0, if the system is off, and there is no active profile or
the maximum amount of insulin has been delivered already.

4.4 Safety Properties

In our IIP case study, we introduce several safety properties (i.e., see spr1–
spr9) to make sure that the formalized IIP system is consistent and safe. The
first safety property (spr1) ensures that when EnteredBasProfValid is TRUE,
an entered basal delivery rate is within the safe range. Similarly, when Entered-
BasProfValid is TRUE, spr2 ensures that the total amount of insulin delivered
over a day is within the stated limit. spr3 and spr4 perform the same checks for
the selected basal rate and amount when SelectedBasalProfileIsValid is TRUE.
spr5 and spr6 perform the same checks for the temporary basal profile when
EnteredTemporaryBasalIsValid is TRUE. spr7 states that when SelectedPre-
setIsValid is TRUE, the bolus rate of a selected bolus profile must be within
the range of minimum bolus bound and maximum bolus bound. spr8 ensures
that when EnteredBolusIsValid is TRUE, the bolus rate of an entered bolus
profile must be within the range of minimum bolus bound and maximum bolus



bound. The last safety property (spr9) states that the total amount of insulin to
output over the next time unit is less than or equal to the maximum daily limit
of insulin that can be delivered.

spr1 : EnteredBasProfV alid = TRUE ⇒ (∃x, y·x �→ y = M_basProf∧
(∀i·i ∈ index_range ∧ i ∈ dom(y) ⇒ y(i) ≥ k_minBasalBound
∧y(i) ≤ k_maxBasalBound))

spr2 : EnteredBasProfV alid = TRUE ⇒ (∃x, y, insulin_amount·x �→ y = M_basProf∧
insulin_amount ∈ y_insulinV alue ∧ (∀i·i ∈ index_range ∧ i ∈ dom(y)⇒
insulin_amount = insulin_amount + y(i) ∗ k_segDayDur)∧
insulin_amount ≤ k_maxDailyInsulin)

spr3 : SelectedBasalProfileIsV alid = TRUE ⇒ (∃x, y·x �→ y = M_basActSelected∧
(∀i·i ∈ index_range ∧ i ∈ dom(y) ⇒ y(i) ≥ k_minBasalBound
∧y(i) ≤ k_maxBasalBound))

spr4 : SelectedBasalProfileIsV alid = TRUE⇒
(∃x, y, insulin_amount·x �→ y = M_basProf ∧ insulin_amount ∈ y_insulinV alue ∧
(∀i·i ∈ index_range ∧ i ∈ dom(y) ⇒ insulin_amount = insulin_amount +
y(i) ∗ k_segDayDur) ∧ insulin_amount ≤ k_maxDailyInsulin)

spr5 : EnteredTemporaryBasalIsV alid = TRUE ⇒ ∃x, y, z ·x �→ y �→ z = M_tmpBas∧
y ≥ k_minBasalBound ∧ y ≤ k_maxBasalBound)

spr6 : EnteredTemporaryBasalIsV alid = TRUE⇒
(∃x, y, z ·x �→ y �→ z = M_tmpBas ∧ y ∗ z ≤ k_maxDailyInsulin)

spr7 : SelectedPresetIsV alid = TRUE ⇒ (∃x, y·x �→ y = M_bolSelected∧
y ≥ k_minBolusBound ∧ y ≤ k_maxBolusBound)

spr8 : EnteredBolusIsV alid = TRUE ⇒ (∃x, y·x �→ y = M_bolus∧
y ≥ k_minBolusBound ∧ y ≤ k_maxBolusBound)

spr9 : c_insulinOut ≤ k_maxDailyInsulin

4.5 Model Analysis

In this section, we present the proof statistics by presenting detailed information
about generated proof obligations. Event-B supports consistency checking which
shows that a list of events preserves the given invariants, and refinement checking
which makes sure that a concrete machine is a valid refinement of an abstract
machine. This complete formal specification of an IIP contains 263 events, 16
complex data types, 15 enumerated types, and 25 constants for specifying the
system requirements. The system requirements are described using 49 tabular
expressions. The formal development of the IIP is presented through one abstract
model and a series of seven refinement models. In fact, the refinement models
are decomposed into several sub refinements. Therefore, we have a total of 43
refinement levels for describing the system behaviour. In this paper, we have
omitted the detailed description of the 43 refinements by grouping them into
the main components we used to present the formal specification of the IIP by
applying the second refinement strategy to the group of tabular expressions.

Table 3 shows the proof statistics of the development in the Rodin tool. To
guarantee the correctness of the system behaviour, we provide a list of safety
properties in the last refinement model. This development resulted in 444 (100%)
proof obligations, of which 342 (77%) were proved automatically, and the remain-
ing 102 (23%) were proved interactively using the Rodin prover (see Table 3).



Table 3. Proof statistics

Model Total number
of POs

Automatic
proof

Interactive
proof

Abstract model 3 3 (100%) 0 (0%)
First refinement 22 22 (100%) 0 (0%)
Second refinement 98 82 (83%) 16 (17%)
Third refinement 26 25 (100%) 1 (0%)
Fourth refinement 52 45 (87%) 7 (13%)
Fifth refinement 54 54 (100%) 0 (0%)
Sixth refinement 66 60 (91%) 6 (9%)
Seventh refinement 123 51 (42%) 72 (58%)
Total 444 342 (77%) 102 (23%)

These interactive proof obliga-
tions are mainly related to auto-
mated refinement based model gen-
eration and complex mathemati-
cal expressions, simplified through
interaction to provide additional
information for assisting the Rodin
prover. Other proofs needed only to
simplify predicates.

5 Related Work

Since the late 1950s, tables have been used for analyzing computer code, and
documenting requirements. Tables first appeared in the software literature in the
1960s [19]. Early tables included decision tables, transition tables, etc. Parnas
and others introduced tabular expressions for developing the requirements doc-
ument for the A-7E aircraft [20,21] in work for the US Navy. Parnas was the
most influential person to apply tabular expressions in documenting software [1].
Later, tables were used by many others, including at Bell Laboratories, and
the US Air Force. Starting in the late 1980s tabular notations were applied by
Ontario Hydro in developing the shutdown systems for the Darlington Nuclear
Plant [22]. Formal semantics of tabular expressions have been proposed by Par-
nas [1] and other researchers [8]. A slightly outdated survey on tabular expres-
sions is available in [8]. Nalepa et al., have proposed eXtended Tabular Trees
(XTT) [23] and HeKatE [24] for developing a complex rule-based system, where
these approaches are used to ensure high density and transparency of visual
knowledge.

Refinement enables the incremental development of a system to ensure that
a refined model retains all the essential properties of an abstract model. The
foundational work of formal reasoning about correctness and stepwise devel-
opment using refinement was established by Dijkstra [25] and Hoare [26] and
further developed by Back and von Wright [27], and Morgan [28]. The refine-
ment calculus provides a formal stepwise approach for constructing a program
from an abstract program to a concrete program by preserving essential proper-
ties. There are a few papers published on automating the refinement pattern [4]
and principles for refinement [5]. In [4], the authors propose refinement patterns
using syntactic model transformation, pattern applicability conditions and proof
obligations for verifying correctness preservation. To handle the design complex-
ity of applying Event-B refinement and consistency rules, one paper [5], presents
refinement planning from an informal/semi-formal specification.

6 Conclusion

We have presented a refinement strategy that can automate the process of
formalizing system requirements from tabular expressions using a correct-by-



construction approach. We used a refinement strategy to transform tabular
expressions into formal models that determine the correctness of functional
behaviour and modelling structure of a system. We also highlighted challenges
for automation: primarily, composition of tabular expressions, use of sequential
ordering of tables, and table traversing complexities. Due to the variety of lay-
outs of tabular expressions, there are still open issues related to the automation
of tables that ought to be supported, and hence we do not claim completeness
at this stage. On the other hand, our results showed that the proposed refine-
ment strategy can largely be automated to generate formal models from tabular
expressions. Moreover, the proposed approach is scalable to handle large and
complex systems, in which system requirements are presented in tabular form.

In order to apply a refinement strategy, we selected the Event-B modelling
language, which allows incremental refinement based on a correct-by-construction
approach, for generating formal models from tabular expressions. Further, the
Rodin tools can be used to verify formally the produced model. To assess the
effectiveness of our proposed refinement strategy, we used the Insulin Infusion
Pump (IIP) as a case study. The IIP requirements are described in tabular
expressions, which we used to produce formal models using incremental refine-
ment steps. In order to guarantee the ‘correctness’ of the system behaviour,
we provided a list of safety properties in the generated model. Each refined
model was proven to guarantee the preservation of those safety properties. This
method of model generation and verification from the defined tabular expression
requirements facilitates systematic modelling of a formal model using incremen-
tal refinement to guarantee formal designing of system requirements including
required properties of completeness, disjointness, and safety. Our complete for-
mal development of this IIP is available in a 1500 page report [18].

Our future goal is to develop a tool based on the proposed refinement strategy
to automate the process for generating formal models from tabular expressions,
and to apply this approach on several large and complex case studies to automate
formal reasoning for tabular system requirements to verify a desired behaviour
under relevant safety properties. This automation will allow us to produce formal
models automatically from tabular requirements. In fact, if the original require-
ments are modified later, then we can use the automation tool to produce the
new modified formal models. In addition, our intension is to use the generated
and proved Event-B models for producing source code in many languages using
EB2ALL [2,29].
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